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Abstract

We present a methodology to perform spatial prediction when measured data are

curves. In particular, we propose both an estimator of the spatial correlation and

a functional kriging predictor. We adapt an optimization criterium used in multi-

variable spatial prediction in order to estimate the kriging parameters. A real data

example on soil penetration resistences illustrates our proposals.
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1 Introduction

The number of problems and the range of disciplines where the collected data are

curves is recently increasing. Such curve data may be generated by densely space-

time repeated measurements, or by automatic recordings of a quantity of interest.

Since beginning of the nineties, Functional Data Analysis (FDA) is used in order

to model this type of information. Since the pioneer work by Deville (1974), and

more recently with the work by Ramsay and Silverman (2005), the statistical com-

munity has shown an increasing interest in developing models for functional data.

Functional versions for a wide range of statistical tools have been given. Examples

of such methods include exploratory and descriptive data analysis (Ramsay and Sil-

verman, 2005), linear models (Cardot et al, 1999; Ramsay and Silverman, 2005),

non-parametric methods (Ferraty and Vieu, 2006) or multivariate techniques (Sil-

verman, 1995; Ferraty and Vieu, 2003). In applied sciences, it is common that data

have both spatial and functional components. In agronomy, for instance, previous

to the crop, measures of penetration resistance are taken in a sampling grid of the

study area (Chan et al., 2006). In this case, and though penetration resistance

is measured only in some depths, it is possible to consider it as a functional vari-

able after a smoothing or interpolation process have been applied. Other examples

are given when daily cycles of oxygen are measured in different points of a study

zone (Mancera and Vidal, 1994) or when curves of temperature or precipitation are

obtained in several weather stations of a country (Ramsay and Silverman, 2005).

In the same way that some statistical methods have been generalized to be also

useful and widely used within the FDA context, it is possible to think that geosta-

tistical methods can be adapted to this type of structure to model data with both

spatial and functional components, as described above. This modeling approach can

certainly be useful to predict functions based on observed spatially referenced curves.

In this paper, we specifically address two issues: (a) the problem of estimation of the

spatial correlation when data are curves, and (b) a kriging-based spatial prediction
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of random curves. Although we use some univariate and bivariate distributional

assumptions to fulfill the objectives, our predictor is based on the basic philoso-

phy of functional data, that is, curves are single entities, rather than a sequence of

individual observations (Ramsay and Silverman, 2005).

The paper is organized as follows. In Section 2 we introduce functional notation,

some known results, and the predictor as well as the optimization criterium are

proposed. In Section 3 we propose a way to estimate the spatial correlation when

data are functions. An application of the proposed methodology to an agronomical

data set is considered in Section 4. Conclusions and discussion on further topics of

research are given in Section 5. A final Appendix shows the proofs of some statistical

results.

2 Ordinary kriging based on curves

Ferraty and Vieu (2006) define a functional variable as a random variable χ taking

values in an infinite dimensional space (or functional space). A functional data is

an observation χ of χ. A functional data set χ1, . . . , χn is the observation of n

functional variables χ1, . . . ,χn distributed as χ. Let T = [a, b] ⊆ R. We work with

functional data that are elements of

L2(T ) = {f : T → R, such that
∫

T
f(t)2dt < ∞}.

Note that L2(T ) with the inner product 〈f, g〉 =
∫
T f(t)g(t)dt defines an Euclidean

space. Let us consider a functional random process {χs : s ∈ D ⊆ Rd}, usually

d = 2, such that χs is a functional variable for any s ∈ D. Let s1, . . . , sn be arbitrary

points in D and assume that we can observe a realization of the functional random

process χs at these n sites, χs1 , . . . , χsn . Our goal is the prediction of χs0
, the value

of the functional random process at s0, where s0 is an unsampled location. Note

that in our approach we want to predict a complete function χs0
: T → R, and not a

particular value of a variable, which is the general aim in traditional geostatistics. In
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this sense our goal is close to multivariable spatial prediction (Ver Hoef and Cressie,

1993). An even more general framework can be found in Tolosana-Delgado (2005),

where geostatistics in an arbitrary Euclidean space is presented.

