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Estimation of the Uncertainty in Time Domain Indices of
RR Time Series

Miguel A. Garcia-Gonzdlez*, Mireya Ferndndez-Chimeno, and
J. Ramos-Castro

Abstract—A method for estimating the uncertainty in time-domain in-
dices of RR time series is described. The method relies on the central limit
theorem that states that the distribution of a sample average of independent
samples has an uncertainty that asymptotically approaches to the sample
standard deviation divided by the square root of the number of samples.
Because RR time series cannot be characterized by a set of independent
samples, we propose to estimate the uncertainty of indices by computing
them in blocks that satisfy that the obtained partial indices are indepen-
dent. We propose a methodology to search sets of independent partial in-
dices and apply this methodology to the estimation of the uncertainty in
the mean RR, SDRR, and r-msDD indices. The results show that the un-
certainty can be higher than the 10% of the index for the SDRR and even
higher for the r-msDD. Moreover, a statistical test for the difference of two
indices is proposed.

I. INTRODUCTION

Heart rate variability (HRV) is regarded as a marker of the relation-
ship between the cardiovascular and autonomic nervous systems (see
the Task Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology [1], for a good re-
view on HRV applications and recommendations for measurements).
There are several techniques that quantify the beat-to-beat fluctuations
although, nowadays, the time-domain analysis is the most employed
methodology in clinical studies, both in short-term and 24-h recordings.

Besides of applications of time domain analysis of HRV based on
24-h recordings, such as prediction of cardiac disease and mortality
[2]-[4], HRV analysis from short-term recordings is becoming a pow-
erful tool for the prediction of several diseases (mortality prediction
after myocardial infarction [5], studies on diabetic patients [6], assess-
ment of training status in athletes [7], or assessment of psychological
stress [8]). Among the whole proposed time-domain indices, the most
recurrently calculated are the mean (RRynean ), the standard deviation
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(SDRR), and the standard deviation of the differentiation (r-msDD) of
the RR time series. The aim of this paper is to provide a methodology
to estimate the uncertainty in the quantification of these three indices
from a statistical point of view. For each index obtained from a single
RR time series, the method must provide a number for the quantifi-
cation of the distrust on the result of the index (the uncertainty of the
index), and an interval centered on the obtained index that contains the
“true” value of the index with a certain probability [the confidence in-
terval (CD)].

When characterizing a RR time series, the number of available RR
samples (V) is always finite and, very often, limited. When computing
an index from the NV intervals we estimate a characteristic of the time
series (i.e., the sample mean of the RR samples is an estimation of
the expectation of the time series). If the RR time series is stationary
and other new NN intervals were obtained, the new estimation of the
index will be different although similar. The estimation of uncertainty
quantifies this variation.

In Sections II-1V, an introduction to the estimation of the uncertainty
is provided and the proposed methodology is outlined. The method-
ology is characterized by comparison with Monte Carlo simulations
by employing artificial time series and, finally, the method is applied
to real RR time series.

II. MATERIALS AND METHODS

A. Estimation and Uncertainty

From the Central Limit Theorem, the arithmetic mean (Opean ) Of
M independent observations ({o1,02,...0j,...,0:}) is, when M
sufficiently high, a random variable with normal distribution whose
standard deviation can be estimated as

U(Omean) = 50mean —

_ - ] ' 0

The Guide for the Expression of the Uncertainty in Measurement [9]
defines the standard deviation of the mean (u(Omean)) as the type-A
standard uncertainty. Regardless the number of available observations,
a CI can be defined as

PrOb{OmPan —k- 'U(Omean) S 6
S ()mean + k- “’(()mean )} =P (2)

where k is the coverage factor and can be obtained from the t-Student
distribution tables with M — 1 degrees of freedom and p is the cov-
erage probability (the probability that the true value would be inside
the specified CI) and O is the mean (expectation) of the population.
The product k - u(Opmean ) is defined as the type-A expanded uncer-
tainty (U (Omean ) ). Note that these calculations are true regardless the
distribution of the observations provided that the number of observa-
tions is high enough and that the observations are independent. This
approach can not be applied directly to the estimation of the uncer-
tainty of the mean of RR time series because the samples are seldom
independent.

