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Abstract
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1 Introduction

In 1958 the International Congress of Mathematicians was held in Edinburgh, Scot-
land, where for the first time L. S. Pontryagin talked publicly about the Maximum
Principle. This Principle is considered as an outstanding achievement of the Optimal
Control Theory. It has been used in a wide range of applications, such as medicine,
traffic flow, robotics, economy, etc. Nevertheless, it is worth remarking that the Max-
imum Principle does not give sufficient conditions to compute an optimal trajectory;
it only provides necessary conditions. Thus only candidates to be optimal trajectories
are found. To study if they are optimal or not, other results related to the existence
of solutions for these problems can be useful, see [13, 18] for more details.

First, the necessary conditions of the Maximum Principle gave rise to different
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kinds of extremals: normal and abnormal. Later on, a new kind of extremal called
strict abnormal came up. In the nineties, R. Montgomery, L. S. Liu and H. J.
Sussmann [21, 23] proved that there are strict abnormal extremals being optimal in
subRiemannian geometry. Then a new interest in abnormality arose as can be seen
in [2, 4, 5, 9, 10, 29, 30].

As for the abnormal extremals, it is important to mention that they do not
depend on the cost function, but only on the geometry of the control system. So,
given the system, the abnormal extremals are characterized without knowing the
cost function. On the contrary, the cost function must be previously fixed to study
the normal extremals. As for the strict abnormal extremals, it is necessary the cost
function because they must be abnormal extremals, although they cannot be normal.
The only way to verify when an extremal is not normal is if the cost function is
known.

In this paper, under the assumption of the control set being open, we describe an
algorithm to characterize the different kinds of extremals that appear in Pontryagin’s
Maximum Principle. The existence of such an algorithm is directly linked to the
natural Hamiltonian framework where this Maximum Principle is usually stated [17,
22, 27]. A weak version of the Maximum Principle admits a presymplectic formalism
that induces a constraint algorithm in the sense given in [7, 14, 15, 16]. Such an
algorithm has been used and adapted to study singular optimal control problems [11]
and to study optimal control problems with nonholonomic constraints [19].

The constraint algorithm will be used to know where the dynamics of normal
extremals take place and also the dynamics of abnormal ones. We obtain sufficient
conditions to have both kinds of extremals. These conditions elucidate how to deter-
mine the strict abnormality. The adaptation of the algorithm, in its presymplectic
form, to the study of the extremals is one of the main contributions of this paper and
it is mostly developed in §4.

The importance of the theory elaborated is highlighted by the revisit of some
known examples in subRiemannian geometry and in single-input control-affine sys-
tems to characterize the abnormal extremals. Using the algorithm and under suitable
stop conditions, we get the same results as in, for instance, [3, 4, 21], where some con-
ditions must be imposed by hand. Following the described method all the conditions
determining the dynamics of the abnormal extremals appear in a natural way.

The organization of the paper is as follows: in Section 2 after a brief review of
some notions in control theory, we state the optimal control problem and Pontrya-
gin’s Maximum Principle in the suitable framework for this paper, that is, in the
presymplectic one. In Section 3 we introduce the presymplectic constraint algorithm
in the general context. Section 4 is devoted to adapt and apply the algorithm to the
characterization of extremals in optimal control problems. After studying the fixed
time problem, we rewrite the algorithm for the free time case in Section 5. Finally,
in Section 6, we study some examples in the control literature using the algorithm
developed along the paper.
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In the sequel, all the manifolds are real, second countable and C∞. The maps are
assumed to be C∞. Sum over repeated indices is understood.

2 Optimal control problems from a presymplectic view-
point

First, we introduce some concepts on control theory before drifting to optimal control
theory, the natural framework of this paper.

A control system is defined by a set of differential equations depending on param-
eters. More precisely, let M be a smooth manifold, dim M = m, U be an open set of
Rk called the control set. A vector field X along the projection π : M ×U → M is a
map X : M × U → TM such that the following diagram is commutative

TM

τM

��
M × U

X
::ttttttttt π // M

where τM is the natural projection of the tangent bundle. We denote the set of these
vector fields as X(π). A control system is an element of X(π).

Let I ⊂ R, a curve (γ, u) : I → M × U is an integral curve of X if

γ̇ = X ◦ (γ, u), that is, γ̇(t) = X(γ(t), u(t)). (2.1)

In the study of control systems, it is greatly interesting to be able to answer
questions such as: where can the system go?, from where?, given two endpoint con-
ditions, is there an integral curve of the system connecting them? All these questions
are related to the notion of accessibility and reachable sets.

Now, we introduce some results to determine the accessibility of the systems. See
[25, 28] for more details. Given a control system X ∈ X(π), we have:

Definition 2.1. Let x ∈ M .

1. The reachable set R(x, T ) from x at time T in M is the set of points
given by evaluating at time T all the curves in M starting at x and satisfying
Equation (2.1) for some control u, that is,

R(x, T ) = {γ(T ) | (γ, u) satisfies (2.1) , γ(0) = x , Im u ⊂ U}.