We assume for each t ∈ T that we have a second-order stationary and isotropic

random process, that is, the mean and variance functions are constant and the

covariance depends only on the distance between sampling points. Formally we

assume that:

• E(χs(t)) = m(t), for all t ∈ T, s ∈ D.

• V (χs(t)) = σ2(t), for all t ∈ T, s ∈ D.

• Cov(χsi
(t), χsj

(t)) = C(h; t) = Csisj (t), for all si, sj ∈ D, t ∈ T, where h =

‖si − sj‖.

• 1
2V(χsi

(t) − χsj
(t)) = γ(h; t) = γsisj (t), for all si, sj ∈ D, t ∈ T, where h =

‖si − sj‖.

The function γ(h; t), as a function of h, is called semivariogram of χ(t). Consider

now the family of linear predictors for χs0
given by

χ̂s0
=

n∑

i=1

λiχsi
, λ1, . . . , λn ∈ R. (1)

The predictor (1) has the same expression as the classical ordinary kriging predictor,

but considering curves instead of variables. The predicted curve is a linear combina-

tion of observed curves. Our approach considers the whole curve as a single entity,

that is, we assume that each measured curve is a complete datum. The kriging

coefficients or weights λ in equation (1) give the influence of the curves surround-

ing the unsampled location where we want to perform our prediction. Curves from

those locations closer to the prediction point will naturally have greater influence

than others more far apart. This is a first natural step in modeling of spatial func-

tional data. In the discussion Section we comment on other tentative more flexible

predictors, which could take into account correlations into the functional index.
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In multivariable geostatistics (Myers, 1983; Ver Hoef and Cressie, 1993; Wacker-

nagel, 1995, 1998), the best linear unbiased predictor (BLUP) of n variables on an

unsampled location s0 is obtained by minimizing σ2
s0

=
∑n

i=1 V
(
Ẑi(s0)− Zi(s0)

)
,

that is, minimizing the trace of the mean-squared prediction error matrix (Myers,

1983). We thus adopt here an extension of the minimization criterium given by

Myers (1983) to the functional context, by replacing the summation by an integral.

Consequently, in order to find the BLUP, the n parameters in the kriging predictor

of χs0
are given by the solution of the following optimization problem

min
λ1,...,λn

∫

T
V (χ̂s0

(t)− χs0
(t))dt, s.t.

n∑

i=1

λi = 1, (2)

where
∑n

i=1 λi = 1 is an unbiasedness constraint. The optimal weights are obtained

by solving the system (see details in the Appendix)




∫
T Cs1s1(t)dt · · · ∫

T Cs1sn(t)dt 1
...

. . .
...

...
∫
T Csns1(t)dt · · · ∫

T Csnsn(t)dt 1

1 · · · 1 0







λ1

...

λn

µ




=




∫
T Cs1s0(t)dt

...
∫
T Csns0(t)dt

1




, (3)

where µ is the Lagrange multiplier used to take into account the unbiasedness restric-

tion. On the other hand, working as in the usual geostatistical setting by considering

the relation γrs(t) = σ2(t)−Crs(t), optimal coefficients can be found as the solution

of the linear system (see Appendix)



∫
T γs1s1(t)dt · · · ∫

T γs1sn(t)dt 1
...

. . .
...

...
∫
T γsns1(t)dt · · · ∫

T γsnsn(t)dt 1

1 · · · 1 0







λ1

...

λn

−µ




=




∫
T γs0s1(t)dt

...
∫
T γs0sn(t)dt

1




. (4)

The function γ(h) =
∫
T γsisj (t)dt, h = ‖si − sj‖, can be called trace-semivariogram,

and details on its estimation can be found in next Section 3. The prediction trace-

variance of the functional ordinary kriging based on the trace-semivariogram is given
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by (see details in the Appendix)

σ2
s0

=
∫

T
V (χ̂s0

(t)− χs0
(t))dt =

n∑

i=1

λi

∫

T
γsis0(t)dt− µ. (5)

The parameter defined in equation (5) should be considered as a global uncertainty

measure, in the sense that it is an integrated version of the classical pointwise pre-

diction variance of ordinary kriging. Under a specified trace-semivariance model, we

can use estimations of this parameter to identify those zones which we have greater

uncertainty on the predictions. In addition, we can use it for comparing alternative

trace-semivariance models.

