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Abstract. This paper presents the performance study of a Genetic Al-
gorithm applied to a mixed model non-permutation flowshop production
line. Resequencing is permitted where stations have access to intermit-
tent or centralized resequencing buffers. The access to the buffers is re-
stricted by the number of available buffer places and the physical size
of the products. Characteristics such as the difference between the in-
termittent and the centralized case, the number of buffer places and the
distribution of the buffer places are analyzed. Improvements that come
with the introduction of constrained resequencing buffers are highlighted.

1 Introduction

In the classical production line, only products with the same options were pro-
cessed at once. Products of different models, providing distinct options, were
either processed on a different line or major equipment modifications were nec-
essary. For today’s production lines this is no longer desirable and more and
more rise the necessity of manufacturing a variety of different models on the
same line, motivated by offering a larger variety of products to the client. Fur-
thermore, the stock for finished products is reduced considerably with respect
to a production with batches, and so are the expenses derived from it.

Mixed model production lines consider more than one model being processed
on the same production line in an arbitrary sequence. Nevertheless, the majority
of publications in this area are limited to solutions which determine the job
sequence before the jobs enter the line and maintain it without interchanging jobs
until the end of the production line, which is known as permutation flowshop.
Exact approaches for makespan minimization can be found in [1], [2], and [3],
among others. In two recent reviews [4], [5] heuristic methods for sequencing
problems are presented.

In the case of more than three stations and with the objective function to min-
imize the makespan, a unique permutation is no longer optimal. In [6] a study of
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the benefit of using non-permutation flowshops is presented. Furthermore, there
exist various designs of production lines which permit resequencing of jobs: us-
ing large buffers (Automatic-Storage-and-Retrieval-System) which decouple one
part of the line from the rest of the line [7]; buffers which are located off-line [8];
hybrid or flexible lines [9]; and more seldomly, the interchange of job attributes
instead of physically changing the position of a job within the sequence [10].
Resequencing of jobs on the line is even more relevant with the existence of an
additional cost or time, occurring when at a station the succeeding job is of
another model, known as setup-cost and setup-time [11].

The present work considers a flowshop with the possibility to resequence jobs
between consecutive stations. The buffers are located off-line either accessible
from a single station (intermittent case) or from various stations (centralized
case). In both cases, it is considered that a job may not be able to be stored in
a buffer place, due to its extended physical size, see figure 1.
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Fig. 1. Scheme of the considered flowshop. The jobs Jj pass consecutively through
the stations Ii. The buffer Bi permits to temporally store a job with the objective of
reinserting it at a later position in the sequence. a) Job J2 can pass through any of
the two buffer places Bi,1 or Bi,2 of buffer Bi. b) Job J3 can pass only through buffer
place Bi,2, due to its physical size.

The considered problem is relevant to various flowshop applications such as
chemical productions dealing with client orders of different volumes and differ-
ent sized resequencing tanks. Also in productions where split-lots are used for
engineering purpose, such as the semiconductor industry. Even in the production
of prefabricated houses with, e.g., large and small walls passing through consec-
utive stations where electrical circuits, sewerage, doors, windows and isolation
are applied.

In what follows the problem is formulated with more detail and the applied
Genetic Algorithm is described. Thereafter, the accomplished performance study
is presented and finally conclusions are presented which are already useful at the
time a production line is being designed.



2 Problem Definition

The realized work is based on the classical flowshop in which the jobs (J1, J2, ...,

Jj , ..., Jn) pass consecutively through the stations (I1, I2, ..., Ii, ..., Im). Fur-
thermore, after determined stations, off-line buffers Bi permit to resequence jobs.
The buffer provides various buffer places (Bi,1, Bi,2, ...) and each buffer place
is restricted by the physical size of the jobs to be stored. As can be seen in
figure 1a, job J2 can be stored in buffer place Bi,1 as well as in Bi,2. Whereas,
the next job J3 can be stored only in buffer place Bi,2, because of the physical
size of the job exceeding the physical size of the buffer place Bi,1, see figure 1b.

In a first step, the resequencing buffers are located intermittent, between two
consecutive stations. In this case the buffer is assigned to the precedent station
and may be accessed only by this station. Then, for an additional benefit, a
single resequencing buffer is used, with access from various stations, while the
limitations on the physical size of the buffer places are maintained.