2. The reachable set R(x,≤ T ) from x up to T in M is given by

R(x,≤ T ) =
⋃

0≤t≤T

R(x, t).
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Here we have considered as initial condition x at time 0 for solving Equation (2.1).
The same reachable sets are defined taking t0 as the initial time and t0 + T as the
final time, instead of T .

Bearing in mind the reachable sets, we define the notion of accessibility.

Definition 2.2. Let x ∈ M . The system (2.1) is accessible from x if there exists
T > 0 such that the set of interior points of R(x,≤ t), intR(x,≤ t), is not empty for
every t ∈ (0, T ].

Thus the system is accessible from x ∈ M if R(x) = ∪t≥0R(x, t) has a nonempty
interior.

Consider the following set of vector fields V = {X(·, u) |u ∈ U}.

Definition 2.3. The smallest involutive distribution containing the family of vector
fields V is called the accessibility distribution C of the control system X ∈ X(π).

A necessary and sufficient condition of accessibility from a point in M is:

Theorem 2.4. ([25, 28]) The system is accessible from x ∈ M if and only if the
dimension of the accessibility distribution C containing V is equal to the dimension
of M . In this case, R(x,≤ T ) has a nonempty interior for every T > 0.

From now on, we assume the accessibility of the system to guarantee the existence
of integral curves between any two close enough given points.

Once the control systems and their accessibility are described, we can introduce
a cost function F : M × U → R to get in optimal control theory and the functional

S[γ, u] =
∫

I
F (γ, u) dt

defined on curves (γ, u) with a compact interval as domain. We are interested in the
following problem:

Problem 2.5. (Optimal Control Problem, OCP)
Given the elements M , U , X, F , I = [a, b], xa, xb ∈ M . Find (γ, u) such that

(1) γ(a) = xa, γ(b) = xb,

(2) γ̇(t) = X(γ(t), u(t)), t ∈ I, and

(3) S[γ, u] is minimum over all curves on M × U satisfying (1) and (2).

Although the mappings u : I → U are usually measurable and bounded, we need
to assume that the vector field X along π and the cost function F : M × U → R are
differentiable enough on M × U with respect to M and on U .



M. Barbero-Liñán, M. C. Muñoz-Lecanda Algorithm for extremals 6

2.1 Presymplectic formalism

As was said in §1, Pontryagin’s Maximum Principle gives conditions to find candi-
dates to be optimal solutions of the above problem. The Maximum Principle can be
approached from different viewpoints. Here we use the presymplectic formalism that
gives a weaker Maximum Principle than the classical one [3, 17, 18, 20, 26]. For more
details in presymplectic formalism see [7, 14, 15, 16, 24].

We consider the manifold T ∗M × U where U is an open set of Rk. Let Ω be the
closed 2-form on T ∗M × U given by the pull-back through π1 : T ∗M × U → T ∗M of
the canonical 2-form on T ∗M . The kernel of Ω at a ∈ T ∗M × U is given by

ker Ωa = {v ∈ Ta(T ∗M × U) |Ω(v, w) = 0 , ∀ w ∈ Ta(T ∗M × U)}.

The kernel contains the π1-vertical vector fields, that is, π1-projectable vector fields
Z ∈ X(T ∗M × U) such that (π1)∗Z = 0. In local natural coordinates (x, p, u) for
T ∗M × U , we have

Ω = dpi ∧ dxi and ker Ω =
{
∂/∂ui

}
.

The pair (T ∗M × U,Ω) is a presymplectic manifold.

In an analogous way to the case of Hamiltonian systems defined in a symplectic
manifold [1], associated to a function H : T ∗M×U → R, called Hamiltonian function,
we have a presymplectic Hamiltonian system (T ∗M × U,Ω,H). The curves of this
Hamiltonian system are integral curves of a vector field XH along π1 satisfying the
following presymplectic equation

iXH
Ω = dH (2.2)

on T ∗M×U . See [22] for more details. The vector field XH is called the Hamiltonian
vector field associated to H.

As Ω is degenerate, Equation (2.2) does not have solution at every point in T ∗M×
U and, in general, at the points where this solution exists it is not unique.

Locally, the Hamiltonian vector field along π1 is given by

XH = Ai ∂

∂xi
+ Bi

∂

∂pi
+ C l ∂

∂ul
,

the presymplectic equation (2.2) provides us Hamilton’s equations

Ai =
∂H

∂pi
, Bi = −∂H

∂xi
,

where i = 1, . . . ,m and l = 1, . . . , k, and C l are free because {∂/∂ul}l=1,...,k are in
the kernel of Ω.

In § 3, we will study carefully how to solve this kind of systems. Now we state
Pontryagin’s Maximum Principle from a presymplectic viewpoint.
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2.2 Pontryagin’s Maximum Principle

It is known that optimal control theory admits a formulation as a presymplec-
tic hamiltonian system, [11, 12, 22]. The corresponding hamiltonian, Pontryagin’s
Hamiltonian H : T ∗M × U → R, is given by

H(λ, u) = 〈λ, X(x, u)〉+ p0F (x, u),

where λ ∈ T ∗
xM and p0 ∈ {−1, 0}.