Let us suppose that we want to estimate the uncertainty of an index
from a time series with /N nonindependent samples. If the index can

be estimated as an average of partial indices computed in M/ nonover-
lapped blocks of size n(n - M < N), the standard uncertainty in the
index can be estimated as

M .M 2
> <PIJ' v ZPL‘)
Spi =1 i=1

u(l) ~ =
(1) VM M- -(M-1)

3)

provided that the partial indices (pI;, i € [1, M]) are independent.
Accordingly, a CI can be obtained. This approximation holds if the RR
time series can be considered as a stationary process (if not, in fact, the
mean is not strictly defined although, of course, the sample mean can
be computed) and because the sample mean is an unbiased estimator
of the expectation.

There is a tradeoff between n and M If » is high, the knowledge of
each pI; is higher but the results of a test of independence can be com-
promised because M is low. If M is high, the estimation of each pI;
can be meaningless. As explained above, the different pI; must be in-
dependent. In this paper, we have considered that they are independent
if the run test and the reverse arrangement test with a confidence level
of the 95% indicate that the independence hypothesis can be accepted.
Bendat and Piersol, [10] provide a detailed description of both tests.
Next, there is a brief summary of these tests.

B. Independence Tests

The independence tests are based on the assumption that indepen-
dent data have no trend. Bendat and Piersol [10] propose two nonpara-
metric procedures to find if the data are independent or not: the Run
Test (RT) that can detect fluctuating sets and the Reverse Arrangement
Test (RAT) that is more sensitive to monotonic trends. Let us consider
that we have M partial indices and want to test if they are independent.

In the RT, the sample mean of the partial indices is calculated and
removed from each partial index. Then, the sign sequence is created

1, ifdpl >0

M
1 L
dpl; = pI; — A 72:1 pl; sig(i) = { —1, ifdpl; < 0" 4

A run is defined as a portion of the sign sequence delimited by sign
changes. For example, if sig(i) = {1,1,1,—1,—1,1,—1,1} we have
r = 5 runs in 8 observations. A fitting of the lower (Lr) and upper
(Ur) limits for a confidence of 95% is (M < 100)

Lr=045-M —2.85
Ur =0.55- M + 3.85. (5)

If r is outside the interval (Lr, Ur) it can be concluded that the partial
indices are nonindependent.
In the RAT, the following matrix is created

1, ifpl; > pl; andi < j
hij:{, if pI; > pl; an L<J. ©)

0, otherwhise

And, the following parameter is computed:

M—=1 M
A=Y < h,-,). )
J=i+1

=1
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Fig. 1. RR time series with 252 samples used to show the behavior of indepen-
dent partial indices.

TABLE I
RESULTS FOR THE INDEPENDENCE TESTS FOR THE EXAMPLE OF A RR TIME
SERIES. IN THE RAW DATA SECTION, THE INDEPENDENCE OF THE RR SAMPLES
ARE TESTED WHILE IN THE PARTIAL INDICES SECTION, THE INDEPENDENCE OF
M = 16 PARTIAL STANDARD DEVIATIONS IS TESTED

Test RT RAT
Raw data r 78 A4 14272
Lr 111.1 LA 16567
Ur 141.9 UA 17739
Comparison | r<Lr<Ur | Comparison A<LA<UA
Independent? | NO Independent? | NO
Partial indices |[r 5 A 76
(M=16) Lr 4.4 LA 40.4
Ur 12.6 UA 77.5
Comparison | Lr<r<Ur | Comparison LA<A<UA
Independent? | YES Independent? | YES
In this test, the 95% CI can be fitted as
LA =0.089-M**
UA=0.352- M"9°. ®)

As an example of the technique, Fig. 1 shows a real RR time series
with 252 intervals. The RT and RAT on the raw RR time series in-
dicate that the intervals are not independent as shown in Table 1. With
M = 16, both tests indicate that the standard deviation computed in the
blocks can be considered as independent. Based on the independence
of the obtained standard deviations, an estimation of the uncertainty of
the SDRR will be 6.4 ms (the calculated SDRR is 95.7 ms) because
the standard deviation of the calculated standard deviations is 25.4 ms
and 25.4 ms/(16)%® = 6.4 ms. The 6.4 ms result is for this particular
partition of the time series. However, several partitions of the time se-
ries may provide independent partial indices and different results. Let
us see how to evaluate these differences.