3 Estimating the trace-semivariogram

In order to solve the system in expression (4), an estimator of the trace-semivariogram

is needed. Given that we are assuming that χs(t) has a constant mean function m

over D, V(χsi
(t)−χsj

(t)) = E[(χsi
(t)−χsj

(t))2]. Note that, using Fubini’s theorem

γ(h) =
1
2
E

[∫

T
(χsi

(t)− χsj
(t))2dt

]
, for si, sj ∈ D with h = ‖si − sj‖.

Then an adaptation of the classical method-of-moments (MoM) for this quantity,

gives the following estimator

γ̂(h) =
1

2|N(h)|
∑

i,j∈N(h)

∫

T
(χsi(t)− χsj (t))

2dt, (6)

where N(h) = {(si, sj) : ‖si−sj‖ = h}, and |N(h)| is the number of distinct elements

in N(h). For irregularly spaced data there are generally not enough observations

separated by exactly h. Then N(h) is modified to {(si, sj) : ‖si−sj‖ ∈ (h−ε, h+ε)},
with ε > 0 being a small value.

Once we have estimated the trace-semivariogram for a sequence of K values hk,

we propose to fit a parametric model γ(h; θ) (any of the classical and widely used

models such as spherical, Gaussian, exponential or Matérn could well be used) to
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the points (hk, γ̂(hk)), k = 1, . . . , K, as if they were obtained in the classic geo-

statistical setting. Usually, this type of fitting is done by ordinary least squares

(OLS) or weighted least squares (WLS) (see, for instance, Cressie, 1993). A differ-

ent procedure, alternative to the parametric fitting, consists of applying smoothing

techniques (splines or local linear regression, see Wasserman (2006) and references

therein) to the set of data (hk, γ̂(hk)), k = 1, . . . , K, in order to be able to approxi-

mately evaluate γ̂(h) for any value of h ∈ R+. However in this case, if γ̂S(h) denotes

the smoothed version of γ̂(h), the question of definite-positiveness of γ̂S(h) deserves

more attention.

If γ(h; θ̂) denotes the parametric estimated trace-semivariogram, this functional

form is used both to obtain the kriging coefficients λi in equation (4), and to estimate

the prediction trace-variance through equation (5).

4 Data analysis: penetration resistance curves

In Agronomy, it is usual to measure the soil penetration resistance in a region before

sowing (Chan et al., 2006). Figure 1 shows 32 sampling locations in an experimen-

tal plot at the National University of Colombia, together with some penetration

resistance profiles.

For each sampling point, 334 observations of penetration resistance (MPa) were ob-

tained on depths varying between 0 and 45 cm. The goal of analyzing this type

of data is to predict penetration resistance on unsampled points based on the col-

lected information, in order to carry out precision agriculture. If (classic) geosta-

tistical methods are proposed to solve such prediction problem above mentioned,

both multivariable kriging and space-time kriging techniques could be considered

as alternative solutions to the functional approach. However, in the multivariable

case, to estimate a coregionalization linear model (Wackernagel, 1995, 1998) with

334 variables is highly restrictive, and the space-time option is computationally very

expensive to (finally) predict only one value of penetration resistance. A less flexi-
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Figure 1: Sampling points and some observed penetration resistance curves. Data are

measured at the Marengo Experimental Station (National University of Colombia) during

2004.

ble but easier alternative is to apply the prediction method proposed in this paper.

To illustrate our approach, prediction on an unsampled location of the region is

performed, together with a cross-validation analysis.