Remark 2.6. Let us introduce some notation to make things easier. Let X be a
vector field on a manifold M , we associate it a hamiltonian function as follows

HX : T ∗M −→ R
λ 7−→ HX(λ) = 〈λ, X(x)〉

where λ ∈ T ∗
xM . The same is defined if the vector field X is along π : M × U → M .

Then we can rewrite Pontryagin’s Hamiltonian as follows

H(λ, u) = HX(λ, u) + p0F (x, u) (2.3)

and we can state Pontryagin’s Maximum Principle in a presymplectic viewpoint.

Theorem 2.7. (Pontryagin’s Maximum Principle, presymplectic form)
Let U be an open set in Rk. Let (γ, u) : [a, b] → M × U be a solution of the optimal
control problem 2.5 with initial conditions xa, xb. Then there exist λ : [a, b] → T ∗M
along γ, and p0 ∈ {−1, 0} such that:

1. (λ, u) is an integral curve of the Hamiltonian vector field XH that satisfies

iXH
Ω = dH; (2.4)

2. γ = πM ◦ λ where πM : T ∗M → M is the natural projection of the cotangent
bundle;

3. γ satisfies the initial conditions, γ(a) = xa and γ(b) = xb;

4. (a) maxeu∈U H(λ(t), ũ) is constant everywhere in t ∈ [a, b];

(b) (p0, λ(t)) 6= 0 for each t ∈ [a, b].

As was mentioned in § 2.1, the presymplectic equation (2.4) does not have solution
in the whole manifold T ∗M × U . As we will see in § 3, it has solution if we restrict
the equation to the submanifold defined implicitly by

S = {a ∈ T ∗M × U | iv dH = 0, for v ∈ ker Ωa}.

Locally, this condition for Pontryagin’s Hamiltonian becomes

S = {a ∈ T ∗M × U | ∂H

∂ul
(a) = 0, l = 1, . . . , k}.
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Remark 2.8. Observe that this is a necessary condition for the Hamiltonian to
have an extremum over the controls as long as U is an open set. In the classic
Pontryagin’s Maximum Principle [26], the Hamiltonian is equal to the maximum of
the Hamiltonian over the controls. Therefore, Theorem 2.7 is weaker than the classic
Maximum Principle.

For a general statement of Pontryagin’s Maximum Principle see [3, 17, 18, 20, 26].
There are another approaches of the presymplectic formalism of optimal control, see
[19, 22], and also other approaches from a symplectic viewpoint, see for instance [27].

From now on, we will refer to Theorem 2.7 as Pontryagin’s Maximum Principle
without mentioning the fact that it is a weak form of the Maximum Principle.

The necessary conditions 1-4 of Theorem 2.7 determine different kinds of ex-
tremals.

Definition 2.9. A curve (γ, u) : [a, b] → M × U is

1. an extremal for OCP if there exist λ : [a, b] → T ∗M and p0 ∈ {−1, 0} such
that (λ, u) satisfies the necessary conditions of Pontryagin’s Maximum Princi-
ple;

2. a normal extremal for OCP if it is an extremal and p0 = −1, that is, the
Hamiltonian is

H [−1] = HX − F ; (2.5)

3. an abnormal extremal for OCP if it is an extremal and p0 = 0, that is, the
Hamiltonian is

H [0] = HX ; (2.6)

4. a strictly abnormal extremal for OCP if it is not a normal extremal, but
it is an abnormal extremal;

The curve (λ, u) : [a, b] → T ∗M × U is called biextremal for OCP .

In §4 we take advantage of the necessary conditions in Theorem 2.7 to try to
determine where the different kinds of extremals just defined are contained. We are
specially interested in determining strict abnormal extremals and abnormal extremals
as a consequence of the results published in [21, 23].

3 Presymplectic constraint algorithm

As was seen in § 2.2, the optimal control theory accepts a geometric formulation
from a presymplectic viewpoint. Before proceeding let us introduce more generally
the presymplectic manifolds and related concepts. For a more general framework,
see [16].
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Let M be a smooth manifold and Ω a 2-form on M . Given x ∈ M , the kernel
of Ω at x is defined by ker Ωx = {v ∈ TxM | ivΩ = 0}. It is a vector subspace of the
tangent space TxM . We say that Ω is regular if the dimension of ker Ωx does not
depend on the point x ∈ M .

Under the assumption of regularity of Ω, ker Ω = ∪x∈M ker Ωx is a vector sub-
bundle of the tangent bundle TM . The set of all the vector fields X ∈ X(M) such
that X(x) ∈ ker Ωx for all x ∈ M is also denoted by ker Ω. The vector subbundle
ker Ω is involutive if and only if Ω is a closed form.