C. Strategy for the Choice of an Independent Set of Partial Indices

As seen in the prior example, the obtained set of partial standard
deviations was classified as independent although r was very close to
Lr and A was very close to U A. Maybe another combination of M and
starting interval (the first block started in the first RR sample) would
provide values of » and A closer to the midpoint of each CI. Let us

define the set of possible M and the set of possible starting RR samples

as
N
M € {10, |

i € {1,N— WIJ -M—I—l} )

where | | is the rounding to the lowest integer operator.

In the example of Fig. 1, M can adopt every integer value between
10 and 25. If M = 15, there are 13 possible starting RR samples (i,).
The blocks are defined as

RR! = RR<i0+(i—1)- W—ID
. . N
RR(zo—l—l—l—(i—l)- {ﬁJ)’

RR<i0+ {%J —1+(i—1)- {%D

ie{1,M}.

(10)

In the example there are 134 possible combinations of 3/ and ¢,. The
strategy is to compute all the available blocks and to provide an inde-
pendence factor (IF) that can guide us to the determination of what is
the best combination of M and ¢,. Let us define the IF as

B ’Uri)ru _ 'r| 2 ’UA‘J{LA _ _1\ 2
IF = Ur—Lr + UA—LA : (1D
2 2

The independence factor will be zero if both tests have the discrim-
inating parameter just in the centre of the CI. In this paper, we have
tried two methods in order to provide a representative value of the un-
certainty of the index.

* Method of the minimum (M1): From all the obtained sets, find
the one that has the minimum IF. The standard uncertainty in the
index is obtained with (3) for the chosen set of pI;. In the case of
the time series of Fig. 1, the minimum IF is 0,047 and corresponds
to a partition in 11 blocks starting with the first RR sample. In this
case, the uncertainty of the standard deviation computed with (3)
is 6.30 ms.

* Method of the first quartile (M2): 1dentify how many sets have
IF < 1. From this reduced number of sets, identify which ones
have an IF inside the first quartile. Once identified, express the
standard uncertainty of the index as the mean of the standard un-
certainties obtained on the sets inside the first quartile. Fig. 2 illus-
trates the procedure for the time series of Fig. 1 when measuring
the uncertainty in SDRR resulting an uncertainty of 6.01 ms. If in
this method there are no sets with IF < 1 then M1 is applied.

D. Intervals of Confidence

The asymptotic distribution of the mean of partial indices is normal
because they are independent. For each set, a CI can be obtained by
finding the coverage factor in a t-Student table (the number of degrees
of freedom is M — 1). When employing M1, the interval of confidence
will be calculated by this direct form. Nevertheless, when using M2,
an average of uncertainties is provided. Which coverage factor has to
be employed in this case? As recommended in the Guide, when using
a confidence level of 95%, the coverage factor will be 2 and for a con-
fidence level of 99%, the coverage factor will be 3. Returning to the
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Fig. 2. Procedure to obtain independent partial indices by election of A and
i, (a) Independence factor (IF) for all possible sets (134) obtained from the RR
time series of Fig. 1. The minimum IF is 0.047 so this set is the one considered
in M1. The circles represent the IF values of the first quartile. (b) Uncertainty
of the SDRR computed for every IF. The circles also show the cases of IF in
the first quartile.

example of Fig. 1, M1 establishes an expanded uncertainty (95% con-
fidence) of U(SDRR) a1 = 2.23 - 6.30 ms =2 14.0 ms while M2 es-
tablishes U(SDRR) a2 = 2 - 6.01 ms= 12.0 ms. In order to discern
which procedure is more accurate, simulation studies must be carried
out.

E. Characterization and Application of the Methods

1) White Uniform Noise: M1 and M2 have been applied to the de-
termination of the uncertainty of RRmean, SDRR, and r-msDD in ar-
tificial realizations of RR time series with 300, 500, and 900 samples.
The RR time series are obtained by generating white uniform noise
with a nominal standard deviation of 45 ms and adding an offset of
1000 ms (nominal RRmean). For each number of samples, 1000 real-
izations have been obtained. In each realization, the RR;nean, SDRR,
and r-msDD have been calculated taking into account all the available
samples. Their uncertainties and expanded uncertainties (95% confi-
dence level) have been computed by M1 and M2. The bias, estimated
for each realization as the difference between each index computed
with all the available samples or computed as the mean of the partial
indices, has been also computed. At the end, the Monte Carlo uncer-
tainty for each index has been computed as the standard deviation of the
1000 computed indices (umc). Moreover, the expanded uncertainty
has been obtained as half the difference between the 97.5% and 2.5%
percentiles (Unic ). For the uncertainties computed via M1 or M2, the
mean =+ standard deviation was obtained.

