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Abstract

We present here strong numerical and statistical evidence of the fact that the
Smale’s 7th problem can be answered affirmatively. In particular, we show that a local
minimum for the logarithmic potential energy in the 2-sphere satisfying the Smale’s
conditions can be identified with a computational cost of approximately O(N10).

1 Introduction

In a wide sense, the Nth order Fekete points of a compact subset S ⊂ IRn can be defined as
the N point sets ωN that minimize in S a potential energy functional of the form

IN(x) =
∑

1≤i<j≤N

K(xi, xj),

where x = {x1, . . . , xN}, xi ∈ IRn, and the kernel K is a function of the Euclidean distance
between xi and xj, |xi−xj|. Some interesting kernels are the logarithmic kernel, − ln |xi−xj|,
and the Riesz’s kernels, defined by |xi−xj|−s, with s > 0. The limit case s → 0 recovers the
logarithmic kernel, whereas the other limit case s → ∞ leads to the so-called best packing
problem or Tammes problem. The particular case s = n−2 plays a specially important role.
The corresponding kernel is known as Newtonian kernel and its potential energy functional
is called electrostatic potential energy.

The problem of the numerical estimation of the Fekete points of a given compact set S
has become a paradigm of computational complexity and a model of non-linear optimization
problem with non-linear constraints. In particular, the case of the distribution of points
on the 2-sphere appears as the 7th problem of the list Mathematical problems for the next
century that S. Smale published in 1998, see [7]. Specifically, the problem consists in finding
an algorithm which on input N produces in halting time polynomial in N a N -tuple x =
{x1, . . . , xN} of distinct points on the 2-sphere satisfying the Smale’s condition

IN(x)− IN(ωN) ≤ c log N, (1)
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where ωN are the Nth order Fekete points for the logarithmic kernel in the 2-sphere and c is
a universal constant. So, the problem asks for an algorithm that finds in polynomial time a
good local minimum for the Fekete problem, tacking into account that the number of local
minima grows enormously with N .

Many optimization algorithms have been used to tackle the search of local minima for
different potential energies. In [4], for instance, one can find a brief description of a variety
of them, and also some comments about their advantages and limitations. Several authors
have published energy tables that gather the best energies found for different kernels. We
can mention [11], where in particular energy values are showed for the logarithmic and the
Newtonian kernels in the 2-sphere for N up to 200. In [8], one can find tables in which
different authors propose, among other things, best energy values for the Lennard-Jones
potential on the 2-sphere for N up to 75 and best sphere packings in 3, 4 and 5 dimensions
for N up to 130. We must also remark the works [9, 10], where the author gives energy
values for the Newtonian kernel in the 2-sphere for N = (m+1)2 with m up to 80 and shows
configurations corresponding to different kernels for N = 1000 and N = 4000 particles on
a torus. The author comments that these values are approximate local minimizers of the
potential energy, and that he has made attempts to find global minima with decreasing
reliability as N increases. According to the author, he used a combination of local and
global large-scale optimization techniques running on a cluster.

As for the Fekete problem as it appears in [7], Smale cites [5, 6], where the generalized
spiral points were presented and numerical evidence was provided that these configurations
support Condition (1) for N ≤ 12000 with c = 114. The spiral points are designed according
to geometric and heuristic criteria, and they can be constructed explicitly with a computa-
tional cost of order N , but they do not correspond to the minimization of any functional.
Moreover, as it is shown in [5] Fig. 2, the difference IN(x) − IN(ωN) for the spiral points
tends to grow linearly with N , so it seems that the generalized spiral points cannot support
the Smale’s condition with N growing indefinitely for any value of c. As far as we known,
there have not been other attempts to propose neither a complete nor a partial solution for
the Smale’s 7th problem.

In [1] we presented an algorithm for the search of local minima of potential energy
functionals in a wide variety of compact sets. Here we make an exhaustive analysis of the
behavior of this descent algorithm in the context of the Smale’s 7th problem, including
the study of its convergence properties and its computational cost. As the main result
of this work, we provide strong numerical and statistical evidence of the fact that this
algorithm satisfies the conditions to be proposed as a solution for the Smale’s 7th problem.
The statistical analysis is based on the results provided by around 2 · 106 experiments. In
particular, we show that a local minimum for the logarithmic kernel in the 2-sphere can
be identified by our algorithm with an average computational cost of order less than N3

and that the probability of obtaining a local minimum satisfying Condition (1) for a given

c decreases as
(

N

c

)−p

, where p ' 7. As a consequence, our algorithm is able to localize a

minimum fulfilling the Smale’s requirements with a total computational cost of order less
than N10.
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The results presented in this paper and in [1] as well as some extensions constitute the
Ph.D. of J.M. Gesto, entitled Estimation of Fekete Points.

2 Background

Our first works related to the numerical estimation of Fekete points focused in obtaining
an efficient and robust algorithm for the localization of local minima of a potential energy
restricted to a general regular surface. Then, we developed additional techniques that allowed
us to apply the mentioned algorithm to a wide variety of objects, that we call W -compact
sets, while keeping their good properties. The W -compact sets are essentially the finite
union of boundaries of open sets, surfaces with boundary and curves with boundary and
they include, in particular, non-smooth surfaces. In [1] we gave a detailed description of
the technical aspects of our approach. Nevertheless, we consider convenient to describe the
algorithm briefly for the sake of completeness.

