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Resumen

Este trabajo presenta un Algoritmo Genético (GA) del problema de
secuenciar unidades en una línea de producción. Se tiene en cuenta la
posibilidad de cambiar la secuencia de piezas mediante estaciones con
acceso a un almacén intermedio o centralizado. El acceso al almacén
además está restringido, debido al tamaño de las piezas.

Abstract

This paper presents a Genetic Algorithm (GA) for the problem of
sequencing in a mixed model non-permutation flowshop. Resequencing
is permitted where stations have access to intermittent or centralized
resequencing buffers. The access to a buffer is restricted by the number
of available buffer places and the physical size of the products.

Keywords: Genetic Algorithm; Non-permutation Flowshop; Intermittent and
Centralized Constrained Buffer; Mixed model assembly line

1. Introduction

In the classical production line, only products with the same options were pro-
cessed at once. Products of different models, providing distinct options, were
either processed on a different line or major equipment modifications were nec-
essary. For today’s production lines this is no longer desirable and more and
more rise the necessity of manufacturing a variety of models on one line, mo-
tivated by offering a larger variety of products to the client. Furthermore, the
stock for finished products is reduced considerably with respect to a production
with batches, and so are the expenses derived from it. Mixed model production
lines consider more than one model being processed on the same production
line in an arbitrary sequence. Nevertheless, the majority of publications are
limited to solutions which determine the job sequence before the jobs enter
the line and maintain it without interchanging jobs until the end of the pro-
duction line, known as permutation flowshop. Exact approaches for makespan
minimization can be found in [10], [15], and [4], among others. In two recent
reviews [6], [7] heuristic methods for sequencing problems are presented.
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In the case of more than three stations and with the objective function to mini-
mize the makespan, a unique permutation is no longer optimal. In [16] a study
of the benefit of using non-permutation flowshops is presented. Furthermore,
there exist various designs of production lines which permit resequencing of
jobs: using large buffers (Automatic-Storage-and-Retrieval-System) which de-
couple one part of the line from the rest of the line [12]; buffers which are
located off-line [11]; hybrid or flexible lines [5]; and more seldomly, the in-
terchange of job attributes instead of physically changing the position of a job
within the sequence [17]. Resequencing of jobs on the line is even more relevant
with the existence of an additional cost or time, occurring when at a station
the succeeding job is of another model, known as setup-cost and setup-time [2].

This paper presents a Genetic Algorithm for a mixed model non-permu-tation
flowshop with the possibility to resequence jobs between consecutive stations.
The buffers are located off-line either accessible from a single station (inter-
mittent case) or from various stations (centralized case). In both cases, it is
considered that a job may not be able to be stored in a buffer place, due to its
extended physical size, see figure 1. The primary objective is the minimization
of the makespan, the setup-cost and the setup-time. Several genetic operators
are used, among them inheritance, crossover and mutation. In order to further
improve the Genetic Algorithm, it was partitioned into two cascades. In the
first cascade, the possibility of resequencing jobs within the production line is
ignored and reduced chromosomes are used. In the second cascade, the rese-
quencing possibilities, provided by stations with access to resequencing buffers,
are taken into account.
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Figure 1: Scheme of the considered flowshop. The jobs Jj pass consecutively through
the stations Ii. The buffer Bi permits to temporally store a job with the objective
of reinserting it at a later position in the sequence. a) Job J2 can pass through any
of the two buffer places Bi,1 or Bi,2 of buffer Bi. b) Job J3 can pass only through
buffer place Bi,2, due to its physical size.
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The considered problem is relevant to various flowshop applications such as
chemical productions dealing with client orders of different volumes and differ-
ent sized resequencing tanks. Also in productions where split-lots are used for
engineering purpose, such as the semiconductor industry. Even in the produc-
tion of prefabricated houses with, e.g., large and small walls passing through
consecutive stations where electrical circuits, sewerage, doors, windows and
isolation are applied.

In what follows the problem is formulated in more detail and in continuation
the applied Genetic Algorithm is explained. Then, a preliminary analysis and
the adjustment of the genetic operators is performed, using the three steps
Rough-Adjustment, Repeatability, Fine-Adjustment, ensuring flexibility and ro-
bustness. Thereafter promising results are presented, which demonstrate the
relevance of the proposed concept, followed by the conclusions.

