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Abstract

We give a formal definition of a new product of bipartite digraphs, the Manhat-
tan product, and we study some of its main properties. It is shown that if all the
factors of the above product are (directed) cycles, then the digraph obtained is the
Manhattan street network. To this respect, it is proved that many properties of these
networks, such as high symmetries and the presence of Hamiltonian cycles, are shared
by the Manhattan product of some digraphs. Moreover, we prove that the Manhattan
product of two Manhattan streets networks is also a Manhattan street network. Also,
some necessary conditions for the Manhattan product of two Cayley digraphs to be
again a Cayley digraph are given.

1 Introduction

The 2-dimensional Manhattan street network M2 was introduced simultaneously, in dif-
ferent contexts, by Morillo et al. [9] and Maxemchuk [8] as an unidirectional regular mesh
structure resembling locally the topology of the avenues and streets of Manhattan (or
l’Eixample in downtown Barcelona). In fact, M2 has a natural embedding in the torus
and it has been extensively studied in the literature as a model of interconnection net-
works. For instance, its average distance has been computed by Khasnabish [7] and Chung
and Agrawal [3], the generation of routing schemes by Maxemchuk [8]. Moreover, Chung
and Agrawal [3] gave its diameter. Varvarigos [10] evaluated again the mean internodal
distance and provided a shortest path routing algorism and some Hamiltonian properties.

Recall that a digraph G = (V,A) consists of a set of vertices V , together with a set of
arcs A, which are ordered pairs of vertices, A ⊂ V ×V = {(u, v) : u, v ∈ V }. An arc (u, v)
is usually depicted as an arrow with tail u (initial vertex) and head v (end vertex), that
is, u→ v. The indegree δ−(u) (respectively, outdegree δ+(u)) of a vertex u is the number
of arcs with tail (respectively, head) u. Then G is δ-regular when δ−(u) = δ+(u) = δ

for every vertex u ∈ V . Given a digraph G = (V,A), its converse digraph G = (V,A)
is obtained from G by reversing all the orientations of the arcs in A, that is, (u, v) ∈ A

if and only if (v, u) ∈ A. The standard definitions and basic results about graphs and
digraphs not defined here can be found in [1, 2, 11].

In this paper, we first recall the definition and some of the properties of the Manhattan
street network (where the Manhattan product takes its name from). Afterwards we intro-
duce the Manhattan product of (bipartite) digraphs. It is shown that when all the factors
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are (directed) cycles, then the obtained digraph is just the Manhattan street network.
Moreover, we prove that the Manhattan product of two Manhattan streets networks is
also a Manhattan street network. It is proved that many properties of these networks,
such as high symmetries and the presence of Hamiltonian cycles, are shared by the Man-
hattan product of some digraphs. We also investigate when the Manhattan product of
two Cayley digraph is again a Cayley digraph and characterize the corresponding group.

2 Manhattan street networks

In this section, we recall the definition and some basic properties [4, 5] of a class of toroidal
directed networks, commonly known as Manhattan street networks.

Given n even positive integers N1, N2, . . . , Nn, the n-dimensional Manhattan street

network Mn = M(N1, N2, . . . , Nn) is a digraph with vertex set V (Mn) = ZN1 × ZN2 ×
· · · × ZNn . Thus, each of its vertices is represented by an n-vector u = (u1, u2, . . . , un),
with 0 ≤ ui ≤ Ni − 1, i = 1, 2, . . . , n. The arc set A(Mn) is defined by the following
adjacencies (here called i-arcs):

(u1, . . . , ui, . . . , un) → (u1, . . . , ui + (−1)
P

j 6=i uj , . . . , un) (1 ≤ i ≤ n). (1)

Therefore, Mn is an n-regular digraph on N =
∏n
i=1Ni vertices.

The properties of Mn are the following:

• Homomorphism: There exist an homomorphism from Mn to the symmetric digraph
of the hypercube Q∗

n, so that Mn is both 2n-partite and bipartite digraph.

• Vertex-symmetry: The n-dimensional Manhattan street network Mn is a vertex-
symmetric digraph.

• Line digraph: For any N1, N2, the 2-dim Manhattan street network M2(N1, N2) is
a line digraph.

