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Carles Batlle, Arnau Dòria-Cerezo and Romeo Ortega

Abstract— In this paper we propose a new control scheme

for the doubly–fed induction machine (DFIM) that offers

significant advantages, and is considerably simpler, than the

classical vector control method. In contrast with the latter,

where the DFIM is represented in a stator flux–oriented

frame, we propose here a model with orientation of the stator

voltage. This allows for an easy decomposition of the active and

reactive powers on the stator side and their regulation—acting

on the rotor voltage—via stator current control. Our main

contribution is the proof that a linear PI control around the

stator currents ensures global stability for a feedback linearized

DFIM, provided the gains are suitably selected. The feedback

linearization stage requires only measurement of the rotor and

stator currents, hence is easily implementable. Furthermore, to

improve the robustness, an adaptive version that estimates the

rotor resistance is proposed. Tuning rules for the PI gains are

also provided. Finally, an outer loop control for the mechanical

speed is introduced. The complete control system is tested

both in simulations and experiments, showing good transient

performance and robustness properties.

I. INTRODUCTION

Doubly–fed induction machines (DFIM) have become very

popular for renewable energy applications lately. They have

been proposed in the literature, among other applications,

for wind-turbine generators [10], hybrid engines [6] or high

performance storage systems [3]. The attractiveness of the

DFIM stems primarily from its ability to handle large speed

variations around the synchronous speed (see [11] for an ex-

tended literature survey and discussion). Another advantage

is that the power electronic equipment to control the machine

only has to handle a fraction (maximum 20 − 30%) of the

total power, reducing the losses (and the cost) of the power

electronic converter.

Most DFIM controllers proposed in the literature are based

on vector control and decoupling [9], see examples in [10],
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[13]. This methodology is based on the description of the

electrical part of the DFIM in a new reference frame (usually

the stator flux), which allows the decoupling of the active

and reactive power of the stator side and their independent

control through the rotor currents. To achieve the stator flux

orientation the flux angle must be computed and several

complicated (and extremely fragile) rotation operations im-

plemented. Other control schemes with rigorous stability and

robustness analysis reported in the literature are the output

feedback algorithm presented in [11], and the passivity–

based controllers proposed in [3], [5].

This paper presents a new control algorithm for the

DFIM that offers significant advantages, and is consider-

ably simpler, than the previous control methods. In contrast

with vector control, where the DFIM is represented in a

stator flux–oriented frame, we propose here a model with

orientation of the stator voltage. This allows for an easy

decomposition of the active and reactive powers on the stator

side and their regulation—acting on the rotor voltage—via

stator current control. Our main contribution is the proof

that a linear PI control around the stator currents ensures

global stability for a feedback linearized DFIM—provided

the gains are suitably selected. The feedback linearization

stage requires only measurement of the rotor and stator

currents, hence is easily implementable. Furthermore, to

improve the robustness, an adaptive version that estimates

the rotor resistance is proposed. Tuning rules for the PI

gains are also provided, in particular, we prove that, if

the integral gain is small, the proportional gain can take

arbitrarily large values. Also, we prove the existence of

large (open) regions in the controller parameter plane where

stability is preserved. Finally, as done also in vector control,

an outer loop control for the mechanical speed is introduced.

The complete control system is tested both in simulations

and in experiments, showing good transient performance and

robustness properties.

II. MODEL OF THE DOUBLY-FED INDUCTION MACHINE

We start from the three phase dynamical equations of

a DFIM, and assume that the machine is symmetric (all

windings are equal), the stator-rotor cross inductances are

smooth, sinusoidal functions of the rotor angle with just the

fundamental term [8], and that the three phase system is
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equilibrated. These assumptions allow the use of transfor-

mations, which greatly simplifies the control problem. The

transformations (also known as Blondel–Parks transforma-

tions) are widely used in the study of power systems [8].

This mathematical transformation is used to decouple one

of the (balanced) phases, to refer all variables to a common

reference frame, and to obtain constitutive laws (stator–rotor

cross inductances) independent of the relative angle between

rotor and stator.

