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Abstract— The substitution of the original switches by a
full-bridge in a Non-Inverting Buck-Boost converter results
in an inverter capable of performing step-down and step-up
tasks under sliding mode control. Furthermore, semi-infinite
programming techniques are used to minimize power loses
while preventing control action saturation. The performance of
the inverter is shown to be robust in front of load perturbations.
The procedure assumes known bounds for the disturbances, as
well as full state knowledge. Realistic simulations validate the
proposed scheme.

I. INTRODUCTION

The possibility of using nonlinear DC-DC switching

power converters as source inverters has been thoroughly

studied during the last twenty years. The main reason for

this is that the conventional Full-Bridge Buck converter

must incorporate a transformer to adequately perform step-

up tasks, thus resulting in a significative increase of the

weight and size of the power supply equipment. When using

nonlinear converters, efforts are handicapped by the non-

minimum phase character shown by these devices when

direct control over the output voltage is exerted [1].

First attempts to solve the problem by means of a current-

based indirect control in boost and buck-boost DC-AC invert-

ers [2],[3] have lead to systems with sensitivity to external

perturbations and parameter uncertainties. Moreover, direct

control strategies of the output voltage that include passivity-

based schemes [4] and PID-type sliding mode controllers

[5] have been used for regulation purposes. PI controllers

also offer interesting performance in full-bridge nonlinear

inverters [6],[7],[8],[9]. However, it is well known that PI

control designs are based on a small signal model; this leads

to output waveforms being sensitive to power stage parameter

variations, such as the output load.

The Full-bridge Non-Inverting Buck-Boost inverter, which

is essentially achieved by a full-bridge inverter in series

with a Boost converter, has two control inputs. Hence, it is

possible to design a sliding mode control strategy which is

able to yield robust tracking of periodic signals by the output

voltage and, at the same time, maintain the input current

regulated at a prescribed level. The proposal uses a full-

state reference profile-based switching surface that does not

depend on the plant parameters. The inverter is assumed to
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undergo possible load variations in a set with known bounds.

Restrictions for candidate signals to be tracked are derived

by demanding non-saturation of the control action, which

has fixed control gains, in the steady state.

Existing literature dealing with the Non-Inverting Buck-

Boost converter contains results for regulation tasks [10],

[11]. In [12], sliding modes are used to achieve output

voltage tracking of sinusoidal signals with offset: the perfor-

mance is shown to be robust under resistive load variation

in a set with known bounds. The theoretical development

presented in that article is applied in this paper to the Full-

Bridge Non-Inverting Buck-Boost converter, this leading to

a robust step-up/down DC/AC inversion.

It is already known that proper energy transfer constitutes

the main goal of power converters, this meaning good

efficiency and high output signal quality. Maximizing power

efficiency requires minimization of the Root Mean Square

(RMS) of the current flowing in the switching converter,

this leading to two different effects, namely, optimization

of the loses due to the power switching and minimization

of the resistive loses in the inductors. Hence, the design in-

corporates a procedure to reduce power loses based in semi-

infinite programming theory [13] and assuming known upper

and lower bounds for the load variation; this technique has

been successfully applied to a Full-Bridge Boost converter

in [14] and also to a Full-Bridge Non-Inverting Buck-Boost

in [12]. Finally, the theoretical development is validated by

carrying out illustrative simulations with the realistic power

electronics software package PSIM.

The article is structured as follows. The mathematical

model of the Full-bridge Non-Inverting Buck-Boost is es-

tablished in Section II. A sliding mode control strategy

to achieve the output voltage tracking target is developed

in Section III. The selection of a current reference profile

that minimizes power loses and guarantees non-saturation of

the controller is studied in Section IV. Simulation results

are presented in Section V, while Conclusions and some

suggestions for further research are in Section VI.