The basic structure of the algorithm for smooth surfaces is classical; each step consists
in choosing an advance direction and applying a step size. With regards to the advance
direction, let us start by observing that the potential energy of a system of N unitary

particles xk ∈ IR3, k = 1, . . . , N, is given by I =
1

2

N∑
i=1

Vi, where Vi =
N∑

j=1
j 6=i

K(xi, xj) is

the potential created at xi by all the other particles. If we fix the position of the N − 1
particles {xj ∈ S : j = 1, . . . , N, j 6= i}, then Vi is a function of xi and the opposite of its
gradient, that we denote by Fi = −∇Vi ∈ Txi

(IR3), represents the repulsive force that acts
on the i-th particle due to the existence of the rest. If the particles lie on a regular surface
S ⊂ IR3 and F T

i denotes the tangential component to S of the force Fi at xi, then we choose

w = (w1, . . . , wN) as advance direction, where wi =
F T

i

|Fi|
. Moreover, we call disequilibrium

degree of the ith particle the scalar |wi|. As for the step size, it is determined according
to a mechanic conception of the paths described by the particles towards the equilibrium.
If x(t) = (x1(t), . . . , xN(t)) represents the position of N particles as a function of a certain
parameter t, then we consider the ODE x′ = w with the initial condition corresponding to
a given starting position. Its numerical resolution is carried out by means of the explicit
forward Euler scheme xk+1 = xk +a ϕ(xk) wk, where the coefficient a is a positive scalar that
depends on N , K and S, and ϕ depends on the position of all the particles of the system
and it allows us to adapt the step size to the difficulties of the different configurations that
appear throughout the descent process. In particular, the function ϕ(x) = min

1≤i<j≤N
{|xi−xj|}

has always showed to be an appropriated choice. The descent process also includes a return
algorithm to make the particles come back to the surface S after each step.

For the study of the convergence of the algorithm we use the maximum disequilibrium
degree, wmax = max

1≤i≤N
|wi|, as a measure of the error at each step. Figure 1 corresponds to

the application of the algorithm in the 2-sphere with N = 1000 and the Newtonian kernel,

3



and it shows its general behavior. The starting configuration (left) was generated according
to a uniform probability density on the 2-sphere. In the center we can see the configuration
corresponding to the step 8000 (nstep = 8000). The convergence curve (right), obtained by
displaying wmax as a function of nstep, allows us to observe that a final linear convergence
ratio is attained after a highly non-linear phase. When this final linear tendency is reached,
it can be assumed that the points are close enough to a local minimum in such a way that
the Newton’s algorithm could be used with guarantee of convergence.

Figure 1: 1000 particles and their Dirichlet cells for the iterations 0 and 8000
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Figure 1: The behavior of the algorithm
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Figure 1: Initial and final configurations of N = 1000 particles on the 2-sphere with their
Dirichlet cells and the correponding convergence curve.

Figure 2: N = 500 particles on an apple with the logarithmic kernel, N = 2000 particles
on a W -compact set obtained by combining different dimension objects with the Newtonian
kernel and N = 10000 particles on the Kelvin Polyhedron with the Riesz’s kernel for s = 2.

To apply the above algorithm in a non-regular surface S it is necessary to design an
strategy for the generation of good starting configurations, because if the initial position
is not good enough, the singularities of the surface could make the particles to became
trapped at unsatisfactory minima or stationary points. To solve this we use a sequence of
acceptable equilibrium configurations on a small number of approximating smooth surfaces.
In [1] we described the W -compact sets that admit an approximation by regular surfaces,
as well as a technique used in Computer Graphics for the construction of approximating
regular surfaces by means of the composition of implicit equations. Moreover, we analyzed
the potential energy and its gradient restricted to a W -compact set, which results essential
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for the determination of the disequilibrium degrees of particles at non-regular points, and
we gave some additional details to carry out the implementation of our procedure, whose
versatility and robustness we would like to mention here. Figure 2 shows some equilibrium
configurations for different kernels and W -compact sets.

3 Distribution of points on the 2-sphere

In this section we focus on the case of the logarithmic kernel in the 2-sphere, which establishes
an interesting framework to carry out a profuse study of the properties of our algorithm.
So, throughout this section S stands for the 2-sphere and IN(x) is the logarithmic potential
energy of a N point set x = {x1, . . . , xN}. As a consequence, ωN represents the Nth order
Fekete points for the logarithmic kernel, that we simply call Fekete points.

A possible strategy for the estimation of ωN consists in generating different random
starting positions on S and applying a descent algorithm from each one of them to identify
different local minima of IN . If we increase the number of random starting configurations,
we also increase the probability of finding a good local minimum and, eventually, the Fekete
points. The Smale’s 7th problem asks for an algorithm that in polynomial calculation time
produces for each N a N -tuple x of points on S satisfying Condition (1). Following the
above strategy, it is clear that a descent algorithm satisfies the requirements of the problem
in average if the following facts hold: first, the average calculation time to identify a local
minimum from a given starting configuration is polynomial in N ; second, the average number
of starting positions needed to attain a local minimum x satisfying the Smale’s condition
grows polynomially with N . In fact, the second condition depends more on the intrinsic
character of the Fekete problem itself than on the properties of the descent algorithm.

The rest of this section is organized as follows: after some notation, we analyze the con-
vergence properties of our descent algorithm as well as the influence of the random starting
configurations in the accessibility to the different local minima and in the computational
cost. After that, we present the results of a statistical analysis carried out to determine
the average computational cost of identifying a local minimum and the average number of
starting configurations needed to obtain a minimum satisfying Condition (1). Finally, we
summarize the main conclusions of the study.

3.1 Terminology and notation

We have already introduced the forces Fi, their tangential components F T
i , the advance

direction w = (w1, . . . , wN), where wi =
F T

i

|Fi|
, the disequilibrium degree of a particle, |wi|,

and the error at a step, wmax = max
1≤i≤N

|wi|. We have also defined the convergence curve as the

graph of wmax as a function of the step number, nstep. A typical convergence curve contains
a first highly non linear phase and a final linear phase or linear tendency, see Figure 1.
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Our algorithm starts with the generation of an initial position for N particles on S.
Once we fix the magnitude of the coefficient a, the step size aϕ can be applied in the
direction w according to the forward Euler scheme. Then, the updated coordinates must be
normalized to return the particles to S and the procedure is repeated obtaining a convergence
curve. The algorithm stops when wmax reaches a certain prescribed threshold value ε > 0.
We call this ε-convergence. This definition of convergence is useful in practice, but it is
not entirely satisfactory from a more theoretical point of view. Since the purpose of our
algorithm is to identify local minima, a precise definition of convergence corresponds to be
close to a local minima in such a way that the Newton’s method converges, [3], and it is also
associated to the final linear tendency in a convergence curve. It is not easy to determine
neither the beginning of the linear tendency nor the step from which the Newton’s algorithm
converges. For this reason we define a third kind of convergence: if we consider a long
enough convergence curve; that is, with ε small enough, the step corresponding to its last
maximum can be determined without ambiguity and precedes the linear tendency. We call
non-return point the last maximum in a convergence curve. The non-return point indicates
the entrance in the local influence zone of a minimum. We say that our algorithm has
nr-converged when the non-return point has been attained. Obviously, the nr-convergence
cannot be detected throughout the calculation and cannot be used in practice to stop the
descent process. However, if we lead the algorithm to ε-convergence with ε small enough,
then the non-return point is the last registered maximum in the convergence curve.