2) Realizations From a First Order Autoregressive Model: An easy
way to obtain nonindependent time series from a white noise generator
is to use the independent samples as the input of a first order autore-
gressive model. Such approach has been employed in order to view the
performance of M1 and M2 in correlated time series. The input of the
model is white Gaussian noise (w(n)) and the output is defined as

RR(n) =+ -RR(n—1)+ w(n). (12)
The standard deviation of the input noise has been chosen in order to
provide a RR time series with SDRR approximately equal to 45 ms.
We have tested seven different autoregressive models (v = 0.7, 0.5,
0.3, 0.0, —0.3, —0.5 or —0.7). For each model, 1000 realizations have
been obtained with N = 300 samples and a similar approach to the
Monte Carlo simulation with independent samples has been followed.

AR(1) coefiicient=0.7

fl ‘m" PO
AR(1) coefficient=-0.7

Fig. 3. Examples of realizations of nonindependent time series from a first
order autoregressive model. The autoregressive coefficient decreases from the
upper trace (0.7) to the lower trace (—0.7).

Fig. 3 shows a realization for each autoregressive model. At the output
of the model an offset of 1000 ms has been added.

3) The Uncertainty of RRnrean, SDRR, and r-msDD in Healthy
Subjects: In the Normal Sinus Rhythm Database [11], that can be
downloaded from www.physionet.org, 10236 RR time series, each
with 300 intervals and without artifacts, where identified. For each
time series, the RRimean, SDRR, and r-msDD where computed with
all the available samples and the uncertainty and expanded uncertainty
(95% confidence) where estimated by M2. This study provides mar-
gins of variation of the indices as well as their uncertainties in healthy
subjects.

4) A Comparison of Indices: the Effect of Breathing Pattern On
RRucan, SDRR, and r-msDD: For this example we say that two in-
dices are statistically different (with a confidence greater than p) if the
two ClIs obtained for the same confidence level p does not overlap. Note
that this test does not consider normality of the indices. Let us suppose
two CIs with the same level of confidence for an index 1

I7Lt1 Ill :l:LT(Il)

Ints =L+ U (L) (13)

} I < L.

We define the interception value (IV') and the difference of indices
(DI) as

W=L-U(L)-1 -U(L)
DI=1I, —I. (14

If IV > 0, the indices are different in a statistical sense (with a
probability at least the confidence level). Moreover, if IV 2 DI, the
effect of the expanded uncertainties is negligible so the affirmation that

IV > 0 implies that both indices are different is stronger. A quality
factor (@) is defined as

_ 1
- l—ln(E)

DI

Q (15)
() can take values between 0 and 1 and the greater its value, the stronger
the affirmation of difference of indices is.

This test has been employed in 15 RR time series when subjects were
breathing at will (FB group) and in 15 RR time series when the same
subjects were periodically breathing with breathing frequency between
0.15 Hz and 0.30 Hz (PB group). FB,» and PB,, recordings corre-
spond to the same subject (nn ranging from 01 to 15). Each time series
corresponds to a measuring interval of 5 min. More indications on the
experimental setup can be found in [12]. The objective is to test for
each subject (1 to 15) if RRmean, SDRR, and r-msDD have changed
from free breathing (FB) to periodic breathing (PB). The CIs have been
obtained for a 95% confidence level with M2 and each index has been
estimated using all the available samples.
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TABLE II
RESULTS FOR THE SIMULATION WITH ARTIFICIAL RR TIME SERIES WITH
WHITE UNIFORM NOISE. FOR THE ESTIMATION OF THE BIAS (), STANDARD
(w), AND EXPANDED (U7) UNCERTAINTIES WITH THE M1 OR M2, THE MEAN
AND STANDARD DEVIATION ARE REPORTED