A presymplectic form on M is a closed and regular 2-form. A presymplectic
manifold is a manifold M with a presymplectic form Ω ∈ Ω2(M). It is obvious that
a symplectic manifold is presymplectic with ker Ω = {0}.

If (M,Ω) is a presymplectic manifold, some usual notions of symplectic manifolds
also appear here. So if H ∈ C∞(M), we may consider the equation

iXΩ = dH (3.7)

where the unknown, the vector field X ∈ X(M), is called the Hamiltonian vector field
associated with the Hamiltonian function H.

If ker Ω 6= {0}, the mapping Ω] : TM → T ∗M given by Ω](vx) = ivxΩ is not onto.
Thus Equation (3.7) does not always have a solution. It is indispensable to claim for
dH ∈ Im Ω]. This condition can depend on the point x ∈ M where we compute Ω]

x.
With this in mind, we define a presymplectic system (M,Ω,H) as a presymplectic
manifold (M,Ω) and a function H ∈ C∞(M).

Problem 3.1. (Presymplectic) Given a presymplectic system (M,Ω,H), find (N,X)
such that

(a) N is a submanifold of M ,

(b) X ∈ X(M) is tangent to N on N ,

(c) N is maximal among all the submanifolds satisfying (a) and (b).

The solution to this problem gives rise to the so-called presymplectic algorithm
described as follows, see [7, 14, 15, 16] for more details. The condition (c) cannot be
assured in general.

Step zero: Let N0 = {x ∈ M | ∃ vx ∈ TxM , ivxΩ = dxH} be the primary
constraint submanifold.

Proposition 3.2. N0 = {x ∈ M | (LZH)x = 0 , Z ∈ ker Ω}, where LZ is the Lie
derivative with respect to Z.

The proof is a straightforward consequence of the fact that if αx ∈ T ∗
xM , we have

αx ∈ ImΩ]
x if and only if kerΩx ⊂ ker αx.
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On the points of N0 there exists a solution of the presymplectic equation, but the
solution is not unique. Indeed, if X0 is a solution, then X0 + ker Ω is the set of all
the solutions. We may consider X0 as a vector field defined on the whole M because
N0 is closed and we assume that N0 is a submanifold of M .

Take the pair (N0, X0 + kerΩ), rewritten as (N0, X
N0) where XN0 denotes the

set of all the vector fields solving the problem in the step zero. Observe that we need
an element in XN0 tangent to N0.

Step one: Let now

N1 = {x ∈ N0 | ∃X ∈ XN0 , X(x) ∈ TxN0}

providing a new pair (N1, X
N1) where XN1 is the set of the vector fields solution and

we assume again that N1 is a submanifold. This step stabilizes the constraints in N0.

Once again the vector fields XN1 are tangent to N0, but not necessarily to N1.
Hence, inductively, we arrive at (Ni, X

Ni) where we assume that Ni is a submanifold
of M and we define Ni+1 = {x ∈ Ni | ∃X ∈ XNi , X(x) ∈ TxNi}, obtaining the
sequence

M ⊇ N0 ⊇ N1 ⊇ . . . ⊇ Ni ⊇ Ni+1 ⊇ . . .

and the corresponding XNi+1 . Let

Nf =
⋂
i≥0

Ni, XNf =
⋂
i≥0

XNi ,

if Nf is a nontrivial submanifold of M , (Nf , XNf ) is the solution to Problem 3.1.

Note that each step of the algorithm can reduce the set of points of M where
there exists solution, that is Ni ⊆ Ni−1, and can also reduce the degrees of freedom
of the set of vector fields solution, XNi ⊆ XNi−1 .

If at one step Ni = Ni+1, we have already finished.

This presymplectic algorithm comes from the Dirac-Bergmann theory of con-
straints developed in the fifties for quantuum field theory. In [15] the algorithm is
studied from a geometric viewpoint what has been reviewed in this section.

In the next sections, we adapt this algorithm in the context of the weak Pontrya-
gin’s Maximum Principle.

4 Characterization of extremals

Let us make profit of the presymplectic constraint algorithm explained in §3 to know
where the different kinds of extremals are.

As stated in § 2.1, 2.2, we consider the presymplectic Hamiltonian system (T ∗M×
U,Ω,H) with the Hamiltonian function H = HX + p0F given in Equation (2.3).
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From § 2.2, 3 the presymplectic equation (2.4), iXH
Ω = dH, has solution in the

primary constraint submanifold

N0 = {(λ, u) ∈ T ∗M × U | ∂H

∂ul
= λj

∂Xj

∂ul
+ p0

∂F

∂ul
= 0 , l = 1, . . . , k}. (4.8)

So the Optimal Control Problem 2.5 could have solutions if we restrict the given
equation to N0. The tangency condition of the vector field XH to N0 defines

N1 = {(λ, u) ∈ N0 |XH

(
∂H

∂ul

)
= 0, l = 1, . . . , k}, (4.9)

which corresponds with step one in §3. Recall that locally, XH = Ai∂/∂xi+Bi∂/∂pi+
C l∂/∂ul where Ai = ∂H/∂pi and Bi = −∂H/∂xi.