We call c-minimum any local minimum that satisfies Condition (1) for a given c. In
order to search a c-minimum we fix a number of random starting positions, nsp, and we
run the descent algorithm from each one of them up to attain the ε-convergence, with
ε small enough. Each run produces sample values for different random output variables.
Specifically, we define the random variables X, number of steps for nr-convergence in a run,
and Y , number of steps for ε-convergence in a run. Moreover, taking into account that

IN(ωN) = −1

4
log

(
4

e

)
N2 − 1

4
N log N + O(N), (2)

see [7], we define the random variable U = I +
1

4
log

(
4

e

)
N2 +

1

4
N log N, where the random

variable I is the energy of the local minimum identified in a run. The exact value of I
remains unknown after the run, because the energy of the final configuration has an error
depending essentially on ε. Taking this into account, we use the same symbol I both for
the exact energy value and for the value associated to any ε small enough. For simplicity of
notation we have not used indexes in the definitions of the variables X, Y, U, I. In each case
it will be clear the values for N and ε. For a generic random variable Z with probability
density function fZ and probability distribution function FZ , we call Mk

Z = E[Zk], k ∈ IN,
the kth order moment of Z, µZ = M1

Z the mean of Z, (Mk
Z)′ = E[(Z − µZ)k] the kth order

centered moment of Z and σZ =
√

(M2
Z)′ the standard deviation of Z. Moreover, we call zi,

i = 1, . . . , nsp, the sample data obtained in an experiment for Z, mk
z =

1

nsp

nsp∑
i=1

zk
i the sample

moments of {zi}, z = m1
z the sample mean of {zi}, (mk

z)
′ =

1

nsp

nsp∑
i=1

(zi − z)k the sample
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centered moments of {zi} and SZ =
√

(m2
z)
′ the sample standard deviation of {zi}.

3.2 The coefficient a

All the components of our descent algorithm except the coefficient a can be determined at
each step from the position of the particles. From the point of view of the resolution of an
ODE system the coefficient a is bounded by a critical upper value related to the stability
of the forward Euler’s scheme. To guarantee this stability in a highly non-linear problem
as the Fekete’s one requires extremely low values of a, which implies prohibitive calculation
times. However, for the optimization problem the scheme stability is not really important if
the algorithm leads to a minimum of the potential energy, even when this minimum is not
the one associated to the starting configuration in an initial value problem. Taking this into
account we choose the coefficient a according to the next criteria: its calculation must be as
cheap as possible at each step and, under this condition, it must lead to convergence in a
number of steps as small as possible. As for the cost at each step, it would be a favorable
situation if the coefficient a did not depend on the initial configuration and if its value could
remain constant throughout all the convergence process, since then its cost at each step
would be null. In this subsection we study the existence of a coefficient a that satisfyes these
properties.
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Figure 3: Evolution with a of the number of steps necessary to attain ε-convergence (ε =
10−7) from a uniform starting configuration (up) and from a delta starting configuration
(down).

Taking into account the enormous growing with N of the number of local minima of
the Fekete problem, we start the study by considering the case N = 87, that still has a
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relatively small amount of minima and that allows us to have a substantial information for
each minimum. Figure 3 shows the evolution with a of the number of steps necessary to
attain ε-convergence (ε = 10−7) starting from two fixed initial configurations: one generated
according to a uniform probability density on the whole 2-sphere (up) and the other generated
according to a uniform probability density on a spherical cap of area π · 10−6 (down). In the
sequel we call uniform starting configurations the ones randomly generated from a uniform
probability density on the whole 2-sphere and delta starting configurations the ones randomly
generated according to a uniform probability density on a spherical cap of area π · 10−6 . In
both cases we have considered 2000 different values for the coefficient a, that in each run
remains constant from the starting configuration to the convergence position.

Figure 3 makes it clear that the loss of the stability in the forward Euler’s scheme happens
for extremely low values of a. Nevertheless, there exists an important range of values of a
that guarantee the convergence to a minimum. Moreover, it results specially remarkable
that the critical value of a from which the algorithm diverges, acrit, is practically the same
for both initial configurations. It can be observed that in the two cases the evolution with a
of the number of steps necessary to converge is both qualitatively and quantitatively similar
and that the smallest calculation times appear near acrit from the left.

Figure 4: Paths described by the particles from a uniform starting configuration with a = 0.9,
a = 1.3 and a = 5.08 (up from left to right) and from a delta starting configuration with
a = 0.85, a = 1.05 and a = 5.08 (down from left to right).

Figure 4 shows the paths described by the particles throughout the convergence process
from the same uniform starting configuration with a = 0.9, a = 1.3 and a = 5.08 (up from
left to right) and from the same delta starting configuration with a = 0.85, a = 1.05 and
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a = 5.08 (down from left to right). For each path the big and medium points correspond
to the final and initial configurations, respectively, whereas the small points correspond to
the intermediate steps (the delta starting position is confined in a small cap and it cannot
be appreciated). Note that the paths corresponding to the first pair of figures of each group
look alike. In fact, the values of a corresponding to each pair lead to the same minimum
with different speed and they correspond to “continuous” fragments of the curves in Figure
3. There are few of such continuous fragments in the curve down in Figure 3 because the
starting configuration is very extreme.