The complete functional data set with 32 observed functions is shown in Figure

2. An outlier curve is clearly detected in this plot: that having values over 2.5 for

depths in the range [30, 40] and corresponding to the sampling point with coordi-

nates (11162, 9707) (point numbered as 4 in Figure 1). This outlying function was

not considered in further analysis. The high variability observed in the empirical

functions (Figure 2, left panel) suggested removing observational errors by using
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some smoothing technique. Consequently, smoothed curves of observed penetra-

tion resistance were obtained by using B-splines basis functions (see Figure 2, right

panel). Spline functions are the most common choice for nonperiodic data (Ramsay

and Silverman, 2005). Using the 31 remaining curves and the estimator in equa-

tion (6), the trace-semivariogram was calculated for several spatial lags. A spherical

model was fitted to the estimated trace-semivariogram by using OLS technique (see

Figure 3, left panel). The range of the fitted model was 110 meters, which can be

interpreted, as in the classic geostatistical setting, that there is a strong spatial au-

tocorrelation among the curves-note that the maximum distance between sampling

points is 190 meters, and curves separated 110 meters are still correlated. Fitting

a reasonable model to the trace-semivariogram is a critical step for subsequent in-

terpolation of functional data by kriging. With the considered sampling scheme, it

is not possible to have estimations of the trace-semivariance near to the origin, and

thus it is possible that the nugget parameter was not well estimated. Consequently,

it would be important to include more nearby sampling points in other essays in this

experimental plot.

As an example of the proposed methodology, kriging prediction on an unsampled

location with coordinates 11179 (longitude) and 9750 (latitude) (see Figure 1) was

performed. The kriging coefficients λ were obtained by solving the system in equation

(4) with γ(h) estimated by the semivariance model given in Figure 3. The predicted

curve (Figure 3, solid line in right panel) indicates that in this location there is a

good soil compaction level, because the predicted penetration resistance is less than

2 MPa, which is considered the critical limit for root growth (Chan et al., 2006).

We used cross-validation methods to compare observed and predicted curves. Cross-

validation was implemented by removing the curve χsi for each i, i = 1, · · · , 31, and

further predicting χsi from the remaining data. A graphical comparison between

observed and predicted curves (see Figure 4) shows that predicted curves are more

smoothed than observed ones, as well as that the predicted data set has less vari-



Geostatistics for functional data: An ordinary kriging approach 10

0 10 20 30 40

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Depth (m)

P
e

n
e

tr
a

ti
o

n
 r

e
s
is

ta
n

c
e

 (
M

P
a

)

0 10 20 30 40

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Depth (cm)

P
e

n
e

tr
a

ti
o

n
 r

e
s
is

ta
n

c
e

 (
M

P
a

)

Figure 2: Set of 32 penetration resistance observed functions (left) and 31 smoothed

functions (right). Smoothing on an outlier curve (see text) was not considered, and it

is not showed in right panel. The dotted line in both panels indicates null penetration

resistance.
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Figure 3: Left panel: Spherical model fitted to the estimated trace-semivariogram: γ̂(h) =

8(1, 5h/110− 0.5(h/110)3) for h ≤ 110 and γ̂(h) = 8 for h > 110. Right Panel: Measured

curves of penetration resistance (dashed lines) and kriging prediction in an unsampled

location (solid line). The dotted line in both panels indicates null penetration resistance.

ance. This was not surprising since kriging is a smoothing method, and also because

there is a significant high variability amongst penetration resistance values for some
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Figure 4: Set of 31 penetration resistance (MPa) functions, obtained by B-spline smoothing

(left), and predictions based on cross-validation (right). The dotted line in both panels

indicates null penetration resistance.
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Figure 5: Cross-validation residuals (clear lines), residual mean (dark line) and residual

standard deviation (dashed line).

particular depth levels (see left panel of Figure 4).

A detailed analysis of cross-validation residuals indicated that there was no evidence
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of biased predictions (see mean function in Figure 5). We also note that we had

greater uncertainty on predictions both around 20 cm and greater than 40 cm of

depth (see residual standard deviation in Figure 5).

5 Conclusions and further research

We have introduced an ordinary kriging predictor when data are curves. More

complex procedures can be considered by replacing the scalar coefficients λi, i =

1, · · · , n in equation (1) by functional coefficients (λi(t), t ∈ T ), or even by double

indexed functional coefficients (λi(s, t), s, t ∈ T ), and using integrals over T as a

way to extend the definition of linear combinations. These extensions are parallel

to regression models with functional responses (see, Chapters 14 and 16 in Ramsay

and Silverman, 2005), and could be considered as extensions of the multivariable

kriging predictor (Ver Hoef and Cressie, 1993) to the functional context.