Similarly to [3], in this paper we propose a transformation

to a synchronous frame rotating at the frequency of the stator

voltage of the DFIM, which is assumed constant. This yields

λ̇s = −(ωsLsJ2 + RsI2)is − ωsLsrJ2ir + vs (1)

λ̇r = −(ωs − ω)LsrJ2is

−[(ωs − ω)LrJ2 + RrI2]ir + vr (2)

Jω̇ = Lsri
⊤
s J2ir − Brω − τL (3)

where λs, λr ∈ R
2 are the stator and rotor fluxes, is, ir ∈ R

2

are the stator and rotor currents, vs = col(Vs, 0) ∈ R
2, with

Vs the amplitude of the three-phase stator voltage, is the

stator voltage, the rotor voltage vr ∈ R
2 is the control input,

ω is the mechanical speed, and ωs is the stator frequency. Rs,

Rr are the stator and rotor resistances, Ls, Lr and Lsr are

the stator, rotor and self–inductances, with LsLr > L2
sr, J

is the inertia, Br is the friction coefficient, τL is an external

constant torque, and we defined the matrices

J2 =

[

0 −1

1 0

]

I2 =

[

1 0

0 1

]

.

Linking fluxes, λ = col(λs, λr), and currents, i = col(is, ir),

are related by λ = Li, where

L =

[

LsI2 LsrI2

LsrI2 LrI2

]

.

Following standard convention we partition all electrical

(two–dimensional vector) signals into their, so–called, d and

q components. For instance, the stator current is decomposed

as is = col(isd, isq). The use of the synchronous frame

allows us to express the stator active and reactive powers

in terms of isd and isq , respectively. In particular, assigning

a desired value, i∗sq , allows to compensate the power factor

of the stator side of the machine, while i∗sd can be used

to control the active power (delivered or consumed) by the

DFIM. In a drive application, we can fix i∗sd as a desired

value to achieve the target speed. In this paper we concentrate

only on the problem of robust regulation of is to its desired

value and refer the interested reader to [3] for further details

on the power flow control policy and the determination of

the equilibria.

III. OVERALL CONTROL SCHEME

The proposed control scheme is presented in Fig. 1, where

the current control block assures stability of the electrical

subsystem and an outer–loop control is added for speed

regulation. As indicated above, in this paper we concentrate

on current control and will prove that, after a basic feedback

linearization stage, the current can be globally regulated with

a PI around the stator currents with some suitably selected

gains.

The transformation of the three phase (stator and rotor)

currents to the synchronous–reference (aligned to the stator

voltages) is achieved with the rotation matrices

K(θ, δ) =

[

eJ2δ O2

O2 eJ2(δ−θ)

]

,

where δ is an arbitrary function of time that we select as δ̇ =

ωs. Notice that this part of the scheme is easier to implement

than vector control, which requires stator flux estimation.

IV. CURRENT CONTROLLER

The proposed controller consists of a feedback lineariza-

tion stage

vr = (ωs − ω)LsrJ2is + [(ωs − ω)LrJ2 + RrI2]ir + u (4)

and a PI action

u = −kP J2ĩs + kIJ2

∫

ĩsdt. (5)

with the scalar proportional and integral gains kP > 0, kI ≥

0, respectively, and we defined the error terms (̃·) = (·)−(·)∗,

where (·)∗ is the constant desired value.

We attract the readers attention to the following important

remarks:

R1. The first two terms in (4) exactly cancel the terms in (2),

feedback linearizing the system and transforming the

rotor equation into λ̇r = u. To improve the robustness

of this stage we propose in Section V an adaptive

implementation that estimates the highly uncertain rotor

resistance.

R2. Due to the feedback linearization the overall system

consists of a cascade of the electrical and the me-

chanical sub–systems. As the latter, (3), is a simple

stable linear system, convergence to the equilibria of

the electrical sub–system will imply stability of the

complete dynamics.

R3. In contrast to standard practice, we have defined the PI,

(5), with the skew–symmetric matrix J2. Notice also

the selection of the signs. These two features will be

critical for the stability analysis.1

1As explained in [7] this controller was obtained applying passivity–based

nonlinear control techniques, but here we restrict ourselves to its analysis.
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Fig. 1. Control scheme for a DFIM.

To carry out the stability analysis, we find convenient

to express the closed–loop system in an alternative form.

Replacing (4) and (5) in (1), (2), and using the definition

of equilibria, we can write the closed–loop system in error

coordinates as

˙̃
λs = −(ωsLsJ2 + RsI2)̃is − ωsLsrJ2ĩr (6)

˙̃
λr = −kP J2ĩs + kIJ2

∫

ĩsdt. (7)

Using the relation between fluxes and currents we get

˙̃
λs = Ls

˙̃is +
Lsr

Lr

(
˙̃
λr − Lsr

˙̃is).

