A simplified model for bottom trawl fishing gears
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Computational modeling is a valuable complementary tool to assess behavior of bottom trawl fishing geat
A simplified model of the gear that mainly affects to the net is proposed. The model is constrained to steac
towing conditions, flat seabed and gear symmetry. Simulations proportionate a number of relevant outcomes |
distribution of tensions at the warp, balance of forces at the otterboards or spread under different haul conditic
such as depth or towing speed. In this paper we mainly focuss on the description and implementation of t
model. Nevertheless, some preliminar comparison with experimental data is also shown.

1 INTRODUCTION also the distribution of tensions, otterboards spread
and attack angle as well as the balance of forces at the

Bottom trawl fishing gears are complex systems inotterboards under different haul conditions like fish-

which the different constitutive components (net,ing depth or towing velocity.

sweeps, otterboards and warps) are intimately CoU- The manuscript is arranged as follows. Firstly in

t2 we discuss the assumptions and limitations of the

odel. In§3 we derive the governing equations for

ach component of the gear. $§4 we describe the
‘numerical implementation of the model.

ally inferred from empirical experienc@ situ data
acquisition (Henriques 1992; Sala 2006) and scale
prototypes in flume tank experiments (Fiorentini et al.
2004). In addition to empirical studies, a number of
theoretical models of increasing complexity have also

emerged in parallel with the development of computa2 MODEL HYPOTHESIS
tional capabilities. However, attempts to model simul- . : -
taneously all the components of fishing gears are ra(rlghe fl?eha\é'%r of alr.e?l gear gurlngda haul :js Ilfkely to
(Bessonneau and Marichal 1998). To date, most mod:c. & ected by multiple time-dependent and often un-
eling efforts have been addressed towards the stu rethtable factors such as, for instance, seabgad irreg-
of net geometries (Bessonneau and Marichal 199 larities, waves or water currents. In ordert_o §|mpI|.fy
O'Neill 1999 Wan et al. 2002: Wan et al. 2002: Priour he problem we constrain to an ideal scenario in which
2003; Suzuk'i etal. 200"3 Shi;nizu etal. '2004)'and ne he following hypothesis apply: steady state (i.e. con-

drag evaluations (Reid 1977; Galbraith 1983; Ferrg tant towing velocity and negligible effect of waves
et al. 1996; Hu et al. 2001), normally for the case of® and currents on the gear), flat seabed and gear sym-
pelagic trawls metry with respect to the vertical plane.

In this paper we develop a simplified model for bot- Some additional simplifications for the components
tom trawl fishing gears which requires the total netof the gear are also contemplated. Rather than the
drag and the net opening at the wing ends as input pdull net geometry we consider only the horizontal net
rameters. The model predicts the configuration of the@pening and we assume a known total net drag. The
gear solving for the equilibrium equations of the otter-sweeps are assumed to behave as a rigid bar. Finally,
boards and the system of ordinary differential equawe consider that the otterboards do neither pitch nor
tions (ODE’s) of the warp. Simulations proportionate heel.
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3 MODEL GOVERNING EQUATIONS Therefore, the interaction with the seabed results on

The gear is towed with speedwith components: net, a vertical component (the normal or ground reaction
sweeps, otterboards and warps. Taking into accourierce which prevents the otterboard to penetrate the
the model hypothesis described in seci@ritis only ~ seabed) and on a friction force that acts on the op-
necessary to derive the governing equations of the oRosite direction of tow and which, as a first approach,

terboard and the warp. can be assumed to be proportional to the normal force:
3.1 Otterboard equations uN