Parameter N=300 N=500 N=900
999.8 1000.1 10001
(ms)
| owms) [ 002£055 | 0.00£051 0.00£0.37
E bwe (ms) | 0.02+042 | 0.00%0.36 0.00 %026
i § Ungc (ms) 2.67 2.10 1.50
§ l; Ui (ms) | 2.64£042 | 2.06+029 155£0.18
E Uvp (mS) | 2.64+036 | 2.05+0.25 1.55+0.15
é Unic (ms) 5.07 398 291
Uwi (ms) | 553+088 | 423062 3134039
Uz (ms) | 5274072 | 4.10%049 3.10+030
SDRR 4497 45.03 44.99
(ms)
bwi (ms) | 0.46£0.65 | 042£0.50 040039
Z | bw(ms) | 041£049 | 039+036 039£028
? Unge () 1.19 0.87 0.67
& 5
25 Ui (ms) | 131£023 | 1.03£0.15 0.75+0.09
“E v (ms) | 132£0.18 | 1.02£0.11 0.76 £ 0.06
é Unic (ms) 241 1.76 132
Uyn (ms) | 2.74+047 | 2.10£030 152£0.17
Uno (ms) | 2.63£037 | 2.04£023 151£0.13
r—mSDD 63.67 63.57 63.66
(ms)
b (mS) | -1.06£0.82 | -1.03£0.66 |  -1.00£0.60
Z [ m(me | 1012056 | 1012046 | 096040
A 5 Ui (ms) 2.49 1.89 145
% i:; Ui (ms) | 2.62£043 | 2.03£029 152£0.18
= E Uz (Ms) | 2.60+£039 | 2.02+024 1.52£0.15
é Unc (ms) 475 3.50 2381
Ui (ms) | 5.50£093 | 4.17+0.64 308 %038
Usz (ms) | 520078 | 4.04%049 3.03£030

III. RESULTS

Table II shows the results for the simulation with uniform white
noise. For the mean RR, M1, M2, and Monte Carlo provide similar
results for the standard uncertainty. Nevertheless, the expanded uncer-
tainty is a little overestimated with M1 and M2. Regarding the uncer-
tainties for SDRR and r-msDD, both standard and expanded uncertain-
ties with M1 and M2 are overestimated by a 10%—20%. The bias in
M1 and M2 is very low for the mean RR, approximately a 1% for the
SDRR and lower than 2% for the r-msDD.

Fig. 4 shows the results for the simulation with autoregressive
models. In the figure, only mean values of the uncertainties and biases
are displayed. The more correlated the samples are (coefficient more
positive), the higher the uncertainty on the mean and the lower the
uncertainty on the r-msDD. The uncertainty for SDRR has a minimum
when the samples are independent. In highly correlated time series,
M1 and M2 have high biases in the estimation of SDRR (nearly a
17% for an AR coefficient of 0.7) while the standard uncertainty of
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Fig. 4. (a) Standard and (b) expanded uncertainty of the three indices obtained
by Monte Carlo simulation and M1 and M2 methods using simulated noninde-
pendent time series (first order autoregressive model) plotted against the autore-
gressive coefficient. (c) Mean value of the bias. The solid line is the result of the
uncertainty computed by the Monte Carlo method, the dashed and dotted line
correspond to the mean values of uncertainty or bias obtained via M1 and M2
respectively.

this index is underestimated. With an AR coefficient of —0.7 the same
problem arises in the estimation of the standard uncertainty of r-msDD
although the bias with M1 and M2 is lower.

Fig. 5 shows the results for the relative standard uncertainty (stan-
dard uncertainty normalized by the value of the index) in the three in-
dices computed for the normal sinus rhythm database. As seen, the un-
certainty for the mean is low but for the SDRR and r-msDD it can be
higher than the 10% of the index. By averaging the results, the mean rel-
ative standard uncertainty for the mean is 1.08% (Range: 0.1%-9.0%),
for the SDRR is 6.27% (Range: 0.81%-22.8%), and for the r-msDD
is 6.98% (Range: 2.11%-24.4%). Note that these uncertainties depend
on N. In this case N = 300, but with the same dynamics of the time
series, a reduction of the number of available samples implies an in-
crease in uncertainty.

Table III shows the results for the 15 comparisons of indices [FB
versus PB]. For each pair of RR time series and index, the two indices,
the interception value, the difference of indices, and the quality factor
are reported. As seen in Table III, only subjects 3, 4, and 5 have signif-
icant changes in the three indices while subjects 7, 10, and 11 have not
noticeable changes in neither index. Nine subjects experience a signif-
icant change in RRean, four subjects in SDRR and seven subjects in
r-msDD. Fig. 6 shows the time series and results (indices =+ standard
uncertainties) for subjects 5 and 10. As seen, the RR time series of sub-
ject 5 is very different when breathing periodically respect to breathing
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Fig. 5. Relative standard uncertainty versus Time domain indices for 10236 RR

time series of the normal sinus rhythm database with 300 samples each. Results
for (a) RR mean, (b) SDRR, and (¢) r-msDD.

at will. Nevertheless, in subject 10, there is no remarkable change in
the studied indices.