Similarly ĩr = 1
Lr

(λ̃r − Lsr ĩs). Replacing the last two

equations in (6), differentiating and using (7) we can write

the electrical dynamics in the equivalent form

D(p)̃is = 0, (8)

with the polynomial matrix, in the derivative operator p = d
dt

,

D(p) = p3I2 + (c1I2 + c2J2)p
2 + (c3I2 + c4J2)p + c5I2,

and the parameters

c1 =
RsLr

µ
, c2 = ωs −

Lsr

µ
kP , c3 =

ωsLsr

µ
kP ,

c4 = −
Lsr

µ
kI , c5 =

ωsLsr

µ
kI ,

where µ = LsLr − L2
sr > 0.

Equation (8) describes, of course, a linear system of

order six whose stability is determined by the characteristic

polynomial detD(s), with s ∈ C the Laplace transform

variable. Although the study of this (sixth–order) polynomial

can be carried out with classical tools, e.g., Routh–Hurwitz

criterion, this procedure yields complex parameter relations

that complicate the choice of the PI gains. On the other hand,

we show now that the particular structure chosen for the PI,

see R3 above, permits very simple analysis and tuning rules

and ensures some interesting robustness properties. These

results are contained in the following proposition, whose

proof is given in [4].

Proposition 1: Consider the DFIM system (1)–(3) in

closed–loop with the control (4) and (5).

P1. If kI = 0, for all kP > 0, the electrical coordinates

converge to their desired values, while the speed is

bounded and also converges to a constant value.

P2. There exists kM
I > 0 such that, for all kI ∈ (0, kM

I ]

and all kP > 0, the electrical coordinates converge to

their desired values, while the speed is bounded and

also converges to a constant value. �

Let us briefly explain the motivation behind the proposed

PI (5). Towards this end, we attract the readers attention

to the coefficients c2 and c3, that depend on kP . Due to

the particular choice of the proportional gain matrix we

have that c3 > 0. On the other hand, even though c2 may

become negative (for large values of kP ), this coefficient

multiplies the skew–symmetric matrix J2. To understand

how this influences the stability let us consider first the case

kI = 0. The dynamics of the system is then described by

D0(p)̃is = 0, with

D0(p) = p2I2 + (c1I2 + c2J2)p + c3I2.

It turns out that this system is asymptotically stable for all

kP > 0. Indeed, consider a Lyapunov function candidate

V (̃is,
˙̃is) =

1

2
|˙̃is|

2 +
c3

2
|̃is|

2 ≥ 0,

with |·| the Euclidean norm and c3 > 0. Taking the derivative

of V we get

V̇ = −c1|
˙̃is|

2 ≤ 0,

which proves the claim. Observe that, since c2 disappears in

the computation of the derivative, its sign may be positive or

negative without affecting the conclusion. This nice stability

property is lost if the proportional gain matrix is not skew–

symmetric.

A similar argument can be used to justify the choice of the

integral gain matrix, as follows. The characteristic equation

of the closed–loop system has the following form

det D(s) = s6 + as5 + bs4 + cs3 + ds2 + es + f,
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where

a =
1

µ
2LrRs

b =
1

µ2
(ω2

sµ2 + L2
srk

2
P + L2

rR
2
s)

c =
1

µ2
2LsrkP (RsLrωs + LsrkI) = c0 + kIc11

d =
1

µ2
Lsr(ω

2
sLsrk

2
P + Lsrk

2
I + 2LrωsRskI)

= d0 + kId1 + k2
Id2

e =
1

µ2
2L2

srω
2
skP kI = kIe1

f =
1

µ2
L2

srω
2
sk2

I = k2
If2,

and we have factored the gain kI . Thus,

det D(s) = s6 + as5 + bs4 + c0s
3 + d0s

2

+kI(c11s
3 + d1s

2 + e1s) + k2
I (d2s

2 + f2).

For small kI the quadratic term can be disregarded and we

can analyze the reduced polynomial β(s)s + kIα(s) = 0,

where

β(s) = s4 + as3 + bs2 + c0s + d0

α(s) = c11s
2 + d1s + e1.

