
1

COSTUME: A Method for Building Quality Models
for Composite COTS-based Software Systems

Juan P. Carvallo, Xavier Franch, Gemma Grau, Carme Quer
Universitat Politècnica de Catalunya (UPC), Barcelona (Catalunya, Spain)

{carvallo, franch, ggrau, cquer}@lsi.upc.es

Abstract

The use of quality models during the selection of
Commercial, Off-The-Shelf (COTS) products provides a
framework for the description of the domains which the
COTS products belong to. Descriptions of COTS
products and user quality requirements may be
translated into the quality concepts defined in the model,
making selection more efficient and reliable. In this
paper we propose a method for the construction of
quality models for Composite COTS-based Software
Systems (CCSS), defined as systems that are composed
by several interconnected COTS products. Selection
processes carried out when procuring a CCSS require
not a single COTS product to be selected but a set of
them. As a consequence, instead of a classical quality
model, we need a more elaborated one, defined as the
composition of those models that belong to the domains
of the COTS products that form the CCSS.

1. Introduction
The amount of Commercial, Off-The-Shelf (COTS)
software products [1] available in the market is growing
more and more. This tendency is due to both the
increasing adoption of component-based software
technologies, and the continuous creation of new
communication and marketing channels that bridge the
gap among providers and consumers of those products.
Therefore, there is an increasing need for identifying and
qualifying the types of available COTS (hereafter, we
abbreviate “COTS software product” by “COTS”) to
improve the efficiency and reliability of their
procurement [2]. In particular, quality requirements have
been recognized as crucial by the methods and processes
proposed so far for driving this activity [3, 4]. Thus,
efforts are required to obtain, in an efficient way, reliable
and comprehensive descriptions of COTS quality.

Quality models [5] are an especially appealing way of
structuring these descriptions. A quality model provides
a hierarchy of software quality features and metrics for
computing their value. They are used in many contexts,
e.g. for assessing the quality of custom systems [6, 7].

In this paper we present COSTUME (COmposite
SofTware system qUality Model dEvelopment), a method
for the construction of quality models for composite
COTS-based software systems (hereafter, CCSS), i.e.
systems that are composed of several COTS usually
interconnected by some glue code. The quality model for
the CCSS will be built upon the quality models bound to
the domains of its component COTS. Examples of types
of CCSS are product lines [8] and cooperative
information systems [9]. In fact, most current COTS-
based software systems are CCSS. There are several
reasons for that:
� Usually, system core requirements are very diverse in

their nature and they embrace distinct functionalities,
which are not covered by a single type of COTS.

� General-purpose COTS such as anti-virus and
compression tools, directory services, etc., have
become widely established and their presence is
assumed in most systems.

� Successful COTS tend to incorporate through the
years services not originally related to them.

The COSTUME method consists of four activities:
� Activity 1. Analysing the environment of the CCSS.

The organizational elements that surround the CCSS
are identified, as well as other external software
systems which the CCSS interacts with. Relationships
among the CCSS and the environment are
established.

� Activity 2. Decomposing the CCSS into COTS
domains. The CCSS is decomposed into COTS
domains, each offering well-defined services, which
are identified with the help of the results coming from
activity 1.

� Activity 3. Building individual quality models for the
COTS domains. We apply our former IQMC method
[10] to build an ISO/IEC 9126-compliant quality
model for each COTS domain of the CCSS.

� Activity 4. Composing the individual quality models.
We obtain an ISO/IEC 9126-compliant quality model
for the whole CCSS by the combination of the
individual ones, obtaining therefore a single and
uniform vision of the CCSS quality.

Proceedings of the Fourth International Conference on Quality Software (QSIC’04) 
0-7695-2207-6/04 $ 20.00 IEEE 



In the next sections, we will define more formally the
activities and use a case study to present them in detail.

2. Analysing the Environment
CCSS do not operate in isolation; they communicate with
other systems and with people, which act together as
their environment. The first activity in COSTUME
identifies the actors in the environment that interact with
the CCSS.