It results interesting to observe how our algorithm works from a delta starting config-
uration. Figure 5 shows, from left to right and from above to below, the configurations
for nstep = 0, 3, 8, 19, 32, 37, 99, 8075 corresponding to the convergence process associated to
Figure 4 (down to the right). The steps nstep = 0 and nstep = 8075 correspond to the
starting configuration and to the configuration after the ε-convergence (ε = 10−7) has been
attained, respectively. In each case, the scale has been conveniently adjusted to make easier
the visualization of the process. As it can be observed, in the first steps the algorithm con-
structs a small ring with all the particles. The diameter of that ring grows until it becomes
comparable to the distance between two neighbor particles in the final configuration. From
this moment the ring leaves some particles in its interior. At the step nstep = 32 the ring has
already left some particles, and a few steps later it has “equidistributed” all the particles on
the sphere’s surface. Most of the rest of steps are wasted in localizing a minimum accurately.

Figure 5: Convergence process associated to a delta starting configuration. From left to
right and from above to below the steps nstep = 0, 3, 8, 19, 32, 37, 99, 8075 are displayed.

We have carried out an analysis in average for different random starting positions of the
evolution with a of the number of steps necessary to converge. Figure 6 summarizes the
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results corresponding to a test in which 120000 total runs of the algorithm with N = 87
have been performed. These runs correspond to 2000 uniform starting configurations (left)
and 2000 delta starting configurations (right). For each one of these starting configurations
we have considered 30 different values of a. The figure displays for each kind of starting
configurations the average number of steps necessary for ε-convergence (ε = 10−7) computed
from the 2000 total data for each value of a (big points) and the average number of steps for ε-
convergence (ε = 10−7) computed only from the data associated to the same minimum energy
value for each value of a (small points). We include the information corresponding to the best
five minima that we have found, whose energy values are −830.25191515, −830.25122722,
−830.24870458, −830.24727726 and −830.24727422, respectively. Moreover, we display the

regression curves of the form nstep =
γ

ap
obtained for all the data and only for the data

associated to each one of the five best minima. The included tables show the values of
the regression parameters, γ, p, and of the coefficient R2 for each one of the five analyzed
minima, that are indexed by nmin, and for all the data. The indexes 1 and 2 in γ, p, R2

denote uniform and delta starting configurations, respectively. All this indicates that there
exists a strong independence between the average behavior of the algorithm and the method
used to generate the random initial configurations. In addition, the values obtained for the
regression parameters clearly confirm the intuitive result p = 1.
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nmin γ1 p1 R2
1

1 7758.92 1.00303 0.999867

2 18301.3 1.00425 0.999897

3 10406.1 0.995675 0.999743

4 13713.7 0.994469 0.999405

5 7366.48 1.004034 0.999632

All 13964.8 1.00231 0.999964

1

nmin γ2 p2 R2
2

1 7922.31 0.998543 0.999675

2 18264.7 0.991262 0.999776

3 10494.0 0.996915 0.999691

4 14196.7 0.990648 0.998963

5 7525.82 0.996968 0.999441

All 14102.0 0.995425 0.999827

1

1

Figure 6: Evolution with a of the average number of steps for ε-convergence (ε = 10−7) for
uniform starting configurations (left) and delta starting configurations (right). The average
data corresponding to the best five minima and their interpolations are also included.

Figure 7 shows the sample distribution of the probability of obtaining the different minima
of the problem from random starting configurations. We specify the probability of obtaining
the five best minima, that has been determined from the 60000 data corresponding to each
kind of starting configurations (left and right, respectively). The separation between the
data corresponding to the fourth and fifth minima has been marked with a vertical segment
because the difference of their energies results invaluable. The figure also shows (in the small
boxes) the probability of obtaining the five best minima taking into account only the results
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corresponding to each a. These results confirm the independence of the probability distribu-
tion of the minima with the procedure used for generating the random initial positions and
also with the value of a. Note that there exist equilibrium configurations with extremely
low probabilities. For instance, the seventh best minima obtained from uniform starting
configurations appears only once among the 120000 total runs. The worst minima have also
very small probabilities.
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Figure 7: Sample distribution of the probability of obtaining the different minima of the case
N = 87 from uniform starting configurations (left) and from delta starting configurations
(right).

Maybe the most relevant result for the Fekete point problem we can extract from all
the tests that we have carried out is that the value of acrit is practically independent of the
random starting configuration. Figure 8 shows this independence as well as the process of
loss of convergence when the coefficient a is greater than acrit. The two diagrams on the
left show the behavior of the algorithm corresponding to a = 5.4, a = 5.4275, a = 5.43,
a = 5.433, a = 5.44, a = 5.7 and a = 8 from the same uniform starting configuration
(up) and from the same delta starting configuration (down). For the first value a = 5.4
the process converges in linear tendency until the machine error is reached (we work in
double precision). For the next a values it is still possible to reach the linear tendency,
but this tendency is left in a certain moment and finally the process diverges. For higher
values of a the divergence process starts even before the linear tendency is reached. In the
case corresponding to the uniform starting configuration the loss of convergence happens
for values of wmax growing with a, whereas with the delta starting configuration and in this
particular case, this monotonicity is lost for a = 5.4275, a = 5.43 and a = 5.433, which can
be explained by the fact that with a delta starting configuration even these little variations of
a can lead to different minima. In any case, there exists a short range of values of a for which
the process goes from ε-convergence for any ε to divergence independently of the random
starting position. On the spheres displayed in the same figure we have included the paths
described by the particles in the cases a = 5.7 (center) and a = 8 (right) from a uniform
starting configuration (up) and from a delta starting configuration (down). The big points
correspond to the starting position. We have not remarked a final position because the
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process diverges. As it can be observed, the divergence process corresponds to a bifurcation
both of the trajectories and of the convergence curves. For higher values of a the process
seems to lead to a sort of “rotation” of two similar alternating configurations with respect
to the same axis.
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Figure 8: The divergence process from uniform starting configurations (up) and from delta
starting configurations (down).

The results obtained for the case N = 87 suggest that if we impose a constant value of
a throughout all the convergence process then the evolution with a of the average cost and
the value of acrit depend only on N . We have confirmed this fact in all the studied cases.
Figure 9 (left), for instance, shows the evolution with a of the average number of steps
necessary for ε-convergence (ε = 10−7) for the case N = 200. There are data from 60000
total runs corresponding to 2000 uniform starting positions and 30 different values of a (from
now on all the starting configurations are uniform). The corresponding interpolation curve
is also included. The same figure (center) shows the sample probability distribution of the
minima that have been obtained from the 60000 total runs. Note that the appearance of the
probability distribution corresponds to a continuous random variable rather than to a discrete
one, whereas the probability distribution for the case N = 87 has the typical appearance of
a discrete random variable distribution. Figure 9 (right) also shows the divergence process
and includes the curves corresponding to a = 8.25, a = 8.27, a = 8.28, a = 8.3, a = 8.35,
a = 8.8 and a = 12.