• Diameter: For Ni > 4, the diameter of the n-dim Manhattan street network
Mn = M(N1, N2, . . . , Nn), i = 1, 2, . . . , n, is

(a) D(Mn) = 1
2

∑n
i=1Ni + 1, if Ni ≡ 0 (mod 4) for any 1 ≤ i ≤ n;

(b) D(Mn) = 1
2

∑n
i=1Ni, otherwise.

• Hamiltonicity: The n-dimensional Manhattan street network Mn is Hamiltonian.

3 The Manhattan product and its basic properties

In this section, we present an operation on (bipartite) digraphs which, as a particular
case, gives rise to a Manhattan street network. With this aim, let Gi = (Vi, Ai) be n
bipartite digraphs with independent sets Vi = Vi0 ∪ Vi1, Ni = |Vi|, i = 1, 2, . . . , n. Let π
be the characteristic function of Vi1 ⊂ Vi for any i; that is,

π(u) =

{

0 if u ∈ Vi0,

1 if u ∈ Vi1.

Then, the Manhattan product Mn = G1 ‖≡G2 ‖≡ · · · ‖≡Gn is the digraph with vertex set
V (Mn) = V1 × V2 × · · · × Vn, and each vertex (u1, . . . , ui, . . . , un) is adjacent to vertices
(u1, . . . , vi, . . . , un), 1 ≤ i ≤ n, when
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Figure 1: The Manhattan product Cay(Z6, {1, 3}) ‖≡K
∗
2 (undirected lines stand for pairs

of arcs in opposite directions).

• vi ∈ Γ+(ui) if
∑

j 6=i π(uj) is even,

• vi ∈ Γ−(ui) if
∑

j 6=i π(uj) is odd.

Fig. 1 shows an example of the Manhattan product of the circulant digraph on 6
vertices and steps 1 and 3 (in other words, the Cayley digraph on Z6 with generating set
{1,3}) by the symmetric complete digraph on 2 vertices, K∗

2 .
Thus, if every Gi is δi-regular, then Mn is a δ-regular digraph, with δ =

∑n
i=1 δi, on

N =
∏n
i=1Ni vertices.

Some of the basic properties of the Manhattan product, which are a generalization of
the properties of the Manhattan street networks given in [4], are presented in the following
proposition:

Proposition 3.1. The Manhattan product H = G1 ‖≡G2 ‖≡· · · ‖≡Gn satisfies the following

properties:

(a) The Manhattan product holds the associative and commutative properties.

(b) There exists an homomorphism from H to the symmetric digraph of the hypercube

Q∗
n. Therefore, H is a bipartite and 2n-partite digraph.

(c) For any n − k fixed vertices xi ∈ Vi, i = k + 1, k + 2, . . . , n, the subdigraph of H

induced by the vertices (u1, u2, . . . , uk, xk+1, . . . , xn) is either the Manhattan product

Hk = G1 ‖≡G2 ‖≡· · · ‖≡Gk or its converse Hk, depending on if α :=
∑n

i=k+1 π(xi) is

even or odd, respectively.

(d) If each Gi, i = 1, 2, . . . , n, is isomorphic to its converse, then H also is.

P roof. We only prove the properties (b) and (d) because the others can be proved
similarly as those of the Manhattan street network in [4].

(b) The homomorphism from H to Q∗
n is

(u1, u2, . . . , un) → (π(u1), π(u2), . . . , π(un)),

which transform each vertex of H in a binary n-string or as its image vertex in Q∗
n.

(d) As the Manhattan product is associative, we only need to deal with the case H =
G1 ‖≡ G2. Since, Gi ∼= Gi by hypothesis, there exist isomorphisms ψi, such that

3



Γ±
Gi

(ψi(ui)) = ψi(Γ
∓
Gi

(ui)), for all ui ∈ Vi. As ψi is a mapping between stable sets,

the parity π in Gi can be defined in such a way that π(ui) is even if and only if
π(ψi(ui)) is also even. Then, the mapping Ψ defined in H as

Ψ(u1, u2) := (ψ1(u1), ψ2(u2))

is the automorphism from H to its converse H. Indeed, assuming that, for instance,
π(u1), π(u2) are even, we have

Ψ
(

Γ+
H(u1, u2)

)

= Ψ
(

Γ+
G1

(u1), u2

)

∪ Ψ
(

u1,Γ
+
G2

(u2)
)

=
(

ψ1(Γ
+
G1

(u1)), ψ2(u2)
)

∪
(

ψ1(u1), ψ2(Γ
+
G2

(u2))
)

=
(

Γ−
G1

(ψ1(u1)), ψ2(u2)
)

∪
(

ψ1(u1),Γ
−
G2

(ψ2(u2))
)

= Γ−
H

(

ψ1(u1), ψ2(u2)
)

= Γ−
H

(

Ψ(u1, u2)
)

.