We use in the rest of the paper a mail server CCSS as
example. Mail server CCSS are a good case study for
many reasons, to name some: wide range of
functionalities; strong links with their environment;
intensive use world-wide; existence of an overwhelming
number of mail-related products. Table 1 presents the
proposal of environmental actors for the mail server
CCSS that we use through the paper. We identify the
actors’ type and also give a short description of their
main goal. The relationships among the mail server
CCSS and the rest of actors can be depicted graphically
using a table such as Table 2. We represent dependencies
concerning functionalities (e.g., address lists
management), non-functional properties (e.g., security),
data (e.g., mail resources) and tasks (e.g., recovery).

Table 1. Mail server CCSS environmental actors.

Table 2. Relationships in the mail server CCSS.

3. Decomposing the CCSS into COTS domains
A fundamental issue to tackle in COSTUME is to
decompose properly the CCSS into COTS domains to
facilitate their separate analysis. However, we do not
take a component-based approach but again an actor-

based one: we identify the actors that play a role in the
CCSS and the relationships among them. As a result, we
break the system into its essentials, focusing on those
services that actors (that represent COTS domains),
provide instead of the physical arrangement of the
system into components. This activity is driven
concurrently following two different carriers:
� Market-driven. Up-to-date knowledge of the types of

tools currently available in the market and the
services that they provide. Continuous analysis of
white reports and technical documents from
professional consultant companies is a key success
factor.

� Goal-driven. Ability in identifying which are the
actors in the system and their goals. Each actor has
assigned a main goal to attain. Techniques for
discovering goals [11] can be tailored to our specific
needs.

In COSTUME, the dependencies in the environmental
model drive the identification of some categories of
actors. For instance, the dependency Cooperation With
Other MSU points out the need of groupware-oriented
actors, and our knowledge of the market reveals the
existence of meeting scheduling and voice and video-
conference domains. In Table 3 we show the actors
identified, grouped by category (we omit actors’ goals
for space limitations). The third column shows the
environmental model relationships that justify the need
of the actor.

Table 3. Actors for the mail server CCSS.

Category Actors Rationale

Mail Servers • Messages
Sent/ReceivedCommunication

Support
Routing Tools • Efficient Mail

Handling
Meeting Scheduler Tools

Voice and
Video-Conference Tools

Chatting Tools

Instant Messaging Tools

News Servers

Groupware
Support

Lists Servers

• Co-operation With
Other MSU

Directory Services

• Mail Resources
• Addresses
• Persistent Storage

of MSU
information

Resources

Compression Tools • Mail Resources
Anti-Spam Filter

ManagersSecurity
Support

Anti-virus Tools

• Information Kept
Secure

Backup & Recovery
Tools • Full Availability

Message Tracking ToolsAdministrative
Support

Configuration and
Administration Tools

• Efficient Mail
Handling

• Good Performance
• Easy

administration

Actor Abb. Type Goal
Mail Server

System
MSS Software Provide communication

infrastructure
Mail Client

System
MCS Software Provide access to

messages
Mail Server User MSU Human Send and get messages

Mail Server
Administrator

MSA Human Put mail server to work
accurately and efficiently

Firewall Fwll Hardware Filter incoming requests

MSS depends on Relationship
Recover from scratch

MSA
Good performance

Fwll Protect from unauthorised access
Others depend on MSS Relationship

MSA Easy administration
Efficient mail handling

Mail resources
Cooperation with other MSU

Information kept secure
MSU

Full availability

Proceedings of the Fourth International Conference on Quality Software (QSIC’04) 
0-7695-2207-6/04 $ 20.00 IEEE 



4. Building the Individual Quality Models
In [10] we proposed a method for building a ISO/IEC-
compliant quality model for a COTS domain considered
in isolation. This method follows some steps for tailoring
a departing quality model proposed as part of the
ISO/IEC 9126-1 standard [12]. As a result we obtain
ISO/IEC 9126-compliant quality models for these
domains.

Definition 1. ISO/IEC 9126-compliant quality model.
An ISO/IEC 9126-compliant quality model QM is any
extension of the ISO/IEC 9126-1 quality model that
follows the concepts stated in this standard.

Definition 2. Individual quality model.
An individual quality model is an ISO/IEC 9126-
compliant quality model QMD for a COTS domain D.