IV. DISCUSSION

The described methodology provides a way to estimate the uncer-
tainty in indices obtained from a quantification of RR time series. This
method is not suitable (or applicable in short recordings) for any index
of HRV. For example, spectral indices require a higher number of sam-
ples due to spectral resolution issues. A partial spectrum with 10-30
samples will be very inaccurate. Another example is the estimation of
the Hurst exponent by detrended fluctuation analysis [13]. The method
requires a high number of samples and, in this situation, the assumption
of stationarity does not hold. In this paper, we have dealt with RR time
series with N = 300 (the studies in the normal sinus rhythm database)
or 5 min long (the experiment of free and PB). The study of the uncer-
tainty of indices from 24-h recordings is out of the scope of this paper
because the RR time series is not stationary. Moreover, the assumption
of both M1 and M2 is that the mean of partial indices will be approxi-
mately equal to the index computed in the overall recording. If not, the
index is not consistent and the methodology cannot be applied.

As seen in Fig. 4, M1 and M2 provide underestimated standard un-
certainties of SDRR and r-msDD when the bias is high. The bias can be
estimated for each RR time series by comparing the mean of partial in-
dices and the index computed with all the available samples. This bias
can be employed as another indicator of the quality of the estimation of
the uncertainties. A further study on the bias can reveal ways to correct
the uncertainties in order to avoid this underestimation. Nevertheless,
the need for the correction of the underestimation of the uncertainties
must be in accordance with the accuracy desired for a particular appli-
cation of the index. As an example, if the difference of two indices is
higher than ten times the higher standard uncertainty of both indices
obtained by M1 or M2, it is useless to refine the estimation of the un-
certainties because the result of the test will be that both indices are
statistically different.

This paper provides also some guidance to the computation of the
CI. We rely on the t-Student distribution to obtain such intervals al-
though the normality of the partial indices is not tested. Nevertheless,
the violation of the normal distribution assumption does not signifi-
cantly compromise the results of the test if the distribution has not a
severe skew [14]. The 95th percentile of the absolute sample skewness
of the partial indices involved in the M1 computation for the normal
sinus rhythm database is 1.6 for the mean RR, 2.3 for the SDRR, and
2.2 for the r-msDD while the mean value of the absolute sample skew-
ness is 0.59 for the mean RR, 0.98 for the SDRR, and 0.76 for the
r-msDD. So, we can conclude that the distribution of these partial in-
dices have not a severe skew.

The strategy for the search of sets of independent indices is not
complete. In the proposed approach we have supposed that once the
first block ends at an RR sample, the next block starts just at the next
sample. Of course, some samples can separate successive blocks. In
the proposed method, each block has the same number of RR samples
for simplicity and two methods (M1 and M2) have been suggested in
order to combine the results for the whole set of independent partial
indices. Both methods provide similar standard uncertainties that are
close to the Monte Carlo simulations for independent and correlated
time series. Nevertheless, the Cls are overestimated for independent
data. Maybe another combination of sets can provide a better estima-
tion of the expanded uncertainty.

The proposed method looks quite similar to the block bootstrap
method to obtain the uncertainty of statistical estimators in time series
[15]. Nevertheless, there are several important differences between
them. The block bootstrap computes the index in several blocks with
a certain length that not varies in the computation and has to been
fixed according to an empirical criterion or by fitting the time series
to a model. Moreover, there is no check of the independence of the
obtained partial indices. An expression similar to (3) is employed in
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TABLE III
COMPARISON OF INDICES WHEN BREATHING AT WILL (Ipp) OR BREATHING PERIODICALLY (Ipp ). THE VALUE OF THE INDICES, THE INTERCEPTION VALUE
(IV), THE DIFFERENCE OF INDICES (DI) AND THE QUALITY FACTOR (() 1S REPORTED FOR THE 15 SUBJECTS AND FOR THE MEAN RR, SDRR, AND R-MSDD
INDICES. WHEN IV IS NEGATIVE, () IS REPORTED AS N.S. BECAUSE THERE IS NO SIGNIFICANT DIFFERENCE FOR THE INDEX