II. THE FULL-BRIDGE NON-INVERTING

BUCK-BOOST CONVERTER

The Non-Inverting Buck-Boost converter, depicted in Fig-

ure 1, can be modelled as a two-dimensional, bilinear system

with the inductor current iL and the capacitor voltage vC as
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Fig. 1. Non-Inverting Buck-Boost converter.

state variables:

L
diL

dτ
= VAB − (1 − q)vC (1)

C
dvC

dτ
= −vC

R
+ (1 − q)iL. (2)

The control actions envisage the possibility of forcing VAB =
Vg or VAB = 0 at will, and q = 0, q = 1 as well. Introducing

the control gains u1 and u2 = 1 − q, both of them taking

values in the discrete set {0, 1}, system (1),(2) results in

L
diL

dτ
= Vgu1 − vCu2 (3)

C
dvC

dτ
= −vC

R
+ iLu2. (4)

For a systematic analysis it is advisable to minimize the

number of parameters of the system. This purpose may be

achieved with the change of variables:

x1 =
1

Vg

√

L

C
iL, x2 =

1

Vg
vC, t =

1√
LC

τ,

and the introduction of

λ =
1

R

√

L

C
> 0,

which make the system dimensionless:

ẋ1 = u1 − x2u2 (5)

ẋ2 = −λx2 + x1u2. (6)

The converter is assumed to undergo possible load variations

in the bounded set [Rmin, Rmax], this yielding λ ∈ Λ =
[λmin, λmax].

A detailed study of the dynamics of the Non-Inverting

Buck-Boost converter reveals the impossibility of performing

inversion tasks [12]. This situation may be overcome with

the replacement of each of the original switches by a full

bridge of switches that allows bi-directional current flows.

The resulting converter is shown in Figure 2. However,

the new system dynamics are still modelled by (5),(6), the

change being in the fact that now the control gains u1, u2

take values in the set {−1, 1}.

Assume that the control goal is the tracking of certain

T -periodic reference signals x1d(t), x2d(t) by the state

Fig. 2. Full-bridge Non-Inverting Buck-Boost converter.

variables x1, x2, respectively. Hence, in the steady state it

must be

ẋ1d = u1N − x2du2N (7)

ẋ2d = −λx2d + x1du2N , (8)

where u1N , u2N are the average tracking controls that yield

x1 = x1d(t), x2 = x2d(t).
Remark 1: Note that the control saturation avoidance

condition, i.e. u1N , u2N ∈ [−1, 1], entails restrictions on

admissible target functions: on the one hand it must be

x1d(t) 6= 0, ∀t ≥ 0, and, on the other hand, ∀t ∈ [0, T ]
and ∀ λ ∈ Λ,

−1 < u1N =
x1dẋ1d + x2d(ẋ2d + λx2d)

x1d

< 1 (9)

−1 < u2N =
ẋ2d + λx2d

x1d

< 1. (10)

The fulfillment of (9),(10) guarantees unsaturation of the

control action in the steady state.

Finally, using error variables ei = xi − xid(t), and eui
=

ui − uiN , i = 1, 2, equations (5),(6) result in

ė1 = eu1
− x2deu2

− e2u2 (11)

ė2 = −λe2 + x1deu2
+ e1u2. (12)

III. SLIDING CONTROL OF THE FULL-BRIDGE

NON-INVERTING BUCK-BOOST

First of all, consider that the following assumption is

fulfilled from now on:

Assumption A.

(i) The state vector reference profiles x1d(t), x2d(t), are

C2 and T -periodic.

(ii) x1d(t) 6= 0, ∀t ≥ 0.

(iii) The nominal tracking controls u1N , u2N , defined in

(9), (10), respectively, lie inside the R
2 region [−1, 1] ×

[−1, 1], ∀(t, λ) ∈ [0, T ]× Λ.

Let now σ := σ(e, t) ∈ R
2, with

σ1 = −e1

σ2 = x2d(t)e1 − x1d(t)e2,
(13)

be a switching surface for system (11),(12).
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By Assumption A.(ii), x1d(t) 6= 0. Hence,

σ =

(

−1 0
x2d −x1d

) (

e1

e2

)

= 0 ⇐⇒
{

e1 = 0
e2 = 0;

additionally, it is straightforwardly verifiable that the equiv-

alent controls coincide with the nominal controls given in

(9),(10), i.e.

u1eq = u1N , u2eq = u2N .

The switching logic that provides the tracking target is

given in next Proposition:

Proposition 1: Let Assumption A hold. Let also σ defined

in (13) be a switching surface for the system modelled by

equations (11),(12). Then, the control law

u1 =

{

1 if σ1 > 0
−1 if σ1 < 0

, u2 =

{

1 if σ2 > 0
−1 if σ2 < 0

,

yields sliding modes on σ(e, t) = 0 and the ideal sliding

dynamics results in x1 = x1d(t), x2 = x2d(t).
Proof: Let W (t) be the time dependent, real, positive

definite, symmetric matrix

W (t) =
1

x2
1d(t)

(

x2
1d(t) + x2

2d(t) x2d(t)
x2d(t) 1

)

.