The other cases, which correspond to other parities of π(u1) and π(u2), can be
proved similarly.

�

As an example of a Manhattan product satisfying the property 3.1(e), see again Fig. 1.

4 The Manhattan product and the Manhattan street net-

works

In this section we show the relationship between the digraphs obtained by the Manhattan
product and the Manhattan street networks.

Proposition 4.1. The Manhattan product of directed cycles with an even order Ni is a

Manhattan street network. More precisely, if Gi = CNi
, then

CN1 ‖≡CN2 ‖≡· · · ‖≡CNn = M(N1, N2, . . . , Nn).

P roof. Each cycle CNi
has set of vertices Vi = ZNi

, and adjacencies Γ+(ui) =
{ui + 1 (modNi)} and Γ−(ui) = {ui − 1 (modNi)}, such that Vi0 and Vi1 are the sets of
even and odd vertices, respectively. Thus, the set of vertices in the Manhattan product
of directed cycles is ZN1 ×ZN2 ×· · ·×ZNn and each vertex (u1, . . . , ui, . . . , un) is adjacent
to the vertices (u1, . . . , vi, . . . , un), 1 ≤ i ≤ n, when

• vi = ui + 1 iff
∑

j 6=i π(uj) is even and, hence,
∑

j 6=i uj is also even,

• vi = ui − 1 iff
∑

j 6=i π(uj) is odd and, hence,
∑

j 6=i uj is also odd,

which corresponds to the definition of the Manhattan street network. �

Another expected result of the Manhattan product is the following:

Proposition 4.2. The Manhattan product of two Manhattan street networks is a Manhat-

tan network. More precisely, if M1 = M(N1
1 , N

1
2 , . . . , N

1
n1

) and M2 = M(N2
1 , N

2
2 , . . . , N

2
n2

),
then

M1 ‖≡M2 = M,

where M = M(N1
1 , . . . , N

1
n1
, N2

1 , . . . , N
2
n2

).
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P roof. Both M1 and M2 are bipartite digraphs with vertex sets V α = ZNα
1
×ZNα

2
×

· · · × ZNα
nα

, α = 1, 2; whereas M1 ‖≡M2 has vertex set V = V 1 × V 2. Let V (M) be the
vertex set of M . Then, we claim that the natural mapping Ψ : V → V (M), defined
by Ψ(u1,u2) = (u1

1, . . . , u
1
n1
, u2

1, . . . , u
2
n2

) is an isomorphism between the corresponding
digraphs. In proving this, let V α

0 and V α
1 be the stable sets ofMα constituted, respectively,

by the vertices uα = (uα1 , . . . , u
α
nα

) whose sum of components
∑nα

k=1 u
α
k is even or odd.

With this convention, each vertex (u1,u2) of the Manhattan productM1 ‖≡M2 is adjacent
to the vertices (v1,u2) and (u1,v2) where, for the first ones,

• v1 ∈ Γ+(u1) (in M1) if π(u2), and hence
∑n2

k=1 u
2
k, is even;

• v1 ∈ Γ−(u1) (in M1) if π(u2), and hence
∑n2

k=1 u
2
k, is odd.

In the first case,

(v1,u2)
Ψ

−→ (u1
1, . . . , u

1
i + (−1)

P
j 6=i u

1
j , . . . , u1

n1
, u2

1, . . . , u
2
n2

)

= (u1
1, . . . , u

1
i + (−1)

P
j 6=i u

1
j+
Pn2

k=1 u
2
k , . . . , u1

n1
, u2

1, . . . , u
2
n2

) (1 ≤ i ≤ n1).

Analogously, in the second case,

(v1,u2)
Ψ

−→ (u1
1, . . . , u

1
i − (−1)

P
j 6=i u

1
j , . . . , u1

n1
, u2

1, . . . , u
2
n2

)

= (u1
1, . . . , u

1
i + (−1)

P
j 6=i u

1
j+
Pn2

k=1 u
2
k , . . . , u1

n1
, u2

1, . . . , u
2
n2

) (1 ≤ i ≤ n1).