So, from all the numerical evidence we have accumulated, we can conclude that if the
scheme xk+1 = xk + a min

1≤i<j≤N
{|xk

i − xk
j |}wk (combined with the projection to the sphere
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Figure 9: Evolution with a of the average cost, sample probability distribution of the minima
and divergence for the case N = 200.

at each step) is adopted as the descent algorithm and the coefficient a is kept constant
throughout all the optimization process, then the average number of steps necessary for
ε-convergence is inversely proportional to a until a certain value acrit beyond which the
scheme diverges. Moreover, all this is independent of the initial configuration. Taking also
into account that the probability distribution of the minima obtained from random initial
configurations is independent of a, it is clear that the optimum efficiency of the algorithm is
obtained when for each N a value of a, a∗, is chosen close to acrit from the left.
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Figure 10: Evolution with N of acrit and of a∗.

With regards to the computation of acrit, an accurate estimation can be obtained for
each N by the bisection method after determining by inspection a value of a that leads
to convergence and another that leads to divergence from a given starting configuration.
Figure 10 shows the results of a test in which this procedure is carried out for N =
10, 20, ..., 100, 200, ..., 1000, 1250, ..., 2000, 2500, 3000 and their interpolation. Taking into ac-
count this information, we establish the formula a∗ = 0.545

√
N . All the results presented in

the rest of this section correspond to computations with a = a∗.
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3.3 The average cost of a local minimum

We can now carry out a study about the computational cost of the process of identifying
a local minimum. It is clear that the cost at each step of our algorithm is always the

same and it essentially corresponds to the computation of the N forces Fi =
∑
j 6=i

xi − xj

|xi − xj|2
.

More specifically, each one of the
(

N
2

)
vectors

xi − xj

|xi − xj|2
, 1 ≤ i < j ≤ N , requires in

cartesian coordinates five sums, a division and six products, to which we must add the
six sums necessary to update the forces Fi and Fj. Hence, the computational cost of the
identification of a local minimum depends only on the number of steps necessary to converge.
In this subsection we analyze for each N the random variables X, number of steps for nr-
convergence, and Y , number of steps for ε-convergence.

For the statistical analysis of the random variables X and Y we have used the sample
data provided by nsp = 5000 runs of the algorithm for each N = 500, 1000, ..., 3000 and by
nsp = 1000 runs for each N = 4000, 5000. The results corresponding to N = 4000, 5000 are
used to confirm the tendencies given by the rest of the data. In all the runs the ε-convergence
with ε = 10−8 was attained.

The average values µX and µY are the fundamental parameters for the analysis of the cost.
In Figure 11 it can be observed the way the sample means x, y stabilize with nsp. Specifically,
we show the evolution with nsp of the sample means associated to nr-convergence (left) and
to ε-convergence for ε = 10−6 (center) and for ε = 10−8 (right) for all considered N .
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Figure 11: Evolution with nsp of the average cost for nr-convergence (left) and for ε-
convergence for ε = 10−6 (center) and for ε = 10−8 (right).

Figure 12 (left) shows the average number of steps necessary to attain nr-convergence
and ε-convergence for ε = 5 · 10−5, 2 · 10−5, 10−5, ..., 10−8 obtained from the above described
sample data. We also display the regression curves of the form µ = γNp obtained from the
5000 data corresponding to each N = 500, 1000, ..., 3000 (big points). The table on the right
contains the regression data, γ, p, R2, of these curves and the intersection point N⊥ of the
non-return average cost curve (thick curve) and each ε-convergence average cost curve. In
any case, it can be assumed that the choice ε = 10−8 guarantees that the last maximum in
the convergence curve is the true non-return point for all the sample data.
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Figure 12: Average cost of the process of identifying a local minimum.

3.4 The probability of finding a c-minimum

The next essential point is to determine if the average number nsp of random starting con-
figurations needed to find a minimum with an energy value satisfying Condition (1) for a
certain positive constant c is also polynomial in N . In this context, the energy of a local
minimum can be seen as a random variable whose support is an interval with the unknown
IN(ωN) as lower limit.

We work here with the random variable U previously defined. To extract reliable con-
clusions about this random variable we have performed the following statistical experi-
ment: nsp = 105 runs of the algorithm from different uniform starting positions for each
N = 300, 400, 600, 700, ..., 1000 and nsp = 106 runs for N = 500. All these runs arrive to
ε-convergence for ε = 2 · 10−7. Moreover, we have the sample information cited above; that
is, nsp = 5000 runs of the algorithm for each N = 1500, 2000, 2500, 3000 and nsp = 1000 runs
for each N = 4000, 5000 up to ε-convergence for ε = 10−8.

Let us start the analysis of all this sample information with Figure 13, that shows the

stabilization with nsp of the kth roots of the sample centered moments, ± k

√
|(mk

u)
′|, k =

2, ..., 10, where the sign is given by (mk
u)
′, for the cases N = 300 (left), N = 500 (center),

N = 1000 (right). For instance, we note that the value of the 10th root of the 10th centered
moment for N = 1000 is 0.11457357 when nsp = 5 · 104 and it is 0.11499766 when nsp = 105.
We do not include the evolution of the sample mean u, which stabilizes earlier than the
higher order moments.