3 Genetic Algorithm

The concept of the Genetic Algorithm was first formulated by [12] and [13] and
can be understood as the application of the principles of evolutionary biology,
also known as the survival of the fittest, to computer science. Genetic algorithms
are typically implemented as a computer simulation in which a population of
chromosomes, each of which represents a solution of the optimization problem,
evolves toward better solutions. The evolution starts from an initial population
which may be determined randomly. In each generation, the fitness of the whole
population is evaluated and multiple individuals are stochastically selected from
the current population, based on their fitness and modified to form a new popula-
tion. The alterations are biologically-derived techniques, commonly achieved by
inheritance, mutation and crossover. Multiple genetic algorithms were designed
for mixed model assembly lines such as [14], [15], [16] and [17].

The heuristic used here is a variation of the Genetic Algorithm explained
in [18]. The genes represent the jobs which are to be sequenced. The chromo-
somes υ, determined by a series of genes, represent a sequence of jobs. A gener-
ation is formed by R chromosomes and the total number of generations is G. In
the permutation case, the size of a chromosome is determined by the number of
jobs, the fraction Π. In the non-permutation case, the chromosomes are L + 1
times larger, resulting in the fractions Π

′

1, ...,Π
′

L+1, being L the number of rese-
quencing possibilities. In both cases, special attention is required when forming
the chromosomes, because of the fact that for each part of the production line
every job has to be sequenced exactly one time.

The relevant information for each chromosome is its fitness value (objective
function), the number of job changes and the indicator specifying if the chromo-
some represents a feasible solution. A chromosome is marked unfeasible and is
imposed with a penalty, if a job has to be taken off the line and no free buffer
place is available or the physical size of the job exceeds the size limitation of the
available buffer places. When two solutions result in the same fitness, the one
with fewer job changes is preferred.



3.1 Genetic operators

The genetic operators specify in which way the subsequent population is gener-
ated by reproduction of the present population, taking into account that ”fitter”
solutions are more promising and therefore are more likely to reproduce. Even
an unfeasible solution is able to reproduce, because of the fact that it may gen-
erate valuable and feasible solutions in one of the preceding generations. The
used genetic operators are inheritance, crossover and mutation. The value pX is
the percentage with which a genetic operator X is applied to a chromosome.

Inheritance: This operator is determined by two parameters. The param-
eter pBS determines the percentage of the best solutions which will be copied
directly to the next generation, called the cluster of promising chromosomes,
and ensures that promising chromosomes are not extinct. Then, in order to not
remain in a local minimum, the parameter pb determines the percentage of chro-
mosomes which are removed from this cluster.
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Fig. 2. Operators crossover-I and crossover-II. a) and c) In the simple case the
crossing takes place between two main fractions of the chromosome. After the crossover
point the chromosomes are completely crossed over. b) and d) In the more complex
case it has to be assured that each job is sequenced exactly one time for each fraction
of the chromosome.

Crossover: This operator specifies the operation of interchanging informa-
tion of two chromosomes. Two crossover operations are applied, crossover-I (fig-
ure 2a,b) and crossover-II (figure 2c,d). The probabilities with which these op-
erations are applied to a chromosome are pc-I and pc-II, and the crossover points
are defined by the random number pos, and the pair pos1 and pos2, respectively.

If the crossover point (pos, pos1 and pos2) is a multiple of the number of jobs
to be sequenced, the crossover operation is simple and takes place between two
main fractions of the chromosome, i.e. after the crossover point the chromosomes



are completely crossed over. Whereas, in the complex case the crossover points
are located within a main fraction of the chromosome and it has to be assured
explicitly that each job is sequenced exactly one time for each fraction of the
chromosome.

Mutation: This operator specifies the operation of relocating jobs at po-
sition pos1 to position pos2 within the same fraction of a chromosome. Two
mutation operators are applied, mutation-I and mutation-II (figure 3). Further-
more, there exist two cases for mutation-I: forward mutation, where pos1 < pos2;
and backward mutation, where pos1 > pos2. In the first case, a single job has to
be taken off the line, and in the second case, in order to let a single job pass, a
group of succeeding jobs has to be taken off the line, resulting in a larger effort
to realize. The probabilities of this operator are pm-I(f), pm-I(b) and pm-II.
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Fig. 3. Operators mutation-I and mutation-II. a) The job at position pos1 is taken
off the line and reinserted to the line at position pos2. b) The two jobs at position pos1

and pos2 are interchanged.