Note that β(s) is the characteristic polynomial of the system

with kI = 0, therefore its roots are always on the open left–

half plane. On the other hand, the roots of α(s), given by,

s1, s2 = −
d1

2c11
±

√

(

d1

2c11

)2

−
e1

c11

have negative real part for e1, c11 > 0, which is true in our

case. This analysis, combined with a continuity argument,

provides a proof of claim P2 in Proposition 1.

Before closing this section we make the following remark.

The result of Proposition 1 concerns stability of the closed-

loop system for any kP (even arbitrarily large) and for

kI small enough. In fact, an asymptotic analysis of the

Routh–Hurwitz conditions for the characteristic polynomial,

det D(s), shows that there is an unbounded region in the first

quadrant, below the line kI = LrRs

µ
kP − LrRs

Lsr

ωs, where the

closed-loop system is stable. Fig. 2 shows an sketch of the

region of stability in the plane (kP , kI) space.

V. ADAPTIVE FEEDBACK LINEARIZATION

As seen from (4) the feedback linearization term requires

the exact knowledge of Rr, which is in general an un-

certain parameter. To robustify the scheme we propose an

adaptive implementation where we estimate this parameter.

Unfortunately, the classical adaptation scheme depends, in a

complicated way, on the parameters of the DFIM that need

to be exactly know. To overcome this important practical

shortcoming and obtain a simple robust adaptation law we

kP

kI

small kI region

large

kI region

kI = LrRs

µ
kP − LrRsωs

Lsr

Fig. 2. Stability regions in the gains space. The height of the small kI

region may actually vary with kP .

propose to adopt the recent Immersion and Invariance (I&I)

technique proposed in [1]. The control is now replaced by

vr = (ωs − ω)J2λr + u + (R̂r + β)ir, (9)

where R̂r is an estimate of Rr and β is a function to be

defined that provides a new degree of freedom for the design.

We define now the, so–called, off–the–manifold coordinate

z = R̂r − Rr + β.

It is easy to see that the new closed-loop system is

χ̇ = Aχ + Birz, (10)

where χ = col(̃is, ĩr,
∫

ĩs) and

A =

»

L
−1

O2

O2 I2

–

2

4

−ωsLsJ2 − RsI2 −ωsLsrJ2 O2

−kP J2 O2 kIJ2

I2 O2 O2

3

5

B =
1

µ





LsrI2

−LrI2

O2





The objective in I&I is not to cancel the uncertain term in

a Lyapunov function derivative, like in classical adaptive

control, but to generate an asymptotically stable dynamics

for z. That is, we have to select R̂r and β so that z(t) → 0.

The result is summarized in the following proposition whose

proof is given in the Appendix.

Proposition 2: Consider the system (1)–(3) in closed–loop

with the control (5) and (9) with the adaptation laws

β = −γsign(ird)λrd (11)

˙̂
Rr = −γ|ird|(R̂r+β)+γsign(ird)[(ωs−ω)λrq+vrd], (12)

where γ > 0 is an adaptation gain. Assume ird is not

absolutely integrable. Then, P1 and P2 of Proposition 1 hold

true with the estimate R̂r remaining bounded.
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The assumption that ird is not absolutely integrable is essen-

tially technical. As argued in the proof, roughly speaking,

we only require that
∫

|ird| be “sufficiently large”. This will

make z “small enough” to be dominated by A. Furthermore,

from the practical viewpoint, it can be shown that the

situation ird(t) = 0 in a compact time interval, is impossible

in applications. Another observation pertains to our choice

of the d–term of ir. As indicated in the proof, it is possible

to work also with the q–term, which choice is better will

depend on the particular task that the DFIM is executing.

VI. SIMULATIONS

In this section we implement a numerical simulation of

the controller scheme developed in the previous sections.

We use the following DFIM parameter values: Rs = 4.92Ω,

Rr = 4.42Ω, Ls = 7.25mH, Lr = 7.15mH, Lsr = 7.1mH,

Jm = 0.00512Kgm2, Br = 0.005N m s rad−1.

