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Computational modeling is a valuable complementary tool to assess behavior of bottom trawl fishing gears.
A simplified model of the gear that mainly affects to the net is proposed. The model is constrained to steady
towing conditions, flat seabed and gear symmetry. Simulations proportionate a number of relevant outcomes like
distribution of tensions at the warp, balance of forces at the otterboards or spread under different haul conditions
such as depth or towing speed. In this paper we mainly focuss on the description and implementation of the
model. Nevertheless, some preliminar comparison with experimental data is also shown.

1 INTRODUCTION

Bottom trawl fishing gears are complex systems in
which the different constitutive components (net,
sweeps, otterboards and warps) are intimately cou-
pled. Information on gear response has been tradition-
ally inferred from empirical experience,in situ data
acquisition (Henriques 1992; Sala 2006) and scaled
prototypes in flume tank experiments (Fiorentini et al.
2004). In addition to empirical studies, a number of
theoretical models of increasing complexity have also
emerged in parallel with the development of computa-
tional capabilities. However, attempts to model simul-
taneously all the components of fishing gears are rare
(Bessonneau and Marichal 1998). To date, most mod-
eling efforts have been addressed towards the study
of net geometries (Bessonneau and Marichal 1998;
O’Neill 1999; Wan et al. 2002; Wan et al. 2002; Priour
2003; Suzuki et al. 2003; Shimizu et al. 2004) and net
drag evaluations (Reid 1977; Galbraith 1983; Ferro
et al. 1996; Hu et al. 2001), normally for the case of
pelagic trawls.
In this paper we develop a simplified model for bot-
tom trawl fishing gears which requires the total net
drag and the net opening at the wing ends as input pa-
rameters. The model predicts the configuration of the
gear solving for the equilibrium equations of the otter-
boards and the system of ordinary differential equa-
tions (ODE’s) of the warp. Simulations proportionate

also the distribution of tensions, otterboards spread
and attack angle as well as the balance of forces at the
otterboards under different haul conditions like fish-
ing depth or towing velocity.

The manuscript is arranged as follows. Firstly in
§2 we discuss the assumptions and limitations of the
model. In§3 we derive the governing equations for
each component of the gear. In§4 we describe the
numerical implementation of the model.

2 MODEL HYPOTHESIS

The behavior of a real gear during a haul is likely to
be affected by multiple time-dependent and often un-
predictable factors such as, for instance, seabed irreg-
ularities, waves or water currents. In order to simplify
the problem we constrain to an ideal scenario in which
the following hypothesis apply: steady state (i.e. con-
stant towing velocity and negligible effect of waves
and currents on the gear), flat seabed and gear sym-
metry with respect to the vertical plane.

Some additional simplifications for the components
of the gear are also contemplated. Rather than the
full net geometry we consider only the horizontal net
opening and we assume a known total net drag. The
sweeps are assumed to behave as a rigid bar. Finally,
we consider that the otterboards do neither pitch nor
heel.
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3 MODEL GOVERNING EQUATIONS
The gear is towed with speedu with components: net,
sweeps, otterboards and warps. Taking into account
the model hypothesis described in section§2 it is only
necessary to derive the governing equations of the ot-
terboard and the warp.

3.1 Otterboard equations
In this section we derive the governing equations for
the otterboards imposing equilibrium of forces and
moments. The function of the otterboards is to spread
the gear horizontally and, simultaneously, to keep it in
contact with the seabed. In general, an otterboard has
six degrees of freedom which must be balanced under
the steady towing assumption. In order to derive the
equilibrium equations let us consider an ortonormal
frame of referencêxo =< xo,yo,zo > attached to the
otterboard and having the origin located at the cen-
ter of pressure. This local basis is defined so thatxo
points backwards (opposite direction of towing),yo
points outwards, andzo points downwards. The sys-
tem x̂o and the cartesian frame of referencex̂ are re-
lated byx̂ = D · x̂o (or x̂o = D−1 · x̂ = DT · x̂) where,
in general,D results from composing a rotation of
heel angleϕ along thexo axis, a rotation of pitch an-
gle θ along theyo axis, and a rotation of yaw angleΨ
(angle of attack) along thezo axis. However, since we
constrain to the case where the otterboard does nei-
ther heel (ϕ = 0) nor pitch (θ = 0) the transformation
matrix reduces to a single rotation:

D =




cosΨ − sinΨ 0
sinΨ cosΨ 0

0 0 1


 (1)

whreΨ is the angle of attack.
We consider a trawl door with massMo, lengthLo

and heightHo towed at speedu.