2. Problem definition

The realized work is based on the classical flowshop in which the jobs (J1,
J2, ..., Jj , ..., Jn) pass consecutively through the stations (I1, I2, ..., Ii, ..., Im).
Furthermore, after determined stations, off-line buffers Bi permit to resequence
jobs. The buffer provides various buffer places (Bi,1, Bi,2, ...) and each buffer
place is restricted by the physical size of the jobs to be stored. As can be seen in
figure 1a, job J2 can be stored in buffer place Bi,1 as well as in Bi,2. Whereas,
the next job J3 can be stored only in buffer place Bi,2, because of the physical
size of the job exceeding the physical size of buffer place Bi,1, see figure 1b.

In a first step, the resequencing buffers are located intermittent, between two
consecutive stations. In this case the buffer is assigned to the precedent station
and may be accessed only by this station. Then, for an additional benefit, a
single resequencing buffer is used, with access from various stations, while the
limitations on the physical size of the buffer places are maintained.

3. Genetic Algorithm

The concept of the Genetic Algorithm was first formulated by [8] and [9] and
can be understood as the application of the principles of evolutionary biol-
ogy, also known as the survival of the fittest. Genetic algorithms are typically
implemented as a computer simulation in which a population of chromosomes,
each of which represents a solution of the optimization problem, evolves toward
better solutions. The evolution starts from an initial population which may be
determined randomly. In each generation, the fitness of the whole population is
evaluated and multiple individuals are stochastically selected from the current
population, based on their fitness and modified to form a new population. The
alterations are biologically-derived techniques, commonly achieved by inheri-
tance, mutation and crossover. Multiple genetic algorithms were designed for
mixed model assembly lines such as [3], [13], [19] and [18].
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The heuristic used here is a variation of the Genetic Algorithm explained in [14].
The genes represent the jobs which are to be sequenced. The chromosomes υ,
determined by a series of genes, represent a sequence of jobs. A generation is
formed by R chromosomes and the total number of generations is G. In the
permutation case, the size of a chromosome is determined by the number of
jobs, the fraction Π. In the non-permutation case, the chromosomes are L + 1
times larger, resulting in the fractions Π

′

1, ...,Π
′

L+1, being L the number of rese-
quencing possibilities. In both cases, special attention is required when forming
the chromosomes, because of the fact that for each part of the production line
every job has to be sequenced exactly one time.

The relevant information for each chromosome is its fitness value (objective
function), the number of job changes and the indicator specifying if the chro-
mosome represents a feasible solution. A chromosome is marked unfeasible and
is imposed with a penalty, if a job has to be taken off the line and no free buffer
place is available or the physical size of the job exceeds the size limitation of
the available buffer places. When two solutions result in the same fitness, the
one with fewer job changes is preferred.

3.1. Parameter and variable definition

The parameters and variables used in the Genetic Algorithm are as follows:

R Population size
s Index of chromosomes s = 1, ..., R
υs Chromosome s
g Index of generations
G Number of generations
L Number of Resequencing possibilities
N Number of Jobs
MBS Number of best solutions to maintain
pb Probability to eliminate best solutions pb ∈ [0..1]
pc-I Probability of crossover-I pc-I ∈ [0..1]
pc-II Probability of crossover-II pc-II ∈ [0..1]
pm-I(f) Probability of mutation I (forward) pm-I(f) ∈ [0..1]

pm-I(b) Probability of mutation I (backward) pm-I(b) ∈ [0..1]

pm-II Probability of mutation II pm-II ∈ [0..1]
pos Random position of a gene in the chromo-

some υ
FP Penalty for non-feasible solution

3.2. Reduction of chromosome size

The computational effort necessary to solve the Genetic Algorithm is directly
related to the size of the chromosomes. Therefore it is preferable to work with
the minimum necessary size. The chromosome is basically formed by queuing
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the sequences Π1...ΠM , M fractions of length N . Due to the fact that a change
in the sequence can only occur in the case a station is provided with access
to a resequencing buffer, the sequences for several consecutive stations is the
same. The sequences of stations which are subsequent to a station with access
to resequencing buffers, until the next stations with access to resequencing
buffers, are not considered in the chromosome. This results in the reduction
of the necessary chromosomes from Π1...ΠM to Π

′

1...Π
′

L+1. L is the number of
stations with access to a resequencing buffer.