At this point, some specific questions about our control system must be included.
One desirable objective is to determine the input controls and another objective is to
restrict the problem to a smaller submanifold of T ∗M×U . Observe that, generally, a
step of the algorithm can provide us new constraints and the determination of some
controls at the same time. If the new constraints are independent of the previous
constraints, they must be stabilized as was explained in Step 1 in § 3. Hence the
algorithm continues. At each step of the algorithm, we are in one the following cases:

1. All the controls are determined and there are no more conditions to be sta-
bilized, then the algorithm stops and provides us a unique vector field whose
integral curves are biextremals.

2. All the controls are determined, but there are more conditions to be stabilized.
Then the algorithm goes on, but the vector field is completely determined.

3. Not all the controls are determined and there are no more conditions to be
stabilized. Then the algorithm stops, but there is not a unique vector field
whose integral curves are biextremals.

4. Not all the controls are determined, but there are more conditions to be sta-
bilized, then the algorithm goes on. So there may not be a unique vector field
whose integral curves are biextremals.

5. The conditions to be stabilized could not define a submanifold. In this case a
careful detailed study must be done. More precisely, when a subset Ni is not
a submanifold, we have to restrict to each submanifold contained in Ni and
stabilize each condition. For instance for xy = 0 we have to stabilize separately
when x = 0 and when y = 0.

6. The final constraint submanifold is discrete, the biextremals are constant. They
are usually not interesting because it is supposed that we move from one point
to another different point in the state manifold.
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7. The final constraint submanifold is empty, then there are no biextremals.

Remark 4.1. It remains to discuss if we miss some extremals using the constraint
algorithm as it happens in subRiemannian geometry in [21], where using a less geo-
metric approach they miss the constant extremals. There, this is not a big flaw since
usually we want to move from a point in the state manifold to another point.
Remark 4.2. The case 5 comes from singular sets of the vector fields distributions
that appear along the algorithm, that is, distributions without constant rank.

4.1 Characterization of abnormality

First, we characterize a subset of T ∗M × U where the abnormal biextremals are if
they exist. In this situation we take p0 = 0 and the corresponding Pontryagin’s
Hamiltonian is (2.6)

H [0] = HX .

Then, in this case, the primary constraint submanifold (4.8) becomes

N
[0]
0 = {(λ, u) ∈ T ∗M × U |λj

∂Xj

∂ul
= 0, l = 1, . . . , k}, (4.10)

the submanifold (4.9) is

N
[0]
1 = {(λ, u) ∈ N

[0]
0 |λj (Xi ∂2Xj

∂xi∂ul
− ∂Xj

∂xi

∂X i

∂ul
+ Cr ∂2Xj

∂ur∂ul
) = 0, l = 1, . . . , k},

and the algorithm continues.

Once we have the final constraint submanifold N
[0]
f , we have to delete the biex-

tremals in the zero fiber because these extremals do not satisfy the necessary condition
(4.b) of Pontryagin’s Maximum Principle 2.7. For the sake of simplicity and clarity,
we rename this actual final constraint submanifold with the same name N

[0]
f .

Proposition 4.3. If there exist (λ, u) ∈ N
[0]
f with λ 6= 0, then (γ, u) = (πM×Id)(λ, u)

is an abnormal extremal.

4.2 Characterization of normality

The normal and abnormal extremals in Definition 2.9 do not constitute a disjoint
partition of the set of extremals. We have already described abnormality in § 4.1.
Let us do the same with normality. For p0 = −1, Pontryagin’s Hamiltonian (2.5) is

H [−1] = HX − F.

Then the primary constraint submanifold (4.8) becomes

N
[−1]
0 = {(λ, u) ∈ T ∗Q× U |λj

∂Xj

∂ul
− ∂F

∂ul
= 0, l = 1, . . . , k}, (4.11)
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the submanifold (4.9) is

N
[−1]
1 = {(λ, u) ∈ N

[−1]
0 | λj (Xi ∂2Xj

∂xi∂ul
− ∂Xj

∂xi

∂Xi

∂ul
+ Cr ∂2Xj

∂ur∂ul
)

−Xi ∂2F

∂xi∂ul
− Cr ∂2F

∂ur∂ul
= 0, l = 1, . . . , k},

Note the significant role that the cost function plays for normal extremals: the
possibility for the controls to be determined essentially depends on the given cost
function. To a better understanding of all this process we address the reader to the
examples in § 5, 6.