Altogether, we obtain the vertices adjacent to Ψ(u1,u2) = (u1
1, . . . , u

1
n1
, u2

1, . . . , u
2
n2

) in
M (through all the i-arcs, 1 ≤ i ≤ n1). The adjacencies through the other i-arcs,
n1 + 1 ≤ i ≤ n1 + n2 come from the vertices (u1,v2). �

The result of the above proposition can be seen as a corollary of the proposition 4.1
and the associative property. Indeed,

M1 ‖≡M2 = M(N1
1 , N

1
2 , . . . , N

1
n1

) ‖≡M(N2
1 , N

2
2 , . . . , N

2
n2

)

= (C1
N1

‖≡C1
N2

‖≡· · · ‖≡C1
Nn1

) ‖≡(C2
N1

‖≡C2
N2

‖≡· · · ‖≡C2
Nn2

)

= C1
N1

‖≡C1
N2

‖≡· · · ‖≡C1
Nn1

‖≡C2
N1

‖≡C2
N2

‖≡· · · ‖≡C2
Nn2

= M(N1
1 , N

1
2 , . . . , N

1
n1
, N2

1 , N
2
2 , . . . , N

2
n2

) = M.

5 Symmetries

In this section we study the symmetries of the digraphs obtained by the Manhattan
product.

Proposition 5.1. Let Gi be vertex-symmetric digraphs such that they are isomorphic to

their converses, i = 1, 2, . . . , n. Then, the Manhattan product H = G1 ‖≡G2 ‖≡ · · · ‖≡Gn is

vertex-symmetric.

P roof. As before, let Gi = (Vi, Ai) be digraphs with Vi = Vi0 ∪ Vi1, i = 1, 2, . . . , n.
First, we show that there exists an automorphism Φ in H, which transforms a ver-

tex (u1, u2, . . . , un) into a vertex (v1, v2, . . . , vn), such that ui, vi ∈ Viji , for each i ∈
{1, 2, . . . , n} and some ji ∈ {0, 1} (that is, both components ui, vi are in the same stable
set). By hypothesis, there exist automorphisms φi in Gi, Γ+

Gi
(φi(wi)) = φi(Γ

+
Gi

(wi)), for
every wi ∈ Vi, such that φi(ui) = vi. Then, we define

Φ(w1, w2, . . . , wn) := (φ1(w1), φ2(w2), . . . , φn(wn)).
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Then, assuming that
∑

j 6=i π(wj) is even and, hence,
∑

j 6=i π(φj(wj)) is also even, we have

Φ
(

Γ+
H(w1, . . . , wi, . . . , wn)

)

= Φ
(

w1, . . . ,Γ
+
Gi

(wi), . . . , wn
)

=
(

φ1(w1), . . . , φi(Γ
+
Gi

(wi)), . . . , φn(wn)
)

=
(

φ1(w1), . . . ,Γ
+
Gi

(φi(wi)), . . . , φn(wn)
)

= Γ+
H

(

φ1(w1), . . . , φi(wi), . . . , φn(wn)
)

= Γ+
H

(

Φ(w1, . . . , wi, . . . , wn)
)

,

which proves that Φ is an automorphism. The proof is similar for
∑

j 6=i π(wj) odd, by

using Γ−
Gi

(φi(wi)) = φi(Γ
−
Gi

(wi)).
Moreover, we need an automorphism Ψ, which transforms a vertex (u1, . . . , ui, . . . , un)

into a vertex (v1, . . . , vi, . . . , vn), such that, for k 6= i, uk, vk ∈ Vkjk as before, while ui
and vi belong to different stable sets, for example, ui ∈ Vi0 and vi ∈ Vi1. In this case, the
automorphism Ψ is built up in the following way. As each Gi is isomorphic to its converse,
there exist automorphisms ψk, with k 6= i, from Gk to Gk, Γ+

Gk
(ψk(wk)) = ψk(Γ

−
Gk

(wk)),
for every wk ∈ Vk, such that ψk(uk) = vk; and ψi = φi (as in the first case). Then, we
define Ψ as

Ψ(w1, . . . , wi, . . . , wn) := (ψ1(w1), . . . , ψi(wi), . . . , ψn(wn)).