Figure 2 shows an example of a plant with seven jobs to be processed on five
stations. Two of the stations, I2 and I4, have access to a resequencing buffer.
This results in the same sequence for the first two stations (Π

′

1 = Π1 = Π2)
and the next two stations (Π

′

2 = Π3 = Π4). The final station processes the
sequence Π

′

3 = Π5. The size of the resulting chromosome υs is reduced to a
fraction of 2/5.

1 - 3 - 4 - 6 - 2 - 5 - 7 1 - 4 - 3 - 6 - 2 - 5 - 7 1 - 4 - 3 - 2 - 5 - 7 - 6
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Figure 2: Reduction of chromosome υs from Π1...Π5 to Π
′

1...Π
′

3 for the Genetic
Algorithm due to the fact that resequencing is not possible for all stations.

3.3. Validation

Before applying the genetic operators, the actual population requires to be
validated and the chromosomes for reproduction need to be selected.

Total fitness of population F : The total fitness of the population F is the
sum of the individual fitness values of the individual chromosomes:

F =
R∑

s=1

eval(υs) (1)
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Probability of individual chromosome ps: The probability of the individ-
ual chromosomes ps is a measure of how likely a chromosome is to be selected
for reproduction. The sum of the over all chromosomes is equal to 1. The
probability of the individual chromosomes is calculated as:

ps = eval(υs)/F (2)

Sorting solutions by fitness: After the evaluation of the chromosomes with
respect to their fitness, they are sorted in increasing order by their fitness. Then
the fittest chromosome is the uppermost. The reason for sorting them is the
far easier handling of the population when e.g. declaring taboo to overwrite a
certain amount of best solutions, defined by MBS.

Cumulative Probability The cumulative probability is the sum of the prob-
ability of the individual chromosomes ps, from the first chromosome until the
one at position s in the list of chromosomes. The cumulative probability is
calculated as:

qs =

s∑

j=1

pj (3)

Storage of best solution: Apart from the initial population, the actual
population does not necessarily contain a copy of the so far best feasible solu-
tion. If the actual population is the initial population, the best feasible solution
is to be stored. Otherwise, the currently best solution gets overwritten if the
actual population provides an enhanced, fitter, and feasible solution.

Deletion of duplicate solutions: In order to avoid occupation of chro-
mosomes with duplicate samples, a duplicate chromosome is deleted. This is
achieved after the chromosomes have been sorted by their fitness. The chro-
mosomes which result in the same fitness are then evaluated regarding their
genes’ sequence. If two chromosomes are identical, one is deleted from the
actual population and replaced by a new permutation chromosome, as in the
initial population. An additional chromosome is not yet evaluated and there-
fore is assigned with the weakest fitness obtained so far, hence is not likely to
reproduce. The added chromosome describes a permutation sequence, hence,
is a feasible solution.
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3.3.1. Selection of chromosomes

The selection process for chromosomes which are used for the crossover is based
on spinning a roulette wheel (R − 2 · MBS)-times. Reason for this reduced
number is that, e.g., if pc is set to 1.0, a total of 100% crossover has to be
performed and only chromosomes can be overwritten which are not part of the
"best solutions", determined by MBS or are part of the second copy of the
best solutions which only get applied the genetic operator mutation. Each time
a single chromosome is selected in the following way:

• For each chromosome in the population a random (float) number r is
generated in the range [0..1].

• If r < q1 then the first chromosome(υ1) is select; otherwise the s-th
chromosome υs (2 ≤ s ≤ R) is selected such that qs−1 < r ≤ qs.

Clearly, some chromosomes are selected more than once. This results from the
fact that more promising chromosomes are used for reproduction more often,
the average stay even, and the worst are not reproduced and most probably
will die off within one of the next generations.

The parameter pc defines the overall probability of crossover. The expected
number of chromosomes which undergo the crossover is pc · R. From the pre-
viously selected chromosomes some have to be discarded in order to meet the
total number of chromosomes for the crossover:

• A random (float) number r is generated in the range [0..1].

• If r < pc the given chromosome is selected for crossover.

In the next step the selected chromosomes are mated depending on the type
of crossover and the proportion with which the operator crossover-I and the
operator crossover-II is performed, defined by pc-I and pc-II, respectively. The
sum of pc-I and pc-II is smaller or equal to 1.0:

(pc-I + pc-II) ≤ 1.0 (4)

The selection process for the operator mutation is similar, but only (R−MBS)
chromosomes are selected and instead of the pc, the probability pm is applied.