3.2 Cascading

In order to further improve the Genetic Algorithm, it is partitioned into two
steps. In the first step, the possibility of resequencing jobs within the produc-
tion line is ignored, furthermore only permutation sequences are considered as
possible solutions and the chromosome size is reduced to the number of jobs.
The last generation, together with the best found solution, form the initial gen-
eration for the next cascade where the resequencing possibilities, provided by
stations with access to resequencing buffers, are taken into account.

3.3 Parameter adjustment

The adjustment of the values of the genetic operators, which are used for the
two cascades of the Genetic Algorithm, is determined with an extended experi-
mentation and consists of three steps:

Rough adjustment: In order to adjust the parameters in a robust manner,
different sets of parameters are applied to a series of 14 differently sized prob-
lems, varying the number of jobs to be sequenced, the number of stations and
the number of resequencing possibilities. During the rough adjustment only one
unique seed is used for the random number generation in the Genetic Algorithm.
The sets of parameters are summarized and the 300 most promising which show
good performance on all problem sizes are used for further adjustment.



Repeatability: The use of only one seed in the rough adjustment requires
to determine amongst the promising sets of parameters which set achieves good
results for a multitude of seeds. The fact that a set of parameters achieves good
results for different seeds indicates that the same set of parameters also performs
well for different plant setups. The promising sets of parameters are verified with
16 different seeds for the 14 differently sized problems. Once the sets of promising
parameters are examined with respect to repeatability, one set is used for the
fine adjustment, determined by grouping into clusters [19].

Fine adjustment: Due to the fact that in the previous analysis predeter-
mined discrete values for the parameters are used, a fine adjustment succeeds.
The genetic operators are subject to an adjustment of 0.1 for the previously de-
termined sets of parameters and are revised with 16 seeds for the 14 differently
sized problems, used for the repeatability.

Table 1. Characteristic values of the Genetic Algorithm. The first cascade is applied
to determine a generation with only permutation solutions, which is then used as an
initial generation for the second cascade.

Cascade R G pBS pb pc-I pc-II pm-I(f) pm-I(b) pm-II

Step 1 100 1000 0.05 0.1 0.3 0.6 0.25 0.25 0.25
Step 2 100 10000 0.05 0.4 0.5 0.35 0.45 0.1 0.1

The experimentation is first performed on the permutation case (first cas-
cade), and then on the non-permutation case (second cascade). Table 3.3 lists
the resulting values of the genetic operators used in the following performance
study.

4 Performance Study

For the study of performance, a flowshop which consists of 5 stations is consid-
ered. The range of the production time is [0...20] such that for some jobs exists
zero-processing time at some stations, for the setup-time [2...8] and for the setup-
time [1...5]. The number of jobs is varied from 5 to 100 with increments of 5.
The objective function, is the weighted sum of the makespan (factor of 1.0) and
the setup-cost (factor of 0.3), where the setup-time has is not concerned with a
weight but is indirectly included in the calculation of the makespan.

4.1 Intermittent versus centralized location

Replacing the intermittent resequencing buffer places with centralized resequenc-
ing buffer places has two benefits. On the one hand, for the case of the same
number of buffer places, the objective function of the final solution is expected
to be at least as good. This is caused by the fact that in some instances of time,
all buffer places of a certain intermittent resequencing buffer may be occupied
and do not allow an additional job to be removed from the line, while buffer
places from other intermittent resequencing buffers are not accessible. Whereas,
in the case of a centralized buffer, blocking only appears when all buffer places
are occupied.



On the other hand, the number of buffer places may be reduced in order
to obtain values of the objective function similar to the case of the intermittent
resequencing buffer. Depending on the number of buffer places which are reduced,
this reduction in area is significant.
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Fig. 4. Comparison of three cases: one centralized resequencing buffer with four
buffer places (C4); two intermittent resequencing buffers, each providing two buffer
places (I22); one centralized resequencing buffer with three buffer places (C3).

Figure 4 shows the comparison of the intermittent and the centralized case.
After the second station and after the third station there exists access to rese-
quencing buffers. The compared cases are: (I22) two intermittent resequencing
buffers, each buffer provides two buffer places; (C3, C4) one centralized rese-
quencing buffer providing three and four buffer places, respectively. On the one
hand better solutions are obtained by arranging the buffers centralized; on the
other hand, the reduction from four to three buffer places leads to solutions
nearly as good as in the intermittent case.
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Fig. 5. Variation of the number of buffer places for the centralized case.