Figure 14 (left) shows the evolution with N of the final values obtained for the sample

mean u and for ± k

√
|(mk

u)
′|, k = 2, ..., 10. Note the different scaling in the vertical axis for
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Figure 13: Evolution with nsp of the kth roots of the sample centered moments, ± k

√
|(mk

u)
′|,

with k = 2, ..., 10, for N = 300 (left), N = 500 (center) and N = 1000 (right).

positive and negative values. The figure also includes the straight lines obtained by linear
regression from the data corresponding to N = 300, 400, ..., 1000 (big points). The rest of
the data (small points) come from a smaller sample, and they are displayed only to confirm
the tendency given by the first points. The table on the right shows the linear regression
parameters, Ak, Bk, R

2, for each straight line. The index 1 is for the mean and the rest
of values are for centered moments. It seems clear that the expressions µU ' A1N + B1,
(Mk

U)′ ' (AkN + Bk)
k, k = 2, ..., 10, can be used as good approximations for the moments.
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Figure 14: Evolution with N of the sample mean u and of the kth roots of the sample

centered moments, ± k

√
|(mk

u)
′|, with k = 2, ..., 10.

Let us consider now the standardized variable V =
U − µU

σU

. If we assume the above

approximating expressions for the moments, we can conclude that Mk
V '

(
AkN + Bk

A2N + B2

)k

,

k = 2, ..., 10. The sample information related to higher order moments, that we do not show
here, clearly suggests that this tendency is general. As a consequence, we also assume the
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existence of an asymptotic standardized distribution whose moments are given by
(

Ak

A2

)k

,

to which the distribution V tends when N →∞. This implies in particular that there exists
αlim < 0 such that for N →∞

IN(ωN) ' −1

4
log

(
4

e

)
N2 − 1

4
N log N + µU + αlimσU .

Note that this expression agrees with Equation (2) taking O(N) = µU+αlimσU = (−0.026656+
0.000049296αlim)N + (0.26840 + 0.0035699αlim). In [11] it was proposed the expression
O(N) = −0.026422N + 0.13822, obtained from numerical results with N up to 200.

The next natural step is to adjust the probability density function fV of the standardized
variable V . For this we use the following simple model, that is based on the composition of
two queues. Let us consider the random variable Z, Z ∈ (0, 1), whose probability density

function has the form fZ(z) = A−1c1(z)c2(1 − z), where A =
∫ 1

0
c1(s)c2(1 − s) ds and a

generic expression for the queues c1, c2 is given by ci(z) =
1

zgi

(
h−1

(
z

20e

)) , z ∈ (0, 1), where

h is defined by h(x) =
log x

x
with x > e and the function gi is chosen to define different

approximating models. The coefficient 20e is only a scaling parameter whose value has been
fixed by the authors. We present here the results given by two different models obtained by
taking g1(t) = tp1 , g2(t) = tp2 (Model 1) and g1(t) = ep1 t, g2(t) = ep2 t (Model 2). These
models correspond to the hypotheses of polynomial and exponential cost for the Fekete
problem, respectively. For both models, the probability density function of the standardized

random variable W =
Z − µZ

σZ

, fW , and its support, (α, ω) =
(−µZ

σZ

,
1− µZ

σZ

)
, depend only

on two parameters p1, p2.

Both models have been used to adjust the first ten moments Mk
V for each N . In Fig. 15

we show the kth roots of the moments Mk
V obtained from the linear expressions showed in

Fig. 14 for N = 200, 400, 600, 1000, 3000 and for the limit case N →∞. These moments are
indicated by means of empty circles. The figure also displays the approximations given by
models 1 and 2, that are marked with points and crosses, respectively, for an appropriated
choice of the parameters a, b for each N . For the determination of these parameters we have
used the following procedure: for a given value of α we minimize the maximum relative error
in the moments with k = 3, . . . , 10 along the curve in the space p1, p2 whose points satisfy

the condition −µZ(p1, p2)

σZ(p1, p2)
= α. Then, we vary α and chose the parameters corresponding to

the value of α that produces the minimum maximum relative error in the moments. As it
can be seen, this procedure allows us to finely adjust the moments both for the polynomial
and exponential hypotheses, even when only two parameters control the model. In the worst
cases the maximum relative errors are around 1%, but they often are smaller than 0.5%.

Fig. 15 makes clear that the analysis of the moments of the random variable V is
not enough to determine if the probability of finding a c-minimum decreases polynomially or
exponentially. However, the analysis of the support (α, ω) provided by models 1 and 2 results
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Figure 15: Evolution with N of the kth order moments of V , k = 1, ..., 10, given by the
linear approximations AkN + Bk (◦) and their approximations by means of models 1 (•)
and 2 (×). From left to right and from above to below, we show the results corresponding
to N = 200, 400, 600, 1000, 3000 and N →∞.

crucial to make a decision. Fig. 16 (up) shows the evolution with N of the parameters p1, p2

obtained as it has been indicated for Model 1 (left) and Model 2 (right). We have used the
logarithmic scale in the vertical axis. The same figure (down) displays the evolution with N
of the support (α, ω) corresponding to the values p1, p2 obtained in each case.

Let us start by observing the high values for ω given by both models for the first values
of N , that considerably overestimate the sample data. To understand this, it is convenient
to look again at Fig. 7, that corresponds to the case N = 87. In this case there is only a
little amount of minima, one of them with a probability of around 42% and some others with
probabilities of around 10%. Nevertheless, even in this case there exist some bad minima
far from the average energy value and with extremely low (of order 10−5) probabilities.
From the sample data corresponding to this case we have obtained a value of around 14
for the standardized energy value of the worst minimum. The values provided for ω by the
continuous models for the first values of N correspond to these extremely low probabilities of
bad isolated minima in the upper queue. Obviously, the continuous approximating models
can not be used for very small values of N , whose probability distributions are clearly
discrete. For this reason, we only use the models for N ≥ 200. The biggest value for
ω obtained from the sample data corresponding to N ≥ 200 is around 7 and it has been
obtained for N = 300. Nevertheless, taking into account the results corresponding to N = 87
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Figure 16: Evolution with N of the parameters p1, p2, α, ω for the Models 1 (left) and 2
(right).

and the huge decrease with N of the probability of finding any local minimum, it is reasonable
to assume that there exists a relatively little amount of bad isolated minima with probabilities
of order 10−8 or even less for the first values of N . However, as N increases and the problem
tends to be continuous this isolated bad minima tend to disappear, which both models reflect
with a strong decrease of ω.