3.4. Genetic operators

The genetic operators specify in which way the subsequent population is gener-
ated by reproduction of the present population, taking into account that "fitter"
solutions are more promising and therefore are more likely to reproduce. Even
an unfeasible solution is able to reproduce, because of the fact that it may gen-
erate valuable and feasible solutions in one of the preceding generations. The
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used genetic operators are inheritance, crossover and mutation. The value pX

is the percentage of applying a genetic operator X to a chromosome. Figure 3
gives an overview on how the genetic operators are applied to the population
of generation g in order to form the next generation g + 1.

1

Generation g Generation +1g

MBS

Mutation-I (F)Crossover-II
Crossover-I

Mutation-I (B)
Mutation-II

3

2

u
1

u
2

u
3

u
4

uR

Figure 3: Application of the genetic operators to the population of generation g to
form the next generation g + 1. The sequence in which the genetic operators are
applied is (1) Inheritance, (2) Crossover and finally (3) Mutation.

Inheritance: The parameter MBS determines the percentage of the best so-
lutions which will be copied directly to the next generation, called the cluster of
promising chromosomes, ensuring that promising chromosomes are not extinct.
In order to not remain in a local minimum, the parameter pb determines the
percentage of chromosomes which are removed from this cluster.

Mutation: This operator specifies the operation of relocating jobs at posi-
tion pos1 to position pos2 within the same fraction of a chromosome. Two muta-
tion operators are applied, mutation-I and mutation-II (figure 4). Furthermore,
there exist two cases for mutation-I: forward mutation, where pos1 < pos2; and
backward mutation, where pos1 > pos2. In the first case, a single job has to
be taken off the line, and in the second case, in order to let a single job pass, a
group of succeeding jobs has to be taken off the line, resulting in a larger effort
to realize. The probabilities of this operator are pm-I(f), pm-I(b) and pm-II.
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Figure 4: Operators mutation-I and mutation-II. a) The job at position pos1

is taken off the line and reinserted to the line at position pos2. b) The two jobs at
position pos1 and pos2 are interchanged.
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Crossover: This operator specifies the operation of crossing information of two
chromosomes. Two crossover operations are applied, crossover-I (figure 5a,b)
and crossover-II (figure 5c,d). The probabilities with which these operations
are applied to a chromosome are pc-I and pc-II, and the crossover points are
defined by the random number pos, and the pair pos1 and pos2, respectively.
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Figure 5: Operators crossover-I and crossover-II. a) and c) In the simple case
the crossing takes place between two main fractions of the chromosome. After the
crossover point the chromosomes are completely crossed over. b) and d) In the more
complex case it has to be assured that each job is sequenced exactly one time for each
fraction of the chromosome.

3.5. Overwrite-position for crossover

The new chromosomes, generated by the genetic operators Crossover-I and
Crossover-II, can overwrite any of the chromosomes which are not part of the
best solutions or the second copy of best solutions which are reserved for the
genetic operators of mutation. Two possible strategies are implemented in the
Genetic Algorithm:

• Last position: The chromosomes of the new population are overwriting
the chromosomes of the previous population in increasing order of their
fitness, starting with the weakest.

• Random position: The chromosomes of the new population are ran-
domly overwriting the chromosomes of the previous population. Clearly
one position is not overwritten two times in order to ensure the correct
number of new chromosomes.

In both cases neither the best solutions nor the second copy of the best solu-
tions, which are reserved for mutation only, are overwritten.
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3.6. Cascading

In order to further improve the Genetic Algorithm, it is partitioned into two
steps. In the first step, the possibility of resequencing jobs within the produc-
tion line is ignored, furthermore only permutation sequences are considered as
possible solutions and the chromosome size is reduced to the number of jobs.
The last generation, together with the best found solution, form the initial
generation for the next cascade where the resequencing possibilities, provided
by stations with access to resequencing buffers, are taken into account.

3.7. Condition for termination of Genetic Algorithm

Apart from the number of generations (G), which terminates the Genetic Al-
gorithm when the maximum number of generations is reached, the algorithm
can use a second condition which may result in an early termination, the
Convergence-control. In the case in which the algorithm has not improved
the sofar best solution for the last 300 generations, it is assumed that the the
algorithm has converged and is interrupted.