The situation with respect to the construction of
individual quality models is diverse. Those quality
models already built from past experiences may be
reused. The rest of the models must be constructed and
may be left incomplete, to be refined when a particular
procurement process requires more detail. See section 6
for details.

5. Composing the Individual Quality Models
Individual quality models give an exhaustive but
individual, isolated and therefore incomplete view of
parts of the CCSS. The next activity consists on
composing these quality models to provide an integrated
view of the quality of the whole CCSS. Composition
means combining appropriately the quality features of
the individual quality models. More formally:

Definition 3. CCSS quality model.
Let S be a CCSS and let A be the set of actors which S is
decomposed into. A CCSS quality model for S is defined
as a tuple QMS = ({QMD}D∈A, QMS, MapS) such that:
� {QMD}D∈A are individual quality models considering

the actors of A as domains. We call them component
quality models.

� QMS is an ISO/IEC 9126-compliant quality model.
We call it compound quality model.

� MapS is a family of 2 mappings, MapS =
(MapSubcarsS, MapAttrsS), mapping some of the
quality subcharacteristics resp. attributes from QMS

to those in {QMD}1.
The crucial fact is that the elements of the composite
quality model are mostly defined as the result of a

1
Characteristics are not explicitly taken into account because we

consider that the compound quality model includes the six ones
defined in the ISO/IEC 9126-1.

mapping from the new quality elements to the existing
ones, and just a few elements emerge. In its turn, this
mapping is built from the repeated application of some
subcharacteristic and attribute composition patterns
defined in the rest of the section.

For simplicity, definitions are given on pairs of
quality elements and pairs of compound quality models;
generalization to n elements is straightforward but
technically cumbersome. When the opposite is not
indicated, the patterns can also be applied when the two
quality models involved are the same. Prefixing is used
when necessary, represented by “::”. We use the parent
function to obtain the parent of a given quality feature in
the corresponding hierarchy. We do not bind the
definition to any software quality ontology, although its
existence will allow easier pattern identification and
application. The definitions do not handle explicitly the
case where subcharacteristics parents are characteristics;
extension is straightforward.

Composition patterns are supposed to be applied top-
down, meaning that first they are applied to build the
upper levels of the resulting hierarchy and then the lower
levels are fulfilled stepwise; of course, during quality
model construction, some degree of intertwining and
iteration arises, and the condition is relaxed to: a quality
entity may appear in the compound model only if its
parent has already been inserted therein.

5.1 Composition patterns for subcharacteristics
Let QMS be the compound quality model and let QM1,
QM2∈{QMD} be two component quality models of a
given CCSS S. We identify 6 patterns presented below
for combining subcharacteristics (see Table 4).

Table 4. Subcharacteristic patterns

Pattern QM1 QM2 QMS

r

z

x y

r

z

u
x

r

z

Identification

Nesting

Abstraction

System

r

vu

z

N/A

N/AN/A

x

p

y

q

y

q

p

r

x
Drag-and-drop N/A

p

u

p q

x y
Combination

r

vu

p q

Proceedings of the Fourth International Conference on Quality Software (QSIC’04) 
0-7695-2207-6/04 $ 20.00 IEEE 



Identification pattern
Precondition:
1) p, q, x and y are four subcharacteristics, {p, x} ⊆ QM1,
{q, y} ⊆ QM2, parent(x) = p, parent(y) = q, QM1 ≠ QM2.
2) exists a subcharacteristic r∈QMS such that {p, q} ⊆
MapSubcarsS(r).
3) z∉QMS.
Pattern application: Identification(p, q, x, y, r, z)
Postcondition:
1) z ∈ QMS such that parent(z) = r.
2) MapSubcarsS(z) = {QM1::x, QM2::y}.

Rationale. There are many subcharacteristics that appear
repeatedly in a great deal of quality models. In this case,
we simply add a subcharacteristic in the compound
model. As will be the general case, the pattern definition
allows different names for the subcharacteristic in
different models, although the usual case in this pattern
will be having the same name.

Example. A basic case is the ISO/IEC 9126-1
subcharacteristics themselves, e.g. Security. More
specifically to our case study, both the quality models of
Voice and Video-Conference and Chatting tools
decompose their Security subcharacteristic into Local
Security and External Security. We have applied twice
the pattern to obtain the same subcharacteristics in the
compound model.