Let us now assume that k = 1 6= i and that
∑

j 6=1 π(wj) is even, so that, π(φi(wi)) +
∑

j 6=1,i π(ψj(wj)) is odd. Then, we have

Ψ
(

Γ+
H(w1, . . . , wi, . . . , wn)

)

= Ψ
(

Γ+
G1

(w1), . . . , wi, . . . , wn
)

=
(

ψ1(Γ
+
G1

(w1)), . . . , φi(wi), . . . , ψn(wn)
)

=
(

Γ−
G1

(ψ1(w1)), . . . , φi(wi), . . . , ψn(wn)
)

= Γ+
H

(

ψ1(w1), . . . , φi(wi), . . . , ψn(wn)
)

= Γ+
H

(

Ψ(w1, . . . , wi, . . . , wn)
)

.

Thus, Ψ is an automorphism. For the case
∑

j 6=1 π(wj) odd, the proof is similar, using

Γ−
Gk

(ψk(wk)) = ψk(Γ
+
Gk

(wk)). On the other hand, the case k = i is proved as before, be-
cause assuming that

∑

j 6=i π(wj) is even, then
∑

j 6=i π(ψj(wj)) is also even. This completes
the proof. �

6 Cayley digraphs and the Manhattan product

In this section we investigate when the Manhattan product of Cayley digraphs of is
again a Cayley digraph. This generalizes the case studied in [4, 5] of Manhattan street
networks, where the factors of the product are directed cycles (see Prop. 4.1), that is,
Cayley digraph of the cyclic groups. Because of the associative property of such product
(see Prop. 3.1(a)), we only need to study the case of two factors.

Theorem 6.1. Let G1 = Cay(Γ1,∆1) be a bipartite Cayley digraph of the group Γ1 with

generating set ∆1 = {a1, . . . , ap} and set of generating relations R1, such that there exists

a group automorphism ψ1 satisfying ψ1(ai) = a−1
i , for i = 1, . . . , p. Let G2 = Cay(Γ2,∆2)

be the bipartite Cayley digraph of the group Γ2 with generating set ∆2 = {b1, . . . , bq} and

set of generating relations R2, such that there exists a group automorphism ψ2 satisfying

ψ2(bj) = b−1
j , for j = 1, . . . , q. Then, the Manhattan product H = G1 ‖≡G2 is the Cayley

digraph of the group

Γ = 〈α1, . . . , αp, β1, . . . , βq|R
′
1, R

′
2, (αiβj)

2 = (αiβ
−1
j )2 = 1〉, i 6= j, (2)
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where R′
1 is the same set of generating relations as R1 changing ai by αi (and similarly

for R′
2).

P roof. Since for every u1 ∈ Γ1 and i = 1, . . . , p

ψ1(u1ai) = ψ(u1)ψ(ai) = ψ(u1)a
−1
i ,

then ψ1 is an (involutive) isomorphism for G1 to G1 preserving colors. The same holds
for ψ2 and G2. Moreover, since G1, G2 are vertex-symmetric, Proposition 5.1 applies and
H is also vertex-symmetric.

In fact, we will see that its automorphism group contains a regular subgroup. With
this aim, note first that, by using the above automorphisms, we have the following natural
way of defining the adjacencies of H (with “colors” denoted by αi, 1 ≤ i ≤ p, and βj ,
1 ≤ j ≤ q):

(u1, u2)
αi-arc−→ (u1, u2) ∗ αi =

(

u1ψ
π(u2)
1 (ai), u2

)

,

(u1, u2)
βj-arc
−→ (u1, u2) ∗ βj =

(

u1, u2ψ
π(u1)
2 (bj)

)

.

Let us now prove that the mappings φ1i, φ2j , for 1 ≤ i ≤ p and 1 ≤ j ≤ q, defined by

φ1i(u1, u2) = (aiu1, ψ2(u2)),

φ2j(u1, u2) = (ψ1(u1), bju2),

are all color-preserving isomorphisms of H. Indeed, for all 1 ≤ i, j ≤ p we have

φ1i

(

(u1, u2) ∗ αj
)

= φ1i

(

u1ψ
π(u2)
1 (aj), u2

)

=
(

aiu1ψ
π(u2)
1 (aj), ψ2(u2)

)

=
(

aiu1ψ
π(ψ2(u2))
1 (aj), ψ2(u2)

)

=
(

aiu1, ψ2(u2)
)