To make evident the differences and similarities between abnormal and normal
biextremals in terms of this algorithm, let us compare locally the primary constraint
submanifolds and the dynamical equations for abnormality in § 4.1 and for normality.
If (x, p, u) are natural coordinates in T ∗M × U , we have

Abnormal Normal

Dynamical
equations

ẋi =
∂H [0]

∂pi

ṗi = −∂H [0]

∂xi

ẋi =
∂H [−1]

∂pi
=

∂H [0]

∂pi

ṗi = −∂H [−1]

∂xi
= −∂H [0]

∂xi
+

∂F

∂xi

Primary
constraints

∂H [0]

∂ul
= 0

∂H [−1]

∂ul
=

∂H [0]

∂ul
− ∂F

∂ul
= 0

where i = 1, . . . ,m, l = 1, . . . , k.

Observe that Hamilton’s equations for xi are the same for both Hamiltonian
functions since the cost function does not depend on the momenta p’s. Hamilton’s
equations for pi are equal for cost functions not depending on xi. For instance, if the
cost function is constant, as in the case of time-optimal.

The final constraint submanifolds N
[0]
f and N

[−1]
f , if they exist, restrict the set

of points where the biextremals of the Optimal Control Problem 2.5 are. But, even
if Hamilton’s equations are the same, N

[0]
f and N

[−1]
f could be different. Then the

integral curve in T ∗M×U along the same extremal in M may be different depending
on where the initial conditions for the momenta are taken.

As stated in Definition 2.9, there may exist abnormal extremals being normal and
viceversa. To study how the extremals are we need to project the biextremals on the
base manifold M × U using ρ1 = πM × Id : T ∗M × U → M × U .
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Summarizing all the above comments, we have the following propositions whose
proofs are immediate.

Proposition 4.4. Let (γ, u) be an abnormal extremal. If there exists a covector λ

along γ such that (λ, u) ∈ N
[−1]
f , then (γ, u) is also a normal extremal.

Let (γ, u) be a normal extremal. If there exists a covector λ along γ such that
(λ, u) ∈ N

[0]
f , then (γ, u) is also an abnormal extremal.

Proposition 4.5. If there exist (λ[0], u[0]) ∈ N
[0]
f with λ[0] 6= 0 and (λ[−1], u[−1]) ∈

N
[−1]
f such that πM (λ[0]) = πM (λ[−1]), then γ = πM (λ[0]) is an abnormal extremal

and also a normal extremal.

Remark 4.6. In this second proposition we do not consider the control as a part of
the extremal, because it may happen that different controls give the same extremals
in M depending on the control system. So we project onto M the biextremals to
compare them. Under some assumptions about the control systems, such as control-
linearity, different controls give different extremals. If so happens, we will project the
biextremals onto M × U through ρ1 to compare them.

4.3 Characterization of strict abnormality

The way to find the strict abnormal extremals is to project all the biextremals in
N

[0]
f and N

[−1]
f through ρ = πM ◦ π1 : T ∗M × U → M due to Remark 4.6. Denoting

by P = ρ(N [0]
f ) ∩ ρ(N [−1]

f ), it may happen that

(i) P = ∅ and ρ(N [0]
f ) 6= ∅, then all the abnormal extremals are strict.

(ii) P = ∅ and ρ(N [−1]
f ) 6= ∅, in this case all the normal extremals are strict normal.

(iii) P 6= ∅ and ρ(N [0]
f ) = P , then there are no strict abnormal extremals.

(iv) P 6= ∅ and ρ(N [0]
f ) 6= P , in this case there are strict abnormal extremals, but

only locally since the extremal could have pieces in P . So at some points the
extremal can be locally normal.

(v) P 6= ∅ and ρ(N [0]
f ) = ρ(N [−1]

f ) = P , then all the abnormal extremals are also
normal and viceversa.

So far we know how to search for abnormal extremals and also for normal ex-
tremals. While in § 4.1 we do not care about the cost function, in § 4.2 a cost
function is essential for the process. To characterize strict abnormal extremals the
cost function is fundamental because these extremals are abnormal, but not normal.
The only way to guarantee that an extremal is not normal is to use the cost function.
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Summarizing this section, we have the following characterization of strict abnor-
mality whose proof is immediate.

Proposition 4.7. Let (γ, u) be an abnormal extremal. If there does not exist λ along
γ such that (λ, u) ∈ N

[−1]
f , then (γ, u) is a strict abnormal extremal.

If there exists (λ[0], u[0]) ∈ N
[0]
f with λ[0] 6= 0 such that there are not any (λ[−1], u[−1]) ∈

N
[−1]
f satisfying πM (λ[0]) = πM (λ[−1]), then γ = ρ(λ[0], u[0]) is a strict abnormal ex-

tremal.

5 Free time optimal control problem

Once all the theory has been introduced let us deal with the particular case of the
free time optimal control problem. Recall that in this case the interval of definition
of the extremals is another unknown of the problem. Consider the following problem:

Problem 5.1. (Free Time Optimal Control Problem, FOCP)
Given the elements M , U , X, F , xa, xb ∈ M (as in § 2). Find (γ, u) and I = [a, b] ⊂
R such that

(1) γ(a) = xa, γ(b) = xb,

(2) γ̇(t) = X(γ(t), u(t)), t ∈ I, and

(3) S[γ, u] is minimum over all curves on M × U satisfying (1) and (2).