Combination pattern
Precondition:
1) p, q, x and y are four subcharacteristics, {p, x} ⊆ QM1,
{q, y} ⊆ QM2, parent(x) = p, parent(y) = q.
2) exists a subcharacteristic r∈QMS such that {p, q} ⊆
MapSubcarsS(r).
3) u, v ∉QMS.
Pattern application: Combination(p, q, x, y, r, u, v)
Postcondition:
1) u, v ∈ QMS such that parent(u) = parent(v) = r.
2) MapSubcarsS(u) = {QM1::x}, MapSubcarsS(v) =
{QM2::y}.

Rationale. Many subcharacteristics are to be kept
separately in the compound model because they keep
track of distinct quality features.

Example. Consider the Verification Capabilities
subcharacteristics that appear in the anti-spam and anti-
virus domains. They include the subcharacteristics
Verification of Spam Detection and Verification of Virus
Detection respectively. These subcharacteristics have
been kept separately in the compound model below a
Verification Capabilities subcharacteristic, which has
been obtained by a former application of the
identification pattern.

Nesting pattern
Precondition:
1) p, q, x and y are four subcharacteristics, {p, x} ⊆ QM1,
{q, y} ⊆ QM2, parent(x) = p, parent(y) = q.
2) exists a subcharacteristic r∈QMS such that {p, q} ⊆
MapSubcarsS(r).
3) z, u, v ∉QMS.
Pattern application: Nesting(p, q, x, y, r, z, u, v)
Postcondition:
1) z, u, v ∈ QMS such that parent(z) = r, parent(u) =
parent(v) = z.
2) MapSubcarsS(u) = {QM1::x}, MapSubcarsS(v) =
{QM2::y}.
3) z ∉ dom(MapSubcarsS)

Rationale. Sometimes the application of the combination
pattern may result in a too flat model. In these cases it is
possible to identify a new subcharacteristic (z in the
definition above) that aids on structuring the compound
model. The new subcharacteristic may show up
following two different criteria:
� Domain-oriented. The new subcharacteristic z puts

together two subcharacteristics x and y of the same
domain (i.e., QM1 and QM2 are the same).

� Feature-oriented. The new subcharacteristic z puts
together two subcharacteristics x and y of two
different domains (i.e., QM1 and QM2 are different)
that address to a similar feature. In this case, the new
subcharacteristic represents a new concept.

Example. A domain-oriented application of the pattern
appears when considering the Accuracy
subcharacteristics Accurate Scanning&Repair and
Actualization of Lists from the anti-virus domain. They
have been grouped in the compound model by
introducing a new subcharacteristic Antivirus Accuracy,
defined as child of Accuracy in this model.

A feature-oriented case appears when considering the
Security subcharacteristic User Privileges from directory
servers and Password Management from backup and
recovery tools. We have combined them in the
compound model by defining a parent subcharacteristic
called Internal Security.

Drag-and-drop pattern
Precondition:
1) p, x are two subcharacteristics, {p, x} ⊆ QM1.
2) exists a subcharacteristic r ∈ QMS such that p ∈
MapSubcarsS(r).
3) u ∉QMS.
Pattern application: Drag-and-drop(p, x, r, u)
Postcondition:
1) u ∈ QMS such that parent(u) = r.
2) MapSubcarsS(u) = {QM1::x}.

Proceedings of the Fourth International Conference on Quality Software (QSIC’04) 
0-7695-2207-6/04 $ 20.00 IEEE 



Rationale. There are subcharacteristics in a component
quality model that are not related in any way to
subcharacteristics of other component models. In this
case the subcharacteristics may be kept as they are in the
compound quality model, below a subcharacteristic of
the new model.

Example. The subcharacteristic Spam Filtering
Transparency in the anti-spam domain is kept as it is in
the compound model, since it is an interesting
subcharacteristic for the new system.