# subject (nn) or__Joz__Jo3__Joa Jos o6 Jo7__Jos__Jo9 [0 __Ju_[iz__[13__[14__[15
o~ Irp (ms) 1137 1389 | 823.0 |946.2 |665.7 |937.5 [967.0 [982.9 |[1063 1081 916.6 | 1018 764.7 | 1171 1114
g é Ipp (ms) 1193 1284 | 875.6 |891.3 |738.8 |832.0 [959.6 [997.5 |1037 1069 [916.2 [939.7 | 804.6 | 1075 1088
1V (ms) 9.91 42.7 19.0 24.6 57.0 79.1 -30.8 | -40.1 -10.5 | -32.1 -44.1 1489 |19.5 66.0 -6.53
DI (ms) 55.7 104.7 | 52.6 5991 |73.04 |1055 [7.37 14.6 26.4 114 0.35 78.7 3991 963 254
[o] 0.37 0.53 0.50 0.55 0.80 0.78 n.s. n.s. n.s. n.s. n.s. 0.38 0.58 0.73 n.s.
&~ Irp (ms) 1232 |139.8 |52.90 |75.92 |23.57 [101.8 |852 84.97 | 679 82.8 111.8 | 1348 |3292 |715 69.3
ZE [lwms) [1362 [1488 [80.15 [1004 5045 [87.73 |844 [0601 [99.5 [957 [1097 [137.7 |38.68 |689 |623
@ V(ms) [-152 |-300 [12.0 768 [25.04 |-752 |-152 |-897 [122 [-91 [-209 |-256 |-1.72 |-141 |-1LI
DI (ms) 13.0 9.04 27.2 244 35.88 | 14.10 | 0.85 11.05 | 31.6 129 2.09 2.86 5.76 2.54 6.97
n.s. n.s. 0.55 0.46 0.74 n.s. ns. n.s. 0.51 n.s. n.s. n.s. n.s. ns. n.s.
8 - I (ms) 139.6 | 150.1 |33.99 |68.83 [16.27 [100.1 |62.2 52.05 | 66.2 80.1 86.2 1143 [22.60 |83.7 55.7
2 E Ipg (Ms) 1494 |170.8 [73.79 [89.99 |45.60 [77.8 74.6 84.5 91.4 89.1 103.8 | 1323 |31.09 |583 58.3
& 1V (ms) 212 [-209 [21.96 |3.73 19.5 -4.14 | -3.13 14.5 7.58 -9.91 920 |-16.8 |1.48 4.15 -13.9
DI (ms) 9.80 20.7 39.81 [21.17 [293 223 1247 325 25.3 9.05 17.7 18.0 8.49 25.5 2.55
o] n.s. n.s. 0.63 0.37 0.71 n.s. n.s. 0.55 0.45 ns. n.s. n.s. 0.36 0.36 n.s.
1000 ' ' ' : T T : i indices and test different block lengths (). If an interval has been
} P8 employed in the computation of a partial index, this interval can not
9501 i Mean:738.8 +/- 4.7 ms 4 . S
! SDRR: 59.45 +/- 4.24 ms be employed for the computation of another partial index. Moreover,
E r-msDD: 45.60 +/- 4-07Fr?35 n changes in order to find sets that have the lowest IF.
S00r E Mean: 665.7 +/- 3.4 ms Regarding M2, an incidence is reported if no set with IF lower than
i SDRR: 23.57 +/- 1.17 ms 1 has been found. In the case of periodic and FB no incidence has been
850 |- 1 r-msDD: 16.27 +/- 0.86 ms-{ . .
T HE reported (the measurements where obtained with a controlled exper-
— n . . . .
2 800 éi i s g imental setup). The analysis of the normal sinus rhythm database is
g :E H E H different because the RR time series are obtained from Holter moni-
i [ . . . . o .
750 ;ﬂi i 1l i toring. In this case, 24% of the RR time series reported incidence in
i ﬁ the computation of the uncertainty of the mean, 3% in the computa-
700 i i tion of the uncertainty of the SDRR and 5% in the computation of the
‘ r-msDD. Nevertheless, the uncertainties obtained when incidences are
650 | present do not differ from uncertainties obtained without incidences
(the two groups, with and without incidence, form “clouds” in Fig. 5
600 . . . . \ . . that overlap and cannot be separated)
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# samples
V. CONCLUSION
a L . . .
@ A methodology for estimating the uncertainty of some time domain
1300 indices of RR time series has been presented. For the uncertainty calcu-
lation, the time series must come from independent observations and its
1200- | stationarity is necessary. In order to check the independence, a strategy
for choosing independent sets of indices has been designed. Two dif-
11008 4 TEY: | ferent methods based on the value of an independence factor have been
it A -i' A employed in order to assess the uncertainty of the indices. The method-
1 "1 . . . . .
1000 ? - u 1 Pl 4 ology has been applied to artificial independent and dependent time se-
{1 ! . .
N ii 1 i u ries in order to test the methodology goodness. The same methodology
E o0} ' g E § has been applied to several records of Normal Sinus Rhythm Database
& H ! obtaining the values of the indices uncertainties in healthy subjects. We
800} \ . have found that the SDRR and r-msDD uncertainties can be higher than
EB: PB: the 10% of the index.
700} Mean: 1081 +/- 12 ms Mean: 1069 +/- 10 ms g We have also presented a method to decide if two indices are sta-
SDRR: 82.8 +/-4.7 ms SDRR: 95.7 +/- 6.3 ms tistically different, by using a quality factor Q calculated from the dif-
goof "msDD: 80.1+/-4.3ms #msDD: 89.1 +/-5.2 ms ference and CI of both indices. We have applied this methodology to
the separation of indices of RR time series of the same subject when
500 1 L 1 L 1 1 2 - - 3 -
0 50 100 150 200 250 300 breathmg at will and w1.th PB. We havej founc.i that the changes in in
# samples dices depend on the subject and on the index itself.
(b)