Pontryagin’s Maximum Principle is the same as Theorem 2.7, but replacing (4.a)
by

(4.a′) maxeu∈U
H(λ(t), ũ) is zero everywhere t ∈ I.

Similar to Remark 2.8, condition (4.a′) and the presymplectic equation imply that
Pontryagin’s Hamiltonian is zero. Thus presymplectic equation (2.4) must be re-
stricted to the submanifold defined by the condition

H = HX + p0F = 0.

Hence, it must also be stabilized in the algorithm.

The primary constraint submanifold is

N0 = {(λ, u) ∈ T ∗M × U | ∂H

∂ul
= λj

∂Xj

∂ul
+ p0

∂F

∂ul
= 0, H = 0, l = 1, . . . , k}.

For abnormality, the Hamiltonian is H [0] = HX and the primary constraint subman-
ifold becomes

N
[0]
0 = {(λ, u) ∈ T ∗M × U |λj

∂Xj

∂ul
= 0, HX = 0, l = 1, . . . , k}.
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But, for normality, the Hamiltonian is H [−1] = HX − F and the primary constraint
submanifold is

N
[−1]
0 = {(λ, u) ∈ T ∗M × U | λj

∂Xj

∂ul
− ∂F

∂ul
= 0, HX − F = 0, l = 1, . . . , k}.

In both cases, the algorithm must continue and the characterization of the extremals
is exactly the same as is explained in §4.

6 Examples

6.1 Geodesics in Riemannian geometry

Let M be an m-dimensional Riemannian manifold and {Y1, . . . , Ym} be linear inde-
pendent vector fields on M . Consider the following control-linear system

X = u1Y1 + . . . + umYm.

The problem of finding the geodesic curves in M can be addressed as an optimal
control problem for the previous system with cost function F (x, u) = ‖X‖, being ‖ ·‖
the Riemannian norm.

For abnormality p0 = 0, the primary constraint submanifold (4.10) is

N
[0]
0 = {(λ, u) ∈ T ∗M × U | 〈λ, Yl〉 = 0, l = 1, . . . ,m}.

So the controls do not appear in the primary constraint submanifold. As the number
of controls coincides with the dimension of the state space, the annihilator of all the
control vector fields is the zero covector. But Theorem 2.7 says that (p0, λ) 6= 0. So
in Riemannian geometry there are no abnormal extremals neither strict abnormal
extremals, as is stated in [21].

For normality, p0 = −1. The primary constraint submanifold (4.11) is

N
[−1]
0 = {(λ, u) ∈ T ∗M × U | 〈λ, Yl〉 −

∂F

∂ul
= 0, l = 1, . . . ,m}.

For instance, if the vector fields {Y1, . . . , Ym} are orthonormal, the cost function is

F (x, u) =
1
2
((u1)2 + . . . + (um)2),

where 1/2 is written by convention, and we have

N
[−1]
0 = {(λ, u) ∈ T ∗M × U | 〈λ, Yl〉 − ul = 0, l = 1, . . . ,m}.

Hence, all the controls are known and the Hamiltonian vector field XH is uniquely
determined, then N

[−1]
0 = N

[−1]
f from § 4. We are in the case (ii) in § 4.3.

The projections on M of the integral curves of XH satisfy the well-known geodesic
equations on M as can be easily proved.
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6.2 SubRiemannian geometry

As before, let M be an m-dimensional Riemannian manifold and {Y1, . . . , Yk} be
linear independent vector fields on M , but with k < m. Now the corresponding
control-linear system is

X = u1Y1 + . . . + ukYk

and we state the same problem as in the previous section: to find the geodesic curves
in M satisfying the previous system, that is, with F (x, u) = ‖X‖ as the cost function.
This optimal control system describes subRiemannian geometry.

For abnormality p0 = 0, the primary constraint submanifold (4.10) is

N
[0]
0 = {(λ, u) ∈ T ∗M × U | 〈λ, Yl〉 = 0, l = 1, . . . , k}

and the Hamiltonian vector field on N
[0]
0 is XH[0] = ujXYj , where XYj denotes XHYj

.

The tangency condition is

XH[0](HYl
) = ujXYj (HYl

) = ujdHYl
(XYj ) = −uj{HYj ,HYl

} =
k∑

j=1,j 6=l

ujH[Yj ,Yl] = 0

for l = 1, . . . , k. See [1] for the properties of Poisson brackets used above. Then

N
[0]
1 = {(λ, u) ∈ N

[0]
0 |

k∑
j=1,j 6=l

ujH[Yj ,Yl] = 0, l = 1, . . . , k}.

See [21] for a characterization of the abnormal extremals when there are only two
control vector fields, a particular simple case. In [2] the abnormal extremals are
studied more generally, without any assumption about the number of control vector
fields.