Abstraction pattern
Precondition:
1) p, x is a subcharacteristic, {p, x} ⊆ QM1.
2) exists a subcharacteristic r ∈ QMS such that p ∈
MapSubcarsS(r).
3) z, u ∉ QMS.
Pattern application: Abstraction(p, x, r, z, u)
Postcondition:
1) z, u ∈ QMS such that parent(z) = r, parent(u) = z.
2) MapSubcarsS(u) = {QM1::x}.
3) z ∉ dom(MapSubcarsS)

Rationale. Sometimes, when incorporating one or more
subcharacteristics of a component quality model into the
compound quality model, it may be considered
convenient to introduce a new one grouping those
subcharacteristics for leveraging the model.

Example. Consider the Security subcharacteristic Safe
Communication from mail servers. We have made an
abstraction of this subcharacteristic in the compound
model by defining a parent subcharacteristic called
External Security, since one subcharacteristic Internal
Security already exists in the compound model.

System pattern
Precondition:
1) r is a subcharacteristic, r∈QMS.
2) z ∉ QMS.
Pattern application: System(r, z)
Postcondition:
1) z ∈ QMS such that parent(z) = r.
2) z ∉ dom(MapSubcarsS)

Rationale. This pattern allows to introduce a
subcharacteristic for grouping those attributes whose
meaning varies substantially from the ones in the
component quality models, or even new attributes (e.g.,
coming from system architecture properties).

Example. In any compound model it will usually appear
a new subcharacteristic called System Interoperability,
which will group attributes to evaluate the capability of

products of the compound domains of interoperate
among them.

Fig. 1 shows a final example in the part of suitability that
makes use of four of the six patterns. The identification
pattern (not shown explicitly in the figure) is applied to
identify the ISO/IEC Suitability subcharacteristic of all
the individual domains. The domain-oriented style of the
nesting pattern is used to keep track of that part of
suitability inherent of mail servers (i.e., Message
Management) and meeting schedulers (i.e., Meeting
Arrangement and Calendar). The feature-oriented style
of this pattern is applied to put together related
subcharacteristics such as Folder Management and
Meeting Management that can be both viewed as
management of group of items (messages and meetings,
respectively). The abstraction pattern introduces a new
subcharacteristic to put the suitability of compression
algorithms at the same level as the others. Finally, the
system pattern is used to provide room for prospective
attributes.

Sy stem
Suitability

Attachment
Facilities

Message
Management

Functionality

Suitability

Folder
Management

Meeting
Management Calendar Meeting

Arrangement

Functionality

Suitability

Compression
Algorithms

Functionality

Suitability

Mail Server MeetingScheduler
Compression

Tool

MailServ er
Suitability

Meeting
Scheduler
Suitability

Functionality

Suitability

Compression
ToolSuitability

Attachment
Facilities

Message
Management

Meeting
Arrangement Calendar

CCSS

Domain-
oriented
nesting

Domain-
oriented
nesting

Feature-oriented
nesting

Abstraction

Compression
Algorithms

Folder
Management

Meeting
Management

System

Group
Management

Identification

Figure 1. Example of subcharacteristic patterns uses

The patterns defined in this section may be applied in
different ways. The strategy we followed in the mail
server case can be defined as follows:
� The identification pattern was used in the upper

levels of the subcharacteristic hierarchy.
� The combination and nesting patterns were applied

in the intermediate levels of the subcharacteristic
hierarchy, using one or the other depending on the
interest to add a subcharacteristic to aid on
structuring the compound model. In the case of the
application of the feature-oriented nesting pattern,
the added subcharacteristics corresponded to a new
concept identified in the compound model.

� The drag-and-drop and abstraction patterns were
used in the lower levels of the subcharacteristic

Proceedings of the Fourth International Conference on Quality Software (QSIC’04) 
0-7695-2207-6/04 $ 20.00 IEEE 



hierarchy, using one or the other depending on the
interest to add a subcharacteristic to aid on
structuring the compound model.

� The system pattern was used to group every new
quality element belonging to a first-level
subcharacteristic.

With this strategy, pattern application is a process that
could be automated at some extent, except for the last
case. This systematic nature facilitates prospective tool-
support that is currently being considered.