Fig. 6. Example of comparison of indices: The RR time series and indices £
standard uncertainties for subjects (a) 05 and (b) 10 in the analysis of the effect
of the breathing pattern are displayed. The solid line corresponds to the RR time
series while FB and the dashed line corresponds to the RR time series while PB.

order to obtain the uncertainty. Moreover, the blocks can repeat some
intervals. In our approach we test the independence of the partial
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Selective Activation of Distant Nerve by Surface
Electrode Array

Hirokazu Takahashi*, Masayuki Nakao, and Kimitaka Kaga

Abstract—Neural prostheses for restoring lost functions can benefit from
selective activation of nerves with limited number and density of electrodes.
Here, we show by simulations and animal experiments that multipoint si-
multaneous stimulation with a surface electrode array can selectively acti-
vate nerves in a bundle at a desired location in between the array or at a
desired depth, which are referred to as lateral or depth-wise gating stimula-
tion, respectively. The stimulation broadly generates action potentials with
cathodic source electrodes, and simultaneously blocks unnecessary prop-
agation with downstream anodic gate electrodes. In general, stimulation
with a small diameter electrode can affect a nearly hemispherical region,
while a large electrode is effective at a more vertically compressed region,
i.e., a surface of nerve bundle. The gating stimulation takes advantage of the
size effects by utilizing an asymmetrical electrode array. The array of the
lateral gating stimulation is designed to have four electrodes; a pair of large
source electrodes and a pair of small gate electrodes. The depth-wise gating
stimulation array consists of two electrodes; a large gate and small source
electrodes. The simulation first demonstrated that appropriate combina-
tion of currents at the source and gate electrodes can change recruitment
patterns of nerves with lateral or depth-wise selectivity as desired. We then
applied the lateral gating stimulation on the rat spinal cords and obtained
a preliminary support for the feasibility.

Index Terms—Extracellular stimulation, functional electrical stimula-
tion (FES), neural prosthesis, , rat, spinal cord.

I. INTRODUCTION

Electrical stimulation with an implanted electrode array can restore
some sensory and motor functions [1]-[5]. To increase the prosthetic
functions, a large number of nerves must be selectively activated,
which in turn may cause complicated implantation and maintenance
of a large number of electrodes. Conventional prostheses exclusively
activate nerves confined around the electrode, and thereby the per-
formance largely depends on the location and configuration of the
electrode array [6]-[11]. In these neural prostheses, therefore, precise
and selective nerve activation with limited number and density of
electrodes would be ideal. In this paper, we propose a novel stimula-
tion technique named multipoint “gating stimulation,” which utilizes
the combined effects of anodic and cathodic stimulation, and allows
a surface electrode array to selectively activate nerves at a desired
location in between the array or at a desired depth beneath the array.

Previous work empirically investigated how axons reacted to extra-
cellular stimuli [8], and mathematically modeled the reaction [9]-[11].
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