∗ αj

= φ1i(u1, u2) ∗ αj ,

where we have used that π(u2) = π(ψ2(u2)) because u2 can be expressed as the product
of the generators bj and π(bj) = π(ψ2(bj)) = π(b−1

j ) for all 1 ≤ j ≤ q. Moreover, for all
1 ≤ i ≤ p, 1 ≤ j ≤ q, we also have

φ1i

(

(u1, u2) ∗ βj
)

= φ1i

(

u1, u2ψ
π(u1)
2 (bj)

)

=
(

aiu1, ψ2(u2)ψ
π(u1)+1
2 (bj)

)

=
(

aiu1, ψ2(u2)ψ
π(aj ·u1)
2 (bj)

)

=
(

aiu1, ψ2(u2)
)

∗ βj

= φ1i(u1, u2) ∗ βj ,

Similarly, we obtain

φ2i

(

(u1, u2) ∗ αj
)

= φ2i(u1, u2) ∗ αj , 1 ≤ i ≤ q, 1 ≤ j ≤ p

φ2i

(

(u1, u2) ∗ βj
)

= φ2i(u1, u2) ∗ βj , 1 ≤ i, j ≤ q.

To see that the permutation group Γ = 〈φ1i, φ2j |1 ≤ i ≤ p, 1 ≤ j ≤ q〉 acts transitively
on Γ1 × Γ2, that is, the vertex set of H, it is enough to show that any vertex (u1, u2) can
be mapped into vertex (e1, e2) (where e1 and e2 stand for the identity elements of Γ1 and
Γ2, respectively) since, as it was mentioned above, H is vertex-symmetric.

7



To this end, as ∆1 is a generating set, u−1
1 can be expressed in the form, say, u−1

1 =
ai1ai2 · · · air . Then,

φ1i1φ1i2 · · ·φ1ir(u1, u2) =
(

ai1ai2 · · · air , ψ
r
2(u2)

)

=
(

e1, ψ
r
2(u2)

)

= (e1, v2),

where v2 = u
(−1)r

2 is either u2 or u−1
2 according to the parity of r. In any case, as ∆2 is

also a generating set, the inverse of this element can be written as, say, v−1
2 = bj1bj2 · · · bjs .

Then,

φ2j1φ2j2 · · ·φ2js(e1, v2) =
(

ψs1(e1), e2
)

= (e1, e2),

as claimed.
Thus, the group Γ is a regular subgroup of the automorphism group of H and the

Manhattan product is a Cayley digraph of Γ with generators αi ≡ φ1i and βj ≡ φ2j .
Regarding the structure of Γ, let us check only one of the defining relations in (2), as the
others can be proved similarly.

(φ1iφ2j)
2(u1, u2) = φ1iφ2jφi1φ2j(u1, u2)

= φ1iφ2jφ1i

(

ψ1(u1), bju2

)

= φ1iφ2j

(

aiψ1(u1), b
−1
j ψ2(u2)

)

= φ1i

(

a−1
i ψ2

1(u1), ψ2(u2)
)

=
(

ψ2
1(u1), ψ

2
2(u2)

)

= (u1, u2).

�

This result can be compared with the well-known following one [11]: If G1 and G2 are,
respectively, Cayley digraphs of the groups Γ1 = 〈a1, . . . , ap|R1〉 and Γ2 = 〈b1, . . . , bq|R2〉,
then its direct product G1�G2 is the Cayley digraph of the group

Γ = Γ1 × Γ2 = 〈α1, . . . , αp, β1, . . . , βq|R
′
1, R

′
2, αiβj = βjαi〉.

As an example of direct product of Cayley digraphs, see Fig. 2, to be compared with
Fig. 1.

7 An alternative definition

When each of the factors Gi of the Manhattan product has a polarity, that is, there
exists an involutive automorphism from Gi to Gi, we can give the following alternative
definition.

Proposition 7.1. Let ψi be an involutive automorphism from Gi to Gi, for i = 1, 2, . . . , n.
Then, the Manhattan product H = G1 ‖≡ G2 ‖≡ . . . ‖≡ Gn is the digraph with vertex set

V (Mn) = ZN1 × ZN2 × · · · × ZNn and the following adjacencies (i = 1, 2, . . . , n):

(u1, u2, . . . , ui, . . . , un)  (ψ1(u1), ψ2(u2), . . . , vi, . . . , ψn(un)),

where vi ∈ Γ+(ui).
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Figure 2: The direct product Cay(Z6, {1, 3})�K
∗
2 (undirected lines stand for pairs of arcs

in opposite directions).