5.2 Composition patterns for attributes
Let QMS be the compound quality model and let QM1,
QM2∈{QMD} be two component quality models of a
given CCSS S. We identify the same 6 patterns than
those for subcharacteristics. Their formal definition is
slightly different because in these patterns quality
elements can be not only classified as attributes but also
as subcharacteristics and also because it is necessary to
define the metrics of quality attributes (denoted by
Met(attribute)) in the compound model in relation to the
metrics of quality attributes in the component models
(see Table 5). However, the changes are so few that we
do no include here their definition, except for the case of
the identification pattern, since it presents two variants.
For the rest of the patterns we just give the rationale and
examples of two of them.

Table 5. Attribute patterns.

Pattern QM1 QM2 QMS Metrics

r

z

r
z

u
r

z

Identification

Nesting

Abstraction

System

r

vu

z

N/A

N/AN/A

x

p

x

p

y

q

y

q

r
Drag-and-drop N/A

u

Combination

r

vu

Met(z) = Met(x)

Met(z) = K

Met(u) = Met(x)
Met(v) = Met(y)

Met(z) = f(u,v)
Met(u) = Met(x)
Met(v) = Met(y)

Met(u) = Met(x)

Met(z) = f(u)
Met(u) = Met(x)

Met(z) = K

x

p

x

p

y

q

y

q

x

p

x

p

y

q

y

q

x

p

x

p

x

p

x

p

Identification pattern
Precondition:
1) p and q are two subcharacteristics, p∈ QM1, q ∈ QM2,
QM1 ≠ QM2.
2) x and y are two attributes, x ∈ QM1, y ∈ QM2.

3) exists a subcharacteristic r∈QMS such that {p, q} ⊆
MapSubcarsS(r).
4) z∉QMS.
Pattern application: Identification(p, q, x, y, r, z)
Postcondition:
1) z∈QMS such that parent(z) = r.
2) MapAttrsS(z) = {QM1::x, QM2::y}.
3) The metrics of z may be defined in two different ways:

3.a) Delegation. Met(z) = Met(QM1::x).
3.b) Redefinition. Met(z) = K.

Rationale. Concerning a particular quality attribute, it
may be the case that one of the component domains
prevails over the rest. Therefore, the attribute in the
compound model is defined in the same way that the
prevalent one (case 3.a, delegation).

On the other hand it is possible that none of the
definitions of the attributes of the component model is
the appropriate for the attribute in the compound model.
In this case this attribute is defined by means of a new
metrics (case 3.b, redefinition).

Example. An example of delegation comes with the
Existence of Log File (EoLF) attribute. Although every
component in the CCSS may generate log files, we are
particularly interested in knowing if the mail server
component exhibits this feature; thus the metrics of
CCSS::EoLF will the same as the one of
MailServer::EoLF.

An example of redefinition may be the Time in the
Market attribute belonging to the Maturity
subcharacteristic. Each component model will include
this attribute, and the compound one will too, but the
value of this last attribute is obviously not computed in
the same way that any of the others.

Nesting pattern

Rationale. The most usual case in considering a quality
concept consists on taking all the component quality
attributes into account and to define a metrics for
combining them. This situation reflects our observation
that system quality attributes depend on the attributes of
their components.

Examples. Many examples exist, with different
combination functions f.
� Some combination functions are additive, remarkably
the sum. For instance, the Total Average Time to Send a
Message (attribute belonging to the Time Behavior
subcharacteristic) is defined as the sum of 5 attributes:
Average Sending Time, Virus Scanning, Mail
Compression, Time to Find Destination Node, and Time
to Update Log File. These attributes are a mapping of 5
attributes of the component quality models

Proceedings of the Fourth International Conference on Quality Software (QSIC’04) 
0-7695-2207-6/04 $ 20.00 IEEE 



corresponding to four domains: mail servers, anti-virus,
data compression and routing.
� When putting together quality models, sometimes we
are interested in combination functions as the maximum
or minimum values of some attribute. For instance, this is
the case of the Mean Time Between Failures attribute,
defined as the minimum of the values of the attributes
that are a mapping of the attributes Mean Time Between
Failures of every component model.
� Some quality attributes have sets as values, and the
corresponding attribute in the compound model may be
defined as the union or intersection of such sets. One
example is the Languages Of Documentation attribute
from the Understandability subcharacteristic, defined as
the intersection of the attributes that are a mapping of the
component models’ attributes.