For two-control input vector fields, the submanifold N
[0]
1 is defined implicitly

by the constraints {u1H[Y1,Y2] = 0, u2H[Y2,Y1] = 0}. As both controls cannot be
identically zero, otherwise there is no motion, then the only constraint is H[Y1,Y2] = 0.
Following the algorithm we obtain

N
[0]
2 = {(λ, u) ∈ N

[0]
1 | u1H[Y1,[Y1,Y2]] + u2H[Y2,[Y1,Y2]] = 0}.

In order not to contradict the assumption of accessibility taken in the whole paper, at
least one of H[Y1,[Y1,Y2]] and H[Y2,[Y1,Y2]] must be nonzero. Hence, as we have a linear
dependence between the controls, the motion is determined up to reparametrization.

As recapitulation, the abnormal extremals, if they exist, are in

N
[0]
2 − {(λ, u) ∈ N

[0]
2 | H[Y1,[Y1,Y2]] = 0, H[Y2,[Y1,Y2]] = 0},

see [21] for similar results with another approach.



M. Barbero-Liñán, M. C. Muñoz-Lecanda Algorithm for extremals 18

For normality, p0 = −1 and the primary constraint submanifold (4.11) is

N
[−1]
0 = {(λ, u) ∈ T ∗M × U | 〈λ, Yl〉 −

∂F

∂ul
= 0, l = 1, . . . , k}.

As in § 6.1, if the vector fields {Y1, . . . , Yk} are orthonormal, the cost function is

F (x, u) =
1
2
((u1)2 + . . . + (uk)2)

and we have N
[−1]
0 = {(λ, u) ∈ T ∗M × U | 〈λ, Yl〉 − uk = 0, l = 1, . . . , k}. Hence,

for normality the reasoning follows as in Riemannian geometry.

6.3 Control-affine systems

Now we consider a m-dimensional manifold M and the control-affine system

X = Y + u1Y1 + . . . + ukYk,

where {Y1, . . . , Yk} are linear independent vector fields and Y is the drift vector field.
Let F be the cost function for an optimal control problem.

For abnormality p0 = 0, the primary constraint submanifold (4.10) is

N
[0]
0 = {(λ, u) ∈ T ∗M × U | 〈λ, Yl〉 = 0, l = 1, . . . , k}

and the Hamiltonian vector field is XH[0] = XY + ujXYj on N
[0]
0 , with the same

notation as in § 6.2.

The tangency condition is

XH[0](HYl
) = H[Y,Yl] +

k∑
j=1,j 6=l

ujH[Yj ,Yl] = 0, l = 1, . . . , k.

Then N
[0]
1 = {(λ, u) ∈ N

[0]
0 | H[Y,Yl] +

∑k
j=1,j 6=l u

jH[Yj ,Yl] = 0, l = 1, . . . , k}.
In [3, 4, 30] this situation is studied when there are at most two controls and in

[29] more general results related to control-affine systems are given.

Depending of the rank of the matrices A = (H[Yj ,Yl]) and B = (A |H[Y,Yl]), we
have the following situations, compare with [3, 4, 29, 30]:

(i) The rank of A is maximum and then all the controls are determined. Hence,
given the initial conditions, the abnormal extremals are known.

(ii) The rank of A is not maximum and is equal to the rank of B. Then some
controls are determined and others are free. There are no new constraints and
the algorithm ends.
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(iii) The rank of A is not maximum and different from the rank of B. Then some
controls are determined and others are free. But there are also new constraints
and the algorithm continues. At every step, a similar analysis must be done.

For normality, p0 = −1 and the primary constraint submanifold (4.11) is

N
[−1]
0 = {(λ, u) ∈ T ∗M × U | 〈λ, Yl〉 −

∂F

∂ul
= 0, l = 1, . . . , k}.

For instance, if the cost function is

F (x, u) =
1
2
((u1)2 + . . . + (uk)2),

we have N
[−1]
0 = {(λ, u) ∈ T ∗M × U | 〈λ, Yl〉 − uk = 0, l = 1, . . . , k}. Hence, for

normality the reasoning follows as in the previous examples.

7 Conclusion and outlook

In this paper we have given a method to study different kinds of extremals in optimal
control problems with an open control set. This method is based on the suitable rein-
terpretation of the so-called presymplectic algorithm in other fields. The dependence
on the cost function makes difficult to give general characterizations of normal and
strict abnormal extremals since each problem must be studied by itself. However,
the abnormal extremals only depend on the geometry of the control system, so some
general results can be deduced.

One line of future research is to apply this general algorithm in the study of
optimal control problems with affine connection control systems, which model the
motion of different types of mechanical systems such as rigid bodies, nonholonomic
systems and robotic arms [6].

Furthermore, we are interested in the characterization of extremals for particu-
lar optimal control problems for mechanical systems, as for instance time-optimal
problems and control-quadratic cost function.

Apart from having sufficient conditions to determine where the extremals are,
it may be interesting to prove the density and the optimality of them, similar to
the work done in [21]. Moreover, under what assumptions we can obtain necessary
conditions to determine the different extremals.
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