In any case, the key parameter for the Fekete problem is α; that is, the limit of the
lower queue, since there exists an excellent agreement between the moments, and hence also
between the shapes of the probability distribution functions. Fig. 17 shows the evolution
with N of the parameter α according to Model 1 (solid line) and 2 (dotted line). At this
point it is important to observe that this figure shows a strong change in the evolution of the
lower support between N ' 500 and N ' 1000. Both models exhibit the same qualitative
behavior. In fact, the quotient between the parameters α corresponding to models 1 and 2
remains practically constant and equal to 0.69 ' log 2 for all N . After a rapid increase of the
lower support up to N ' 500, this growing stops and the support stabilizes with N tending
to the limit values αlim ' −3.47 (Model 1) and αlim ' −4.97 (Model 2). The upper support
behaves similarly after attaining its maximum value, tending to ωlim ' 7.3 and ωlim ' 10.3
for models 1 and 2, respectively. Note that the quotient of both values of ωlim is practically
the same that the one obtained for the lower support.

In these conditions, we can say that it is the way the moments Mk
V change with N what

leads to a specific shape of the lower support’s evolution, and that different approximating
models give essentially the same tendency, but affected by a scale factor. The objective
of the intensive calculations we have performed was not only to extract reliable sample
information about the moments, but also about the lower support. The points in Fig. 17
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Figure 17: Evolution with N of the parameter α for the models 1 (solid line) and 2 (dotted
line) and sample data.

correspond to the best standardized energies found for all the studied N ; that is, N =
87, 200, 300, . . . , 1000, 1500, . . . , 3000, 4000, 5000. The best found energies for the cases N =
87 and N = 200 are −830.251915153 and −4133.00307952 respectively, and they equal the
ones available in the literature, see for instance [11]. These values are assumed to be global
minima. On the other hand, it results very meaningful that the point corresponding to
N = 500, obtained from nsp = 106 runs, is between the points corresponding to N = 400
and N = 600, obtained from nsp = 105 runs. We consider that the points associated to
N = 300, 400, 500, and likely also the one associated to N = 600, correspond to true global
minima. The position of the rest of points clearly indicates that the global minima has not
been attained yet, but they confirm the stabilization with N of V .

The sample data show that the growing of the lower support begins to stop at N ' 500,
where the sample support arrives to −3.463. Model 2 gives α ' −4.8 for N = 500 and
α ' −2.8 for N = 200, where the sample value is α = −1.844. Therefore, Model 2 con-
siderably overestimates the lower support of V , whereas Model 1 adjusts well the sample
lower support as well as the moments. So, if W is the standardized random variable cor-
responding to Model 1, whose parameters p1, p2, α, ω change with N as indicated in Fig.
16 (left), then p1 tends to approximately 7 when N grows and the probability of find-
ing a c-minimum is given by P [I − IN(ωN) ≤ c log N ] = P [U − µU − ασU ≤ c log N ] =

FV

(
c log N

A2N + B2

+ α

)
≈ FW

(
c log N

A2N + B2

+ α

)
. If we denote by δN =

c log N

(ω − α)(A2N + B2)
,

then the last expression equals
1

A

∫ δN

0
c1(s)c2(1 − s) ds, that when N → ∞ has order

O(δNc1(δN)) ∼ O

[h−1

(
λ

log N

N

)]−p1

, where λ =
c

20e(ω − α)A2

. Taking now into ac-
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count that if N →∞ then h
(

N

λ

)
' λh(N), we obtain

P [I − IN(ωN) ≤ c log N ] ∼ O

((
N

c

)−p1
)

, p1 ' 7.

3.5 Conclusions

We have studied the properties of our algorithm for the numerical estimation of Fekete
points in the framework of the Smale’s 7th problem; that is, for the case of the logarithmic
potential energy in the 2-sphere. As a result of the performed tests, we can conclude that
the algorithm converges for any constant value of the coefficient a lower than a certain
value acrit that depends only on N . The formula a∗ = 0.545

√
N has been used in practice,

taking into account that the average number of steps to converge is inversely proportional
to a. All the runs (about 2 · 106) carried out according to this criterion converged, which
can be understood as a “convergence proof” for our algorithm. Moreover, the algorithm is
extremely robust, since it converges even for really hard initial positions like the delta starting
configurations. On the other hand, the probability distribution of the minima obtained from
random starting positions results independent of the procedure used to generate them as
well as of the coefficient a. This justifies the choice of a value for a close to acrit in order to
maximize the efficiency while keeping the convergence.

It has been shown that the average computational cost of identifying a local minimum
for the Fekete problem is bounded by N3, since the cost at each step is O(N2) and the
average number of steps necessary to reach the ε-convergence and the nr-convergence grows
sub-linearly with N . Specifically, the average number of steps needed to attain the nr-
convergence grows approximately as N0.77, and when ε decreases the exponent in N for the
ε-convergence increases tending to a limit value of around 0.77. In particular, the intersection
of the ε-convergence (ε = 10−8) average cost curve with the nr-convergence average cost
curve is located at N > 105.

An exhaustive statistical analysis has been performed to characterize the probability
distribution function of the energy of a local minimum obtained with our algorithm from
a random starting position. In particular, good linear approximations for the mean and
for the kth roots of the order k centered moments up to order 10 of U , the linear part
of I, have been obtained, and reliable estimations of the global minima corresponding to
N = 300, 400, 500, 600 have been found. Two theoretical models based in the hypotheses of
polynomial and exponential cost, models 1 and 2 respectively, have been used to adjust all
the available sample information. Both models produce fine adjustments for the moments

up to order 10 of the variable V =
U − µU

σU

for all N and give the same qualitative evolution

with N of the lower support of this standardized variable, but Model 2 clearly overestimates
this support. Model 1 reproduces well all the information provided by the sample data.
According to this approximating model, the probability of obtaining a c-minimum tends to
decrease approximately as N−7.
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If Model 1 is taken as a valid approximating model, we can conclude that the total
average computational cost of the process of finding a c-minimum is polynomially bounded
by N10. In addition, the number of starting positions needed to attain a c-minimum with a
given probability r is also polynomial in N . Effectively, if q is the probability of finding a
c-minimum from a random starting position, then the number of starting positions needed to

attain a c-minimum with probability r is
log (1− r)

log (1− q)
, and if q ∼ N−p then the last expression

has order Np. On the other hand, taking into account that in general a big amount of
starting positions are needed, the average computational cost of a minimum can be used
to predict calculation times with high accuracy. Regarding the constant c, we can observe
that taking c = 0.043 the 106 energy values of I obtained for N = 500 satisfy the condition
I − Imin ≤ c log 500, where Imin is the best found energy. For N big enough arbitrarily small
values for c > 0 can be considered. Moreover, we have obtained the expression

IN(ωN) ' −1

4
log

(
4

e

)
N2 − 1

4
N log N − 0.02683N + 0.2560

for the asymptotic minimum logarithmic energy on the 2-sphere.