System pattern

Rationale. This case appears when an attribute is not
related at all with quality features of the component
models. Most of the times the pattern will be applied to
capture architectural properties of the CCSS. Usually this
pattern is used in combination with the system
composition subcharacteristic pattern.

Example. Some classical object-oriented measures, such
as cohesion, are introduced in the Maintainability
subcharacteristic of the system as attributes. Cohesion
does not depend on the quality features of the model, but
instead it has to be with the way the COTS are
interconnected in the CCSS.

6. Analysis of COSTUME
At a first glance, the construction of so many individual
quality models may seem time-consuming and cumber-
some but in fact, in this section we argue that it pays off.
Firstly, it supports return on investment through model
reuse. Secondly, their construction can be requirements-
driven and therefore, individual quality models may be
left incomplete. Thirdly, the internal structure of the
CCSS quality model is well-suited for the unavoidable
maintenance of the model, coming from the continuous
changes on the COTS market. Last, tool-support is
possible and in fact we currently have a first prototype
for building individual quality models and building
repositories of information that is the basis for
implementing also the patterns presented in the paper
[13]. Last it should be remarked that quality models are
used either explicitly or implicitly in any trustable CCSS
development project; in other words, we claim that
COSTUME is not increasing the cost of quality
assessment, it just provides a rationale to deal with this
activity.

6.1 Requirements-Driven Construction
Due to the usual time pressures in real-life project, it
seems illusory to ask for the complete development of
individual quality models. Instead, we propose a
requirements-driven construction strategy that
concentrates the effort on the quality factors directly
related with the specific requirements of the project
which the model is being constructed for. Therefore, we
consider an iterative selection process [4] in which
requirements and evaluation through the construction of
the quality model are highly intertwined.

Not only the type of requirements but also the level of
detail must be considered. This second guideline aligns
with the observation that requirements on COTS that do
not provide the core functionalities of the CCSS are
usually not totally detailed. For instance, when referring
to anti-virus tools, requirements can be as vague as “The
messages sent by the system shall be not infected by
virus” without specifying e.g. which actions are required
once the virus is detected. The quality model for the anti-
virus domain may be reduced to a few attributes.

6.2 Reuse of Quality Models
However, the requirements-driven vision by itself is too
narrow for our purposes. We do not think in quality
models as throw-away artefacts, that is, models built just
for the project that originate them. On the contrary, we
think that quality models as a whole, or parts of them,
can be reused in a large number of projects. Specifically,
we can apply reuse in the following situations:
� Compound quality models can be reused in the

development of different CCSS of the same type.
Since the requirements will probably be different, the
model should be enlarged to embrace the quality
features left to cover these requirements.

� Component quality models can be reused for building
new CCSS quality models. This is specially true in
the case of quality models for general-purpose
domains, such as anti-virus, and backup and restore
tools: once built, they can be reused in a great deal of
CCSS quality models.

� Finally, some results of the study of the environment
can be reused in the construction of other composite
quality models where the same actors appear. For
instance, in case we want to construct a composite
quality model for a Mail Client System, knowledge
respect to Mail Server Systems can be reused.

It remains implicit that we assume the existence of a
repository of quality models, which can be reused as they
are in selection processes, or used as a starting point for
the construction of new quality models. Also, we assume
that this repository could be updated with new quality

Proceedings of the Fourth International Conference on Quality Software (QSIC’04) 
0-7695-2207-6/04 $ 20.00 IEEE 



models. We propose in [14] the organization of this
repository as a taxonomy in which related domains may
share the common parts of their quality models. In fact,
taking reuse into account, we could easily redefine the
activity 3 of COSTUME to take profit of the repository.

6.3 Maintenance of CCSS quality models
Constant change is a major characteristic around COTS
market. Releases and versions of products appear in a
few months, incorporating new functionalities, and
improving existing ones. With each new version, new
quality features come into existence, which shall be
incorporated into the quality models.