4. Preliminary Analysis of Parameters

Preceding to the adjustment of the parameters of the genetic operators, a
preliminary analysis is performed. This analysis intents to obtain a better
understanding of the behavior of the parameters, as for example to estimate
how likely it is for the preceding adjustment of the parameters to remain in
local minima and consists in keeping all except two parameters constant and
was performed on three pairs: pc-I/pc-II, pm-I(f)/pm-I(b), and pm-I(f)/pm-II.

Here only the pair pm-I(f)/pm-I(b) is presented, the other two pairs showed

similar results.
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4.1. Mutation-I (f) versus Mutation-I (b)

The two parameters pm-I(f) and pm-II in the range [0.0, 0.1, ..., 1.0]. The other

three parameters are set to small values: pc-I = 0.3, pc-II = 0.2, pm-II = 0.1.

Figure 6 shows the influence of the two parameters for mutation-I on the result-
ing value of the objective function. The plotted mesh shows that a continuous
surface, indicating that local minima are not to be expected. Furthermore, the
values of the objective function are better when both parameters for mutation-I
are decreased. Except for the case in which both of them become too small.

4.2. Variability of solutions

The Genetic Algorithm is based on random numbers, giving the algorithm its
strength. However, this also leads to the disadvantage that the algorithm on
the other hand is not very predictable and in order to determine promising
parameters, useful for a multitude of problems, the analysis of the parameters
is to be repeated with various different seeds.

Figure 7a shows the variability of the Genetic Algorithm with respect to the
obtained solutions. The same problem is solved 100 times, each time a differ-
ent seed is used, for the permutation case as well as for the non-permutation
case. The solutions, permitting non-permutation sequences, in general result
in better solutions with a larger deviation. The average value of the objective
function of the particular example, used in figure 7a, is 500.93 with a standard
deviation of 2.96 for the permutation case and 490.21 with a standard deviation
of 4.13 for the non-permutation case.

Analyzing the obtained data with respect to the number of job-changes with
more detail, figure 7b shows that in order to obtain better solutions, the number
of jobs, which have to be taken off the line for resequencing, tends to be higher.
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Figure 7: Variability of the solutions of the Genetic Algorithm. The same prob-
lem is solved 100 times, each time with a different seed, showing the following be-
havior: a) Probability of the solution for the permutation case as well as for the
non-permutation case. b) Dependency of the number of job-changes on the objective
function for the non-permutation case. Better solutions tend to have a larger number
of jobs which have to be taken off the line in order to be resequenced.
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5. Parameter adjustment

The adjustment of the values of the genetic operators, which are used for the
two cascades of the Genetic Algorithm, is determined with an extended exper-
imentation and consists of three steps:

Rough adjustment: In order to adjust the parameters in a robust man-
ner, different sets of parameters are applied to a series of 14 differently sized
problems, varying the number of jobs to be sequenced, the number of stations
and the number of resequencing possibilities. During the rough adjustment
only one unique seed is used for the random number generation in the Genetic
Algorithm. The sets of parameters are summarized and the 300 most promis-
ing which show good performance on all problem sizes are used for further
adjustment.

Repeatability: The use of only one seed in the rough adjustment requires to
determine amongst the promising sets of parameters which set achieves good
results for a multitude of seeds. The fact that a set of parameters achieves good
results for different seeds indicates that the same set of parameters also per-
forms well for different plant configurations. The promising sets of parameters
are verified with 16 different seeds for the 14 differently sized problems. Once
the sets of promising parameters are examined with respect to repeatability,
one set is used for the fine adjustment, determined by grouping into clusters [1].

Fine adjustment: Due to the fact that in the previous analysis predetermined
discrete values for the parameters are used, a fine adjustment succeeds. The
genetic operators are subject to an adjustment of 0.1 for the previously deter-
mined sets of parameters and are revised with 16 seeds for the 14 differently
sized problems, used for the repeatability.

Cascade R G MBS pb pc-I pc-II pm-I(f) pm-I(b) pm-II

Step 1 100 1000 0.05 0.1 0.3 0.6 0.25 0.25 0.25

Step 2 100 10000 0.05 0.4 0.5 0.35 0.45 0.1 0.1

Table 1: Characteristic values of the Genetic Algorithm. The first cascade is applied
to determine a generation with only permutation solutions, which is then used as an
initial generation for the second cascade.

The experimentation is first performed on the permutation case (first cascade),
and then on the non-permutation case (second cascade). Table 1 lists the
results for the genetic operators used in the following performance study.