In this section we derive the governing equations for (Fe)x = 0 (3)

the otterboards imposing equilibrium of forces and —-N

moments. The function of the otterboards is to spread

the gear horizontally and, simultaneously, to keepitin i - . _

contact with the seabed. In general, an otterboard ha¥heres. is the friction coefficient anav(> 0) is the

six degrees of freedom which must be balanced unddtormal force. Note that the minus sign has been intro-
the steady towing assumption. In order to derive th&luced for coherence with the orientation of the z-axis.
equilibrium equations let us consider an ortonormal (3) Hydrodynamic forcesFy). Relative move-
frame of referenc&, =< Xo, Yo, Z, > attached to the ment among water and otterboards generates spread-
otterboard and having the origin located at the cening (lift) and drag forces on the otterboards. It is well
ter of pressure. This local basis is defined so that €stablished that these forces depend on the towing
points backwards (opposite direction of towing), SPeed squared, angle of_ attack, and otterboard design.
points outwards, and, points downwards. The sys- In general, hydrodynamic forces are evaluated exper-
tem¥X, and the cartesian frame of referencare re- imentally in terms of the drag and lift coefficients:

lated byX = D - X, (or X, = 71 - X = D7 - X) where,

in general,® results from composing a rotation of Cp (D)
heel angley along thex, axis, a rotation of pitch an- (Fu)g = lpa50’u|2 Cr() (4)
gle # along they, axis, and a rotation of yaw angie 2

(angle of attack) along the, axis. However, since we
constrain to the case where the otterboard does nei- _ _
ther heel (0 — 0) nor pltch 6 — O) the transforma“on WheI’ESO IS the Otterboard prO]ECted Surface, @ﬁl

matrix reduces to a single rotation: andC', are the drag and lift coefficients respectively.
According to our sign criterid < 0 for the port door
cosU —sin¥U 0 (see Figure 1). The projection of the hydrodynamic
D= | sin¥ cos¥U 0 (1) forces onto the vertical direction vanishes because we
0 0 1 have assumed a zero heel angle. Note also that the
spreading and drag coefficients depend on the angle
whre ¥ is the angle of attack. of attack of the otterboard. An efficient design aims
We consider a trawl door with mas¥,, length L,  to maximize the rati@', /Cp, while keeping the otter-
and heightH,, towed at speed. board stable.

(4) Warp tension at the otterboard attachm@ny).

, , ) From Figure 1 it follows that:
Forces acting on otterboards include weight, buoy-

ancy, ground contact forces, hydrodynamic forces and

3.1.1Balance of forces

tensions exerted by the warp and the backstrop at the cos Wy, cos 0y,
attachment points. On a Cartesian frame of reference (Tw)z = =T | sin ‘I{w COS By )
X oriented along the tow direction these forces write sin 0y,
as follows:
(1) Mass forces due to weight and buoyariEy;).  where7,, ¥,, andd,, stand, respectively, for tension,
Act along the vertical direction: yaw and pitch angles of the warp at the otterboard
bracket. For the port otterboard and according to our
0 sign criteria¥,, > 0 and6,, > 0.
(Fm)z = 0 (2) (5) Backstrop tension at the otterboard attachment
Mog = paVoy (Tp). Consider an otterboard rigged with a twin back-

strop attachment in which the lengths of both chains

whereV, is the otterboard volume, is the sea water are equal and have a pitch angleFrom Figure 1:

density andy stands for the gravity acceleration.
(2) Ground contact forcegFg). We limite the
model to otterboard that touch the seabed slightly. (To)g = (Th+Tp)x (6)
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and (1) Warp momentM,). Let (ry)g = (Zw, Yuw, 2w) "

(

cos Wy, cos O, be the position vector of the warp bracket in the
Tp =Ty | sin \Ifb%os Op frame of reference. It follows from (1) that:
S vy
cos Uy, cos 0, 0 (rw)z =D - (r'w)z, (10)
T, =T} | sinW,cosb, _
—siné, so that the moment exherted by the warp yields
N My =2 - (ry)g, x Tw with Ty, given by (5).

In order to close the balance of forces it is necessary (2) Backstrop moment(M;). Let (rd).

to add an additional constrain fa@* and 7} at the (a2, g, )7 | 1,1 T %
- Ty, Yy, 2y)" and(ry)g = (3,4, 2,)" be the position
backstrop attachment point: vectors of the upper and lower backstrop attachments

in theX, frame of reference. Then:

{(T,}L+Tlf)cosﬁb:Tbcose )
u 1 . o .
(T3 —T,)sinb, = Tysine (=D (1Y) (11)
with e defined as in Fig.1.
and analogously for the lower componén});. The
[Figure 1 about here.] moment exheretd by the two backstrop attachments
. . lelds:
The balance of forces at the otterboard is obtained b%// My =¥ x TU £ r! x T! (12)
combining equations (2) to (8) and imposing equilib- b="6 7 1o Ib ™ Th
rium. It yields, for each spatial component: with T andT}, given by (7). Finally, imposing equi-

librium one gets the x and z components:

{uN + F. (V) + Ty cosecos ¥y, = T, cos W, cos b,
Fyy(¥) =T, sin W, cos 0, — T}, cos esin ¥, M .