P roof. For the sake of simplicity, we respectively write the adjacencies of the first
definition and the alternative one as (i = 1, 2, . . . , n):

(u1, . . . , ui, . . . , un) →
(

u1, . . . ,Γ
(−1)

P
j 6=i π(uj)

(ui), . . . , un
)

, (3)

(u1, . . . , ui, . . . , un)  
(

ψ1(u1), . . . ,Γ
+(ui), . . . , ψn(un)

)

, (4)

where Γ+1 ≡ Γ+ and Γ−1 ≡ Γ−.
The isomorphism from the first definition to the alternative one is:

Φ(u1, . . . , ui, . . . , un) =
(

ψ

P
j 6=1 π(uj)

1 (u1), . . . , ψ
P

j 6=i π(uj)

i (ui), . . . , ψ
P

j 6=n π(uj)
n (un)

)

.

Indeed, let us see that this mapping preserves the adjacencies. First, by (3), we have

Φ
(

Γ+(u1, . . . , ui, . . . , un)
)

=
(

ψ

P
j 6=1 π(uj)+1

1 (u1), . . . , ψ
P

j 6=1 π(uj)

i

(

Γ(−1)
P

j 6=i π(uj)

(ui)
)

, . . . , ψ

P
j 6=1 π(uj)+1

n (u1)
)

. (5)

Whereas, by (4), we have

Γ+
(

Φ(u1, . . . , ui, . . . , un)
)

=
(

ψ

P
j 6=1 π(uj)+1

1 (u1), . . . ,Γ
+
(

ψ

P
j 6=i π(uj)

i (ui)
)

, . . . , ψ

P
j 6=n π(uj)+1

n (un)
)

. (6)

To check that the i-th entry in (5) and (6) represents the same set, we distinguish two
cases:

• If
∑

j 6=i π(uj) = α is an even number, then ψαi = Id (as ψi is involutive) and

Id
(

Γ+(ui)
)

= Γ+
(

Id(ui)
)

.

• If
∑

j 6=i π(uj) = β is an odd number, then ψ
β
i = ψi and ψi

(

Γ−(ui)
)

= Γ+
(

ψi(ui)
)

(as ψi is an automorphism from Gi to Gi) .

�

In the case of the Manhattan street network Mn, Gi = Ci (Prop. 4.1). Then, a
simple way of choosing the involutive automorphisms is ψi(ui) = −uimodNi (in fact,
it is readily checked that any isomorphism from Ci to Ci is involutive). That gives the
following definition of Mn [4, 5]: The Manhattan street network Mn = Mn(M1, . . . ,Mn)
is the digraph with vertex set ZN1 × · · · × ZNn and the adjacencies

(u1, . . . , ui, . . . , un)  (−u1, . . . , ui + 1, . . . ,−un) (1 ≤ i ≤ n).
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G2

G2
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. . .

Figure 3: A Hamiltonian cycle in the Manhattan product G1 ‖≡G2.

8 Hamiltonian Cycles

Next we give a result on the Hamiltonicity of the Manhattan product of two digraphs
with Hamiltonian paths, as a generalization of a theorem in [4, 5] about the Hamiltonicity
of the Manhattan street network.

Theorem 8.1. If G1 and G2 have both a Hamiltonian path, then their Manhattan product

H = G1 ‖≡G2 is Hamiltonian.

P roof. We use the same idea as in the proof of Theorem 5.1 in [4], which allows
to construct a Hamiltonian cycle in H, from the Hamiltonian paths in G1 and G2, say
1 → 2 → · · · → N1 and 1′ → 2′ → · · · → N2 respectively. With this aim, we appropriately
joint N2 Hamiltonian paths (some of them without an arc) of N2 subdigraphs isomorphic
to G1 or G1 (see Prop. 3.1(c)). Such paths are joined by using three copies of the
Hamiltonian path (two of them with alternative arc removed) of subdigraphs isomorphic
to G2 or G2. See the selfexplanatory Fig. 3. �

References

[1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer
Monographs in Mathematics, Springer, London, 2003.

[2] G. Chartrand, L. Lesniak, Graphs & Digraphs,, Chapman and Hall, London (1996),
third edition.

[3] T.Y. Chung, D.P. Agrawal, Design and analysis of multidimensional Manhattan Street
Networks, IEEE Trans. Commun. 41 (1993), 295–298.
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