6. Performance Study

For the study of performance, a flowshop which consists of 5 stations is con-
sidered. The range of the production time is [0...20] such that for some jobs
exists zero-processing time at some stations, for the setup-time [2...8] and for
the setup-time [1...5]. The number of jobs is varied from 5 to 100 with in-
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crements of 5. The objective function, is the weighted sum of the makespan
(factor of 1.0) and the setup-cost (factor of 0.3), where the setup-time has is
not concerned with a weight but is indirectly included in the calculation of the
makespan.

Case Intermittent Centralized
Size l m s l m s

(300) 1/2 0/0 0/0 3 0 0
(111) 0/1 1/0 0/1 1 1 1
(102) 0/1 0/0 1/1 1 0 2
(012) 0/0 0/1 1/1 0 1 2

Table 2: Allocation of the buffer places to the buffers. In the intermittent case the
allocation is done to two different buffers.

6.1. Difference in physical size of buffer places

Introducing limitations on the physical size of the buffer places on one side
restricts possible solutions but on the other side minimizes the necessary buffer
area. This limitation arises, for example, in a chemical production. The ar-
rangement of two tanks which are located off the line, accessible after a certain
station, equals an intermittent resequencing buffer with two buffer places. With
tank capacities of 50 and 100 liters, a client order of 80 liters can be stored
only in the larger of the two tanks which is capable of storing this volume.
Whereas, a client order of 50 liters can be stored in either of the tanks. A close
look at the local conditions may amortize an increase in the objective function
compared to an investment reduction with respect to tank size and gained area.
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Figure 8: Influence of the variation of the physical size of the buffer places. The code
"102" represents 1 large, 0 medium and 2 small buffer places. In the intermittent
case, the buffer places are divided to two buffers, each with access from a designated
station. In the centralized case, the same two stations have simultaneously access to
the buffer, containing all three buffer places. The ratio of jobs is 3

10
large, 3

10
medium

and 4

10
small.

As a concrete example, three differently sized buffer places (large, medium,
small) are available and the ratio of jobs is 3

10
large, 3

10
medium and 4

10
small.

As in the previous section, the second and the third station have access to the
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resequencing buffers and table 2 shows the allocation of the buffer places to
the buffers, considering eight scenarios. The code "300" represents 3 large, 0
medium and 0 small buffer places. In the intermittent case the first buffer
is provided with 1 and the second buffer with 2 large buffer places. In the
centralized case the same two stations have access to a single centralized buffer,
containing the three buffer places. Figure 8 shows the influence of the limitation
of the physical size. The variation of the size of the buffer places towards smaller
buffer places on the one hand decreases the benefit achieved by the possibility
of resequencing jobs. On the other hand, it may amortize when taking into
account the reduction of investment with respect to tank size and gained area.

7. Conclusions

This paper has presented a Genetic Algorithm which was applied to a mixed
model non-permutation flowshop using constrained buffers. The algorithm uses
the genetic operators inheritance, crossover and mutation and is designed to
consider intermittent or centralized resequencing buffers. Furthermore, the
buffer access is restricted by the number of buffer places and the physical size
of jobs. The reduction of the chromosome size benefits the performance of
the algorithm, which is further improved by the use of a two step cascade,
first seeking permutation sequences, then widening the solution space to non-
permutation sequences.

The preliminary analysis of the behavior of the genetic operators appeared to
be valuable, showing that the solution space, when varying two genetic opera-
tors, is a continuous surface without local minima. Furthermore the variability
of the solutions was observed, pointing out that the solutions permitting non-
permutation lead to better solutions but with a larger deviation. The param-
eter adjustment was designed such that both, flexibility and robustness were
ensured.

Then, the study of performance demonstrated the effectiveness of resequenc-
ing jobs within the line. The results of the simulation experiments revealed the
benefits that come with a centralized buffer location, compared to the intermit-
tent buffer location. It either improves the solution or leads to the utilization
of fewer resequencing buffer places. An increased number of large buffer places
clearly improves the objective function and including buffers, constrained by
the physical size of jobs to be stored, on one side limits the solutions but on
the other side minimizes the necessary buffer area.

In order to take full advantage of the possibilities of resequencing jobs in a
mixed model flowshop, additional installations may be necessary to mount,
like buffers, but also extra efforts in terms of logistics complexity may arise.
The additional effort is reasonable if it pays off the necessary investment. Due
to the strong dependency on local conditions, a general validation is not simple
and was not part of this work.
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