++(Mp), =0
Mg+Tysinb, =p,Vg+ N + Tlf sinéy, + T,,sinf,, { Engz 4 ((M E;Z —0 (13)

9)
The above set of equations is written in a way that . .
highlights the effect of each contribution. Terms in the Given the values of tension and yaw angle at the

: - C : kstrop attachment poirity( ¥,) and the pitch an-
LHS act in the positive directions whereas terms in thebaC
RHS act in the negatives. In thedirection, friction, gle of the warp at the warp-otterboard bracié\

hydrodynamic drag and tensions at both backstrop i;quaﬁons (9) and (13) together with the constrains

tachments oppose to movement and are balanced ju q) constitute a system of 7 non-linear equations for

by the component of the warp tension along the to e 7 unknowns: otterboard gngle of atltakkg:;)und
direction ¢ < 0 direction). In they-direction hydro- reaction/V, warp tension and yaw angle at the otter-

dynamic lift tends to spread the otterboargs=(0 di- board attachmentl{, and¥,,), tensions at the upper

- nd lower chain backstrop attachmerit¥ @nd7}),
rection) whereas warp and backstrop attachment comgnd€ angle. In fact, the noFr)1-Iinear sysrzlegm( can r%duce
ponents do the opposite (note thiat > 0 andw;, <0 to 5 equations WitH unknownsds, T,,, V., T} ande
so that both terms have a positive sign). Finally, in the oW Twr b :
vertical z-direction, the otterboard weight and the UP-3 5 \Warp equations
per bf_:lckstrop attachment rig pull downwarqls>(0 ' " P eq | £ and di q
direction) whereas buoyancy, ground reaction, warg-onsider a warp of lengtii and diameter) towe
tension and lower backstrop attachment rig pull thdfom a vessel at speed The warp has neither stretch

otterboard upwards. nor torsion. The goal is to determine the tensibn
and the coordinates of each point of the warp on the
3.1.2Balance of moments Cartesian basi® = < x,y, z >. An ortonormal set of

In addition to the balance of forces, the equilibrium unit vectorsx,, = < t,n,b > is defined at each point
hypothesis requires also a zero net balance of pair®f the warp witht tangential to the warpy normal
The balance of moments for theand z-directions is  to the warp and laying in the vertical plane, andr-
calculated with respect to the origin of reference ofthogonal to the formerso(= t x n). The orientation
the systenX, (i.e. the center of pressure). It follows Of this local basis at a certain length or parameter arc
that the pair exerted by the hydrodynamic forces iss € [0, L] is given by the Euler angleg(s) andd(s),
zero because, by definition, the resultant force acts dhat is, the system,, and the cartesian frame of refer-
the center of pressure. On the other hand, weight angncex are related b, = R - X, where:

buoyancy forces do not either produce any moment

under the hypothesis zero heel. In consequence, we cosWcosf  sinWcosh  sinf
limit to the pairs exerted by the warp and backstrop R = [ —cosV¥Usinf —sin¥sinf cosf (14)
attachments: sin ¥ —cos ¥ 0



andR~1 = RT (R is an orthogonal matrix). In addi-
tion to tension, forces per unit of length acting on the
warp include:

(1) Mass forces due to weight and buoyan€y; )

Fire 0
(Fm)s= | Fuy | = O (15)
FMZ w
or, using (14):
F]y[t sin 6
(Fm)s, = | Fun | =w | cosé (16)
Fyp 0

where p,, is the warp density andv = (p, —
pa)TD?g/A4.