Then,

V (σ, t) =
1

2
σ⊤W (t)σ

is a smooth, positive definite, quadratic function. Further-

more, as the eigenvalues of W (t) are positive real functions

of t, it results that (see [15], for example),

0 ≤ κmin(t)‖σ‖2 ≤ 2V (σ, t) ≤ κmax(t)‖σ‖2,

where κmin(t), κmax(t) are the smallest and largest eigen-

values of W (t), respectively. The continuity and T -period-

icity of such eigenvalues allow us to conclude that they

achieve a maximum and a minimum value in [0, T ], i.e. there

exist real, positive constants ρm, ρM fulfilling

2ρm ≤ mint∈[0,T ]{κmin(t)}
2ρM ≥ maxt∈[0,T ]{κmax(t)}.

Therefore, V (σ, t) is lower and upper bounded in each sphere

‖σ‖ = R inside a neighborhood of σ = 0 by positive

quantities depending only on R, and these lower and upper

bounds hR = ρmR2, HR = ρMR2, respectively, are such

that

lim
R→0

HR = 0, lim
R→∞

hR = ∞.

In order to evaluate the derivative of V (σ, t) along the

trajectories of (11),(12), note that

V (σ, t) =
1

2
e⊤e.

Thus,

V̇ = e1[eu1
− x2deu2

− e2u2] +

+ e2[−λe2 + x1deu2
+ e1u2] =

= −λe2
2 + e1eu1

+ (x1de2 − x2de1)eu2
≤

≤ −σ1(u1 − u1eq) − σ2(u2 − u2eq).

Note that, by Assumption A, u1eq and u2eq are continuous,

T -periodic and both of them lay inside (−1, 1); therefore,

they reach maximum and minimum values u+
ieq and u−

ieq ,

i = 1, 2, therein, respectively. Let ǫ1, ǫ2 be

ǫi = inf{1 − u+
ieq, | − 1 − u−

ieq|}, i = 1, 2.

Then, the proposed switching logic yields

V̇ (σ, t) ≤ −ǫ1|σ1| − ǫ2|σ2| ≤ −α(|σ1| + |σ2|),
with α = inf{ǫ1, ǫ2}. By norm equivalence in R

n, there

exists α̂ > 0 such that

V̇ (σ, t) ≤ −α̂

√

σ2
1 + σ2

2 = −α̂‖σ‖.
Then, a stable sliding mode along the intersection of the

discontinuity surfaces {σ1 = 0} ∩ {σ2 = 0} occurs [16].

Remark 2: Notice from (11), (12) that, if x1d 6= 0, every

perturbation of the system satisfies the matching condition

[17]. Hence, the induced sliding regimes satisfy a so-called

strong invariance property [17], which results in the ideal

sliding dynamics being independent of the perturbation sig-

nal, thus guaranteeing robustness. However, the disturbance

may affect the fulfillment of (9),(10): therefore, Assumption

A.(iii) has to be preserved in order to prevent the loss of

sliding motion on σ(e, t) = 0.

IV. POWER LOSS MINIMIZATION

Due to both technical and economical reasons, it is ex-

tremely convenient to reduce as much as possible power

loses in the converters. In this sense, in [12] the authors

have developed a procedure to reduce power loses in a class

of switched converters through the minimization of the RMS

current reference profile. The technique is applied below to

the Full-Bridge Non-Inverting Buck-Boost converter.

The power dissipated in a resistive circuit element is

directly proportional to the square of the Root Mean Square

(RMS) of the current that flows through the element. More-

over, as the target is the tracking of T -periodic output voltage

references x2d(t), it is reasonable to search for inductor

current reference profiles x1d(t) which are also T -periodic.

Hence, assume a truncated Fourier series development for

x1d:

x1d(t) = a0 +

r
∑

k=1

ak cos kωt + bk sin kωt, (14)

with ω = 2πT−1. We may minimize its RMS

F (a0, a1, . . . , br) =

√

1

T

∫ T

0

x2
1d(t)dt =

=

√

√

√

√a2
0 +

k=r
∑

k=1

a2
k + b2

k

2
, (15)

subjected to the restrictions imposed by (9) and (10). Then,

the problem to be solved consists of choosing a0, a1, b1, . . . ,

ar ,br so that function F defined in (15) reaches a minimum

on the domain defined by inequalities (9) and (10).
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The minimization procedure is based on the following

result:

Theorem 1: Let the scalar functions φi : R
p ×R

q −→ R,

i = 1, . . . , m, be continuously differentiable, and let the set

ZP = {z ∈ R
p, φi(z, y) ≤ 0, i = 1, . . . , m} (16)

be nonempty. Then, there exists z ∈ R
p that minimizes the

real valued function

F (z) = ‖z‖

on the domain defined by ZP .