In this paper, and to analyze our data set, we have focused on B-splines, as a tenta-

tive smoothing technique, and on MoM and OLS techniques as classical estimation

methods. However, further attention should be given to the use of: (a) other basis

system to get functional data from discrete observations; (b) alternative methods

of estimating the empirical trace-semivariogram, for instance, by using robust es-

timators (Cressie, 1993) or kernel estimation methods (Yu et al., 2007); (c) other

parametric and nonparametric methods to fit the empirical trace-semivariogram;

and (d) the automatic detection of outlier functions in the data set.

6 Appendix

The Appendix contains some detailed results mentioned in previous Section 2.

A1. Solution of functional ordinary kriging based on trace-covariances.
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We need to minimize
∫

T
V (χ̂s0

(t)− χs0
(t))dt + 2µ(

n∑

i=1

λi − 1), (7)

where χ̂s0
(t) =

∑n
i=1 λiχsi

(t). The integral in equation (7) can be written as

σ2
s0

=
∫

T
V (χ̂s0

(t)− χs0
(t))dt

=
∫

T
V (χ̂s0

(t))dt +
∫

T
V (χs0

(t))dt− 2
∫

T
C(χ̂s0

(t), χs0
(t))dt

=
∫

T
V (

n∑

i=1

λiχsi
(t))dt +

∫

T
σ2(t)dt− 2

∫

T
C(

n∑

i=1

λiχsi
(t), χs0

(t))dt

=
∫

T

n∑

i=1

n∑

j=1

λiλjC(χsi
(t), χsj

(t))dt +
∫

T
σ2(t)dt

− 2
∫

T

n∑

i=1

λiC(χsi
(t),χs0

(t))dt

=
n∑

i=1

n∑

j=1

λiλj

∫

T
Cij(t)dt +

∫

T
σ2(t)dt− 2

n∑

i=1

λi

∫

T
Ci0(t)dt. (8)

Then, the objective function can be written as
n∑

i=1

n∑

j=1

λiλj

∫

T
Cij(t)dt +

∫

T
σ2(t)dt− 2

n∑

i=1

∫

T
Ci0(t)dt + 2µ(

n∑

i=1

λi − 1). (9)

Minimizing (9) with respect to λ1, · · · , λn and µ, we obtain the following set

of (n + 1) equations

n∑

j=1

λj

∫

T
C1j(t)dt + µ =

∫

T
C10(t)dt

n∑

j=1

λj

∫

T
C2j(t)dt + µ =

∫

T
C20(t)dt

... (10)
n∑

j=1

λj

∫

T
Cnj(t)dt + µ =

∫

T
Cn0(t)dt

n∑

j=1

λj = 1
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Now the result holds as equation (3) is a matrix notation of the system given

in (10).

A2. Solution based on the trace-semivariogram.

We have, by using the notation given in Section 2, that

γsisj (t) = γ(χsi
(t), χsj

(t))

= V(χsi
(t)− χsj

(t))

=
1
2
E(χsi

(t)− χsj
(t))2

= σ2(t)− Cij(t).

Then ∫

T
Cij(t)dt =

∫

T
σ2(t)dt−

∫

T
γsisj (t)dt. (11)

By replacing equation (11) in the system (10), we obtain the system given in

equation (4).

A3. The prediction trace-variance.

From the first n equations in system (10), we have the relation

n∑

i=1

n∑

i=1

λiλj

∫

T
Cij(t)dt =

n∑

i=1

λi

∫

T
Ci0(t)dt−

n∑

i=1

λiµ. (12)

Replacing equation (12) into equation (8) we obtain

σ2 =
∫

T
σ2(t)dt−

n∑

i=1

λi

∫

T
Cio(t)dt− µ.

If, in addition, we consider the relation (11), we find the prediction trace-

variance expression given in Section 2.
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