(2) Hydrodynamic forcesHy) which, in general,
can be inertial and non-inertial. Under steady tow-

2000):

(dT
E — _FMt<9) _— FHt(\I/,g)
df 1
— = Fan(0) + Frp (U, 0
ds TCOSQ( mv(0) + Frn(,0)) (20)
dx
— =cosVcosl
gils
Y _ sin ¥ cos 6
g

| 75 =sind

The above constitutes a system of ODE’s. Given the
coordinategz, y, z), the Euler angle$d, ¥), and the
tension (") of the warp at the bracket, the system is
numerically integrated backwards along the parame-
ter arcs € [0, L] from the door § = L) to the vessel

(s =0).

4 MODEL IMPLEMENTATION
Model inputs are the total net dra@,() and the hor-

ing conditions the inertial forces vanish and, in con-j;gnta| net opening (HNO) at the wing ends together
sequence, one has to consider only the non-inertigfth other general parameters of the gear and the haul.

forces along the tangentiaFf;;) and normal direc-
tions (Fy, and Fy,). Hydrodynamic resistance of
a warp is well described by the Morison’s equation
(Faltinsen 1990):

Fyy ] Cyr|ug|uy
(F)s=| Fun | = ipaD Cn/u2 + uiuy,
Fpy Cr/u2 + uiuy,

(17)
where (u;, u,,u;)” are the components of the water

We present the model implementation step by step:
Step 1. Solve the equilibrium equations of the otter-
boards (9) and (13) given values for the yaw anje
and tensior?}, at the backstrop attachment point and
for the pitch angle at the warp brackegg. Note that
¥, is also the yaw angle of the sweep and thats
one half of the total net dragj, /2 because a zero ten-
sion drop is assumed to occur along the sweeps. The
outcomes are the attack angleand the tensiof’,
and the yaw angle,, at the warp attachment point.
Step 2. Solve the warp ODE backwards in the inter-

speed (as seen by an observer attached to the warpj) s ¢ [0, L], with initial values:T'(L) = T, U(L) =

andC; andC, are the tangential and normal warp co-

v,,0(L) = 0,. The final calculated values fdy, z)

efficients. It is obvious that the water speed has there written ag),,;, = y(0) andz,,;, = 2(0).

opposite sense of the vessel towing speed (of the tow- step 3. The global function £(0,,6,,)

ing velocityu), that is:

Uy 1
u, | =uf|0 (18)
U, 0
and therefore
Uy cos WV cos
U, | =|ul | —cosWUsind (19)
Up sin U

The governing equations for the warp result fi-
nally from imposing equilibrium of forces (Chin et al.
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(Yship, 2ship) 1S defined following steps 1 and
2

Step 4. Find ¥y, 6,,) such thaty,;, equals the fish-
ing depthH andy,;, equals half of the warp separa-
tion at the vessel sterny; (i.e. ensure that the vessel
lays in the vertical plane of symmetry):

F(\Ijbaew) = (Y> H) (21)

Numerical algorithms to solve steps 1 and 2 have
been implemented using the open software libraries
MINPACK and ODEPACK, respectively. The prob-
lem (21) is equivalent to find a zero of a system
of nonlinear functions which is solved using MIN-
PACK library, the jacobian is calculated by a forward-
difference approximation. The initial condition is
0., = arcsin(H/L) (straight warp) andl, varying
from —7 /4 to 0 until convergence is achieved.



5 SUMMARY

We have developed a simplified model for bottom
trawl fishing gears. The numerical implementation al-
lows for an efficient and consistent coupling among
gear components. A relevant feature of the model is
that it skips a detailed simulation of the net and hence
proportionates approximate results at negligible com-
putational cost.

The model proportionates a detailed analysis of the
otterboards including the horizontal opening, the an-
gle of attack, the tensions at the backstrop and warp

attachments, and the balance of forces and moments.

In addition, the tensions and the resulting geometry of
the warp are also calculated.
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List of Figures
1 Port otterboard with a twin backstrop adjustment. Top: Lateral view. Bottom: top view. . . . . .
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Figure 1: Port otterboard with a twin backstrop adjustment. Top: Lateral view. Bottom: top view.