Proof: See [12].

In order to simplify notation, let us denote

x1d(z, t) = z1 +
√

2
r

∑

k=1

z2k cos kωt + z2k+1 sin kωt, (17)

with z ∈ R
2r+1, t ∈ R, which has an RMS given by

F (z) = ‖z‖.

Moreover, set y = (t, λ) ∈ R
2 and let us define

f(y) = f(t, λ) = ẋ2d(t) + λx2d(t)
g(y) = g(t, λ) = x2d(t) [ẋ2d(t) + λx2d(t)] .

(18)

Straightforward calculation allows one to prove the following

result:

Proposition 2: Let Y = [0, T ] × Λ be a compact subset

of R
2, and consider the scalar functions

φ1(z, y) = φ1(z, t, λ) = g(t, λ) +

+x1d(z, t)

[

∂x1d(z, t)

∂t
− 1

]

(19)

φ2(z, y) = φ2(z, t, λ) = −g(t, λ) +

−x1d(z, t)

[

∂x1d(z, t)

∂t
+ 1

]

(20)

φ3(z, y) = φ3(z, t, λ) = − [x1d(z, t) − f(t, λ)] (21)

φ4(z, y) = φ4(z, t, λ) = − [x1d(z, t) + f(t, λ)] , (22)

where x1d, f(t, λ) and g(t, λ) are defined in (17) and (18),

respectively. If φi(z, y) < 0, ∀y ∈ Y , i = 1, 2, 3, 4, then

Assumption A.(iii) holds.

Proposition 3: Let Assumption A hold, and let also Y =
[0, T ]× Λ be a compact subset of R

2. Then,

F (z) = ‖z‖

reaches a minimum on the domain

ZP =
{

z ∈ R
2r+1, φi(z, y) ≤ 0, ∀y ∈ Y, ∀i = 1, 2, 3, 4

}

.

Proof: The continuous differentiability of φi(z, y),
i = 1, 2, 3, 4, follows immediately from its own definition

and from Assumption A. Furthermore, Y being compact,

the continuous, real valued functions |f(y)| and |g(y)| reach

maximum values in Y , i.e. there exist fM , gM ≥ 0 such that:

fM = max
y∈Y

{|f(y)|}, gM = max
y∈Y

{|g(y)|}.

Setting z2 = · · · = z2r+1 = 0 in (19),(20),(21),(22) one gets:

φ1(z1, 0, . . . , 0; y) = g(y) − z1,

φ2(z1, 0, . . . , 0; y) = −g(y) − z1,

φ3(z1, 0, . . . , 0; y) = f(y) − z1,

φ4(z1, 0, . . . , 0; y) = −f(y) − z1.

Then, the R
2r+1 subset

ẐP
1 = {(z1, 0, . . . , 0) ∈ R

2r+1; z1 ≥ max{fM , gM}}

is, trivially, a non-empty subset of ZP . Finally, the result

follows from direct application of Theorem 1.

V. SIMULATION RESULTS

The power electronics software PSIM is used to carry

out the simulations. The parameters of the Full-Bridge Non-

Inverting Buck-Boost converter are: a DC voltage source of

Vg = 50V , a nominal output resistance of R = 5Ω, an

inductance of L = 1mH with an internal resistance of 0.01Ω
and a capacitor of C = 60µF with an internal resistance of

0.01Ω. Each switch is implemented by means of an IGBT

with a saturation voltage of 2V and a power diode with a

voltage drop of 0.5V .

The sliding mode controllers require the use of multi-

pliers, sums and comparators which can be implemented

by means of analog techniques. A detailed description of

the procedure may be found in [18]. In order to provide

variable switching frequencies in the standard range, the

sliding mode controllers use hysteresis cycle comparators

[19], [20], with hysteresis cycles of 0.02V for σ1 and 0.4V

for σ2, as well as zero order holders. Hence, the maximum

switching frequency is limited to 120 KHz. Expressions of

σ1 and σ2 may be found in (13).