4.2 Number of buffer places

The increase in the number of buffer places makes the limitations less strict and
as already seen in the previous case, solutions are expected to improve. Figure 5
shows the centralized case without physical size limitations. Jobs leaving the
second or the third station have access to the centralized buffer, provided with
2, 3 or 4 buffer places. Providing more buffer places results in better solutions
together with an elevated number of job changes.



Figure 6 illustrates an intermittent case. In I22 the second and the third
station have 2 buffer places each, in I20 the buffer after the second station has two
buffer places and in I02 the buffer after the third station has two buffer places.
Providing two more buffer places results in slightly better solutions together with
an elevated number of job changes.
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Fig. 6. Variation of buffer places for the case of the intermittent case.

4.3 Difference in physical size of buffer places

Introducing limitations on the physical size of the buffer places on one side re-
stricts possible solutions but on the other side minimizes the necessary buffer
area. This limitation arises, for example, in a chemical production. The arrange-
ment of two tanks which are located off the line, accessible after a certain station,
equals an intermittent resequencing buffer with two buffer places. With tank ca-
pacities of 50 and 100 liters, a client order of 80 liters can be stored only in
the larger of the two tanks which is capable of storing this volume. Whereas, a
client order of 50 liters can be stored in either of the tanks. A close look at the
local conditions may amortize an increase in the objective function compared to
a reduction of investment with respect to tank size and gained area.

Table 2. Allocation of the buffer places to the buffers. In the intermittent case the
allocation is done to two different buffers.

Case Intermittent Centralized

Size l m s l m s

(300) 1/2 0/0 0/0 3 0 0
(111) 0/1 1/0 0/1 1 1 1
(102) 0/1 0/0 1/1 1 0 2
(012) 0/0 0/1 1/1 0 1 2

As a concrete example, three differently sized buffer places (large, medium,
small) are available and the ratio of jobs is 3

10 large, 3
10 medium and 4

10 small.
As in the previous section, the second and the third station have access to
the resequencing buffers and table 4.3 shows the allocation of the buffer places
to the buffers, considering eight scenarios. ”300” represents 3 large, 0 medium



and 0 small buffer places. In the intermittent case the first buffer is provided
with 1 and the second buffer with 2 large buffer places. In the centralized case
the same two stations have access to a single centralized buffer, containing the
three buffer places. Figure 7 shows the influence of the limitation of the physical
size. The variation of the size of the buffer places towards smaller buffer places
on the one hand decreases the benefit achieved by the possibility of resequencing
jobs. On the other hand, it may amortize when taking into account the reduction
of investment with respect to tank size and gained area.
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Fig. 7. Influence of the variation of the physical size of the buffer places. ”102” repre-
sents 1 large, 0 medium and 2 small buffer places. In the intermittent case, the buffer
places are divided to two buffers, each with access from a designated station. In the
centralized case, the same two stations have simultaneously access to the buffer, con-
taining all three buffer places. The ratio of jobs is 3

10
large, 3
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medium and 4
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small.

5 Conclusions

This paper has presented a study of performance of a genetic algorithm which
was applied to a mixed model non-permutation flowshop. The algorithm uses the
genetic operators inheritance, crossover and mutation and is designed to consider
intermittent or centralized resequencing buffers. Furthermore, the buffer access
is restricted by the number of buffer places and the physical size of jobs.

The realized study of performance demonstrates the effectiveness of rese-
quencing by examining certain characteristics. The results of the simulation
experiments reveal the benefits that come with a centralized buffer location,
compared to the intermittent buffer location. It either improves the solution or
leads to the utilization of fewer resequencing buffer places. An increased number
of buffer places clearly improves the objective function and including buffers,
constrained by the physical size of jobs to be stored, on one side limits the
solutions but on the other side minimizes the necessary buffer area.

In order to take full advantage of the possibilities of resequencing jobs in a
mixed model flowshop, additional installations may be necessary to mount, like
buffers, but also extra efforts in terms of logistics complexity may arise. The
additional effort is reasonable if it pays off the necessary investment. Due to the
dependency on local conditions, a general validation is not simple and was not
part of this work.
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