The internal structure of quality models supports the
identification and classification of new quality features.
But in addition to this property, common to any quality-
model-based approach, our CCSS quality models are
specially well-suited for the addition of new groups of
functionalities, through the definition of new actors and
the actualisation of the mappings. If mail servers history
is examined, it can be checked that former systems did
not provide some functionalities, such as meeting
scheduling or anti-virus services. In the near future, one
can envisage some groups of new functionalities coming
up, such as voice recognition (for dictating mails) and
domain-ontology alignment (e.g., for organizing folders
or determining mail subjects). The new actors generate
new individual quality models that do not interfere with
the existing ones. The CCSS quality model is updated
taking into account these new models.

Also we remark that CCSS models obtained with
COSTUME are highly traceable, which is one
fundamental characteristic. In other words, the definition
keeps track of which quality features in component
COTS affect which quality features in the CCSS.
Traceability is a property that supports maintainability.

6.4 Final Remarks
We have defined a precise method for complex

quality model construction. Some other methods (not
many) exist [6, 7], including our IQMC [10], but they are
not specifically oriented for the kind of composite system
addressed in the paper. Precision of the method strongly
relies on pattern application.

Our definition of CCSS quality model is dual, in the
sense that it is highly structured, by keeping track of
component models, but it is also ISO/IEC 9126-1-
compliant, which can make it more attractive for
practitioners.

We would like to enumerate the contexts that may
benefit of the existence of quality models: COTS
selection using the quality model as a framework where

requirements and COTS evaluations can be ported into;
system development where quality attributes may be used
to guide system development and quality assessment
procedures; product quality assessment and certification;
market exploration, where quality attributes can help
providers to know which properties would be more
interesting for buyers of their new product versions; and
reference model construction, for those organisations
who base their revenues in selling product reports and
white papers. These other contexts of use make more
critical the existence of methods as COSTUME for
developing quality models.

Acknowledgments
This work has been partially supported by the CICYT
project TIC2001-2165. Gemma Grau work has been
partially supported by an UPC scholarship.

References
[1] D. Carney, F. Long. "What Do You Mean by COTS?
Finally a Useful Answer". IEEE Software, 17(2), March 2000.

[2] A. Finkelstein, G. Spanoudakis, M. Ryan. "Software
Package Requirements and Procurement". In Procs. 8th IEEE
Int. Workshop on Software Specifications & Design, 1996.

[3] J. Kontyo. "A Case Study in Applying a Systematic Method
for COTS Selection". In Procs. 18th IEEE International
Conference on Software Engineering, 1996.

[4] N. Maiden, C. Ncube. "Acquiring Requirements for COTS
Selection". IEEE Software, 15(2), 1998.

[5] ISO Standard 8402: Quality management and quality
assurance-Vocabulary, 1986.

[6] R.G. Dromey. “Cornering the Chimera”. IEEE Software,
13(1), 1996.

[7] B. Kitchenham, S.L. Pfleeger. “Software Quality: the
Elusive Target”. IEEE Software, 13(1), 1996.

[8] P. Clements, L. Northrop. Software Product Lines: Prac-
tices and Patterns. SEI series in SE, Addison-Wesley 2002.

[9] M. Papazoglou, G. Schlageter (eds.). Cooperative Infor-
mation Systems: Trends & Directions. Academic Press, 1998.

[10] X. Franch, J.P. Carvallo. “Using Quality Models in
Software Package Selection”. IEEE Software, 20(1), 2003.

[11] Annie I. Antón. “Goal-Based Requirements Analysis”. In
Procs. 2nd IEEE International Conference on Requirements
Engineering, 1996.

[12] ISO/IEC Standard 9126-1 Software Engineering –
Product Quality – Part 1: Quality Model, 2001.

[13] G. Grau, J.P. Carvallo, X. Franch, C. Quer. “DesCOTS: A
Software System for Selecting COTS Components”. In Procs.
30th IEEE Euromicro Conference, 2004.

[14] J.P. Carvallo, X. Franch, C. Quer, M. Torchiano.
“Characterization of a Taxonomy for Business Applications
and the Relationships among them”. In Procs. 3rd Int. Conf. on
COTS-Based Software Systems, LNCS 2959, available at
http://www.springerlink.com, 2004.

Proceedings of the Fourth International Conference on Quality Software (QSIC’04) 
0-7695-2207-6/04 $ 20.00 IEEE 


	footer1: 