The output voltage reference for tracking is

vCd(τ) = 100 sin2πντ,

with ν = 50Hz. The values of the corresponding normalized

variables are:

x2d(t) = 2 sinωt,

with ω = 0.0770, corresponding to a normalized period

of T = 81.65. The converter is assumed to undergo load

variations up to 100% of the nominal value, which results in

λ varying in the set [λmin, λmax] = [0.4082, 0.8165]. The

input current profile is chosen to be

x1d(t) = a0 +a1 cosωt+ b1 sin ωt+a2 cos 2ωt+ b1 sin 2ωt.

The optimization problem is solved by means of the

function fseminf, available in the Optimization Toolbox of

MATLAB. Essentially, the routine uses cubic and quadratic

interpolation techniques to estimate peak values in the semi-

infinite constraints. The peak values are used to form a set

of constraints that are supplied to a sequential quadratic

programming (SQP) method.

Table I contains the optimum values for the reference

parameters provided by MATLAB, as well as the correspond-

ing RMS values, in normalized variables, for constant and

periodic references. The latter is defined by Fourier series
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truncated at the second harmonic. Note that the use of a

periodic reference for the inductor current yields a RMS

reduction of 34.60% with respect to a constant reference. In

terms of power consumption, this amount grows to 57.23%.

TABLE I

OPTIMIZED PARAMETERS FOR THE INDUCTOR CURRENT REFERENCE

AND ASSOCIATED RMS IN NORMALIZED VARIABLES

x1d(t) a0 a1 b1 a2 b2 RMS

Constant 3.2731 0 0 0 0 3.2731

Periodic 1.9416 0 0 -1.1725 0.5 2.1406

When carrying out realistic simulations of the converter

performance, the DC terms of the inductor current references

depicted in Table I have to be slightly increased for sliding

motion to be induced. This is a foreseeable effect of unmod-

elled dynamics and parasitic resistances. Table II provides the

ideal and actual values of the DC components of the inductor

current references, as well as the RSM values, in Ampères.

The percentage reduction of RSM and power loss are similar

to the above reported for the ideal case. Furthermore, for the

particular case we are dealing the coefficients a1 and b1 of

the first harmonic of the current reference profile are very

low. Due to this fact, the simulations have been carried out

setting a1 = b1 = 0.

TABLE II

IDEAL AND REAL VALUES FOR THE DC TERM OF THE INDUCTOR

CURRENT REFERENCE AND ASSOCIATED RMS

iLd(τ) iLd0 (id.) iLd0 (real) RMS (id.) RMS (real)

Constant 40.09 64.00 40.09 64.00

Periodic 23.78 44.00 26.22 45.30

Figure 3 depicts the output voltage tracking the command

profile for a constant inductor current reference, which is also

captured. Furthermore, the plot includes the load current: its

jumps indicate the presence of a resistive load disturbance.

Figure 4 is analogous to Figure 3, except in the fact that now

a variable inductor current reference is being used. The THD

values for constant and variable inductor current references

are both 0.02.

Typical applications of DC/AC converters deal not only

with resistive loads but also with nonlinear loads. Figure

5 contains a simulation of output voltage tracking with

a variable inductor current reference in the presence of a

nonlinear load consisting of a Full-Wave Rectifier with a

capacitor of 8mF and a resistive load of 24Ω. The THD is

0.025.

VI. CONCLUSIONS AND SUGGESTIONS FOR

FURTHER RESEARCH

This article presents an inverter obtained from the re-

placement of the original switches by a full-bridge in a

Non-Inverting Buck-Boost converter. Operating under sliding

mode control, the converter performance involves robust

step-down as well as step-up tasks in presence of resistive

loads under the assumption of known bounds for the load
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−150

−100

−50

0

50

100

150

time (sec.)

vC

iload

iL

Fig. 3. Output voltage tracking with constant inductor current reference
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iload
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Fig. 4. Output voltage tracking with variable inductor current reference

variation. Using semi-infinite programming techniques, the

input current reference is adequately chosen in order to

minimize power loses and, at the same time, prevent con-

trol saturation. Realistic simulations carried out with PSIM

validate the proposal.

Further research may address the performance of the

inverter in front of nonlinear loads, for which promising

preliminary simulation results have been obtained.
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