As indicated in Section IV, the mechanical speed dynam-

ics (3) can be stabilized by means of

i∗sd =
1

i∗rq

(

i∗sqi
∗
rd −

Br

Lsr

ω∗ −
τL

Lsr

+ kωP ω̃ + kωI

∫

ω̃dt

)

(13)

yielding the closed–loop behavior

Jω̇ = −Br(ω−ω∗)−kωp(ω−ω∗)−kωi

∫

(ω−ω∗)dt+ ǫt,

where ǫt → 0 exponentially fast. Notice that the first three

(constant) terms in (13) can be disregarded in a practical

implementation, as their effect will be compensated by the

integral part in any case.

The controller gains were fixed as kP = 10, kI = 2,

kωP = 1 and kωI = 25. Simulations start with a desired

mechanical speed ω∗ = 310rad s−1 and at t = 0.5s the

desired value is changed to ω∗ = 325rad s−1. The desired

q-stator current is fixed at i∗sq = 0 in order to obtain a good

power factor in the stator side.

Fig. 3 shows the behavior of the mechanical speed. The

transient can be improved by means of the control gain of

(13) and the integral term brings the mechanical speed to the

desired value. Fig. 4 shows the behavior of is.

At t = 1.5s the value of Rr of the model is smoothly

decreased to Rr = 3.42Ω, simulating temperature effects.

Fig. 5 show the estimation behavior of Rr. The convergence

of R̂r to the real value Rr ensures that the performance of

the ideal (known parameter) system is recovered.

VII. EXPERIMENTAL RESULTS

For the experimental setup we used a 1.1kW, 380/220V,

50Hz 2-poles machine, with the same parameters as Section

VI. The three-phase rotor PWM voltages are generated

by a bidirectional back-to-back converter [2]. The control

algorithm is computed in a PC running with RTiC-Lab (Real

Time Controls Lab) for Linux, with a 10kHz running time.

0 0.5 1 1.5
305

310

315

320

325

330
Mechanical speed

w
 [

ra
d

/s
]

Fig. 3. Simulation results: mechanical speed, ω.

0 0.5 1 1.5
−1

0

1

2

3

4

5

Stator current d and q components

i s
d
 [

A
]

0 0.5 1 1.5

−2

−1

0

1

2
i s

q
 [

A
]

time [s]

Fig. 4. Simulation results: stator current d and q components.

The experimental test consist of speeding up the machine

from ω∗ = 310rad s−1 to ω∗ = 325rad s−1 and coming

back to ω∗ = 310rad s−1, and at the same time controlling

the reactive power of the machine through isq .

In Fig. 6 the mechanical speed is depicted. Fig. 7 shows

the dq-stator current components. Notice that isq remains

close to zero, which means that the power factor of the stator

side is very small.

VIII. CONCLUSIONS

In this paper a particularly simple controller for DFIM

was presented. It consists of a feedback linearizing term

and a PI around stator currents. To improve the robustness

of the feedback linearization stage an adaptive scheme that

estimates the rotor resistance is also proposed. We prove that

the scheme is globally asymptotically stable for all values of

the proportional gain and sufficiently small integral gains.

A region where large PI gains can be applied, preserving

stability, is also identified. As no stator flux estimation is

required, the algorithm scheme is simpler than the classical

vector control. Simulations and experiments were used to
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Fig. 5. Simulation results: convergence of the estimate R̂r .
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Fig. 6. Experimental results: mechanical speed ω.

validate the control.
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APPENDIX

Proof of Proposition 2. First, we note that the d equation

of (2) can be written as

λ̇rd = (ωs − ω)λrq + vrd − Rrird.

Replacing this expression in (12) yields

˙̂
Rr = −γ|ird|(R̂r + β) + γsign(ird)(λ̇rd + Rrird).

On the other hand, differentiating (11) one gets

β̇ = −γsign(ird)λ̇rd.

Replacing these two terms in ż =
˙̂
Rr + β̇ yields

ż = −γ|ird|z.

The solution of this differential equations is

z(t) = e−γ
R

t

0
|ird(τ)|dτz(0).

Since ird is not absolutely integrable z(t) → 0 as t → ∞.

To complete the proof we rewrite the closed loop system

(10) in the form

χ̇ = (A + BDz(t))χ + BEz(t),

where we have used the fact that ir = Dχ + E, for some

constant matrix D and constant vector E. This is a linear

time–varying system that asymptotically converges to the

linear time–invariant asymptotically stable system χ̇ = Aχ.

Hence, invoking standard arguments, e.g., Exercise 8.7 of

[12], we conclude that x(t) → 0.

FrB16.2

5443