Finally, we must observe that the previous reasonings are based on numerical and statis-
tical approaches and, as a consequence, the presented results are affected by a certain error.
The error comes from the difference between exact and sample moments, linear regression of
points non exactly aligned, and the choice of an approximating model and of a criterion to
adjust the moments. All this could lead in particular to a variation in the exponent in N for
the probability of finding a c-minimum. However, all the performed tests indicate that the
hypothesis of exponential cost does not allow us to adjust both the moments and the lower
support, whereas the parameters of the polynomial model can slightly vary maintaining the
agreement between moments and support.

4 Further comments

We would like to start by observing that our algorithm, that has been designed for the
minimization of a potential energy, does not need to evaluate this energy throughout the
optimization process. The energy value of an equilibrium configuration can be obtained a
posteriori as a byproduct of the calculation of this configuration. Nevertheless, it can be
checked that the energy descents at each step of the convergence process. These consid-
erations lead us to compare our advance criterion with the classical line search procedure,
according to which the step size is determined from the minimization of the objective function
in the advance direction. There exist remarkable similarities between both advance criteria,
which are being studied by the authors. In any case, we want to show here some preliminary
results. We have carried out some calculations by means of the line search procedure follow-
ing the advance direction given by the disequilibrium degree (in the case of the sphere this
direction practically equals the gradient direction at most of the steps). The computation of
the coefficient a that minimizes the energy at each step has been made with high accuracy in
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order to evaluate how much the line search procedure can improve the optimization process.
To be exact, if we call als the magnitude of the coefficient a that minimizes the energy in
the direction w (we include the minimum distance between particles in the step size), we
have demanded at each step that the absolute error in als is smaller than 10−16acrit. Using
this procedure in the case N = 87 (acrit ' 5.37) we obtain that after 500 runs corresponding
to different starting configurations the ε-convergence (ε = 10−6) is attained after 1884 steps
in the average, whereas our algorithm reaches the same accuracy level after 2009 steps in
the average, which represents approximately only a 6% of increment in the number of steps.
However, it is clear that the cost at each step is much higher with the line search procedure
than with our algorithm, in which the step size is analytically obtained.

It is even more interesting to study the values that als takes throughout the descent
process. Figure 18 shows the evolution with nstep of als (left), of the energy decrement at
each step (center), and of wmax (right) for a calculation with line search for N = 87 from
a random starting configuration. In the left diagram we have also displayed the horizontal
straight line corresponding to the value 5.37. We do not include in the figure the value als =
33.6570189174919, which corresponds to nstep = 1, because of the scaling of the axis. The
value corresponding to nstep = 2 is als = 11.1625964050175, but it cannot be distinguished in
the figure because it is an isolated point placed practically on the vertical axis. As it can be
observed, the value of als oscillates around acrit throughout all the convergence process, and
the amplitude of the oscillation grows with the proximity to the minimum. This oscillation
can also be observed in the disequilibrium degree, but not in the energy decrements, that
describe a smooth curve. So the coefficient acrit seems to be a sort of “average” of als.
Moreover, regarding to the average number of steps necessary to convergence, the choice
a ' acrit is practically equivalent to take a = als, but acrit results much cheaper at each
step that als and, in addition, a ' acrit guarantees a smooth variation of all the convergence
control parameters, wmax in particular.
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Figure 18: Evolution with nstep of als, of the energy decrement and of the maximum dise-
quilibrium degree in a calculation with line search.

The behavior that Figure 18 indicates is also observed working with other kernels. Figure
19 shows the evolution with nstep of als for the cases s = 1 with N = 100, s = 2 with
N = 200 y s = 3 with N = 300, where s denotes the power of the Riesz’s kernel. We have
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also included the horizontal straight lines associated to the values that acrit takes in these
three cases (acrit ' 1.17 , acrit ' 0.298 and acrit ' 0.098, respectively). These estimations of
acrit have been obtained by following the same procedure that we used for the performance
of Figure 10, that is, by using the bisection method from a value of a that converges and
other that diverges for each kernel and for each N .
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Figure 19: Evolution with nstep of als for the cases s = 1 with N = 100, s = 2 with N = 200
and s = 3 with N = 300.

Figure 20 shows the evolution with N of acrit for the Riesz’s kernels with s = 1, 2, 3. For
the case of the Newtonian kernel the coefficient acrit remains practically constant except for
the first values of N , whereas for s = 2, 3 the evolution of acrit fits to the curve given by a
negative power of N . The figure includes interpolation curves with their R2 values for both
cases.
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Figure 20: Evolution with N of acrit for the Riesz’s kernels with s = 1, 2, 3.

Although the relationships between acrit and als must be still more deeply analyzed, the
results that we have showed here seem to indicate the “optimality” of our criterion for the
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choice of the step size. In [1] we made some comments about the “optimality” of the advance
direction w in comparison with the gradient direction.

Finally, we would like to comment that the structure of our algorithm can be adapted
to the requirements of other classical problems. An interesting application that is being
explored by the authors falls into the dynamic systems framework. In [2] we show some
preliminary results of the application of our algorithm, that we call Forces’ method, to
the problem of the computation of planar central configurations and to the problem of the
calculation of trajectories by means of action minimization. The problem of the central
configurations is very similar to the Fekete point one. As for the minimization of the action,
which is the integral of the difference between the kinetic and potential energies of a me-
chanic system, it is necessary to start by discretizing the problem by means of the numerical
quadrature of that action integral, which leads to the minimization of a functional depending
on a finite amount of relative distances.
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