3.1.1Balance of forces

Forces acting on otterboards include weight, buoy-
ancy, ground contact forces, hydrodynamic forces and
tensions exerted by the warp and the backstrop at the
attachment points. On a Cartesian frame of reference
x̂ oriented along the tow direction these forces write
as follows:

(1) Mass forces due to weight and buoyancy(FM ).
Act along the vertical direction:

(FM )x̂ =




0
0

Mog− ρaVog


 (2)

whereVo is the otterboard volume,ρa is the sea water
density andg stands for the gravity acceleration.

(2) Ground contact forces(FG). We limite the
model to otterboard that touch the seabed slightly.

Therefore, the interaction with the seabed results on
a vertical component (the normal or ground reaction
force which prevents the otterboard to penetrate the
seabed) and on a friction force that acts on the op-
posite direction of tow and which, as a first approach,
can be assumed to be proportional to the normal force:

(FG)x̂ =




µN
0
−N


 (3)

whereµ is the friction coefficient andN(≥ 0) is the
normal force. Note that the minus sign has been intro-
duced for coherence with the orientation of the z-axis.

(3) Hydrodynamic forces(FH). Relative move-
ment among water and otterboards generates spread-
ing (lift) and drag forces on the otterboards. It is well
established that these forces depend on the towing
speed squared, angle of attack, and otterboard design.
In general, hydrodynamic forces are evaluated exper-
imentally in terms of the drag and lift coefficients:

(FH)x̂ =
1

2
ρaSo|u|2




CD(Ψ)
CL(Ψ)

0


 (4)

whereSo is the otterboard projected surface, andCD

andCL are the drag and lift coefficients respectively.
According to our sign criteriaΨ < 0 for the port door
(see Figure 1). The projection of the hydrodynamic
forces onto the vertical direction vanishes because we
have assumed a zero heel angle. Note also that the
spreading and drag coefficients depend on the angle
of attack of the otterboard. An efficient design aims
to maximize the ratioCL/CD while keeping the otter-
board stable.

(4) Warp tension at the otterboard attachment(Tw).
From Figure 1 it follows that:

(Tw)x̂ = −Tw




cosΨw cos θw

sinΨw cos θw

sin θw


 (5)

whereTw, Ψw andθw stand, respectively, for tension,
yaw and pitch angles of the warp at the otterboard
bracket. For the port otterboard and according to our
sign criteriaΨw > 0 andθw > 0.

(5) Backstrop tension at the otterboard attachment
(Tb). Consider an otterboard rigged with a twin back-
strop attachment in which the lengths of both chains
are equal and have a pitch angleθb. From Figure 1:

(Tb)x̂ = (Tu
b + T l

b)x̂ (6)
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and 



Tu
b = T u

b




cosΨb cos θb

sinΨb cos θb

sin θb




T l
b = T l

b




cosΨb cos θb

sinΨb cos θb

− sin θb




(7)

In order to close the balance of forces it is necessary
to add an additional constrain forT u

b and T l
b at the

backstrop attachment point:
{

(T u
b + T l

b) cos θb = Tb cos ε
(T u

b − T l
b) sin θb = Tb sin ε

(8)

with ε defined as in Fig.1.

[Figure 1 about here.]

The balance of forces at the otterboard is obtained by
combining equations (2) to (8) and imposing equilib-
rium. It yields, for each spatial component:
{

µN + FHx(Ψ) + Tb cos ε cosΨb = Tw cosΨw cos θw

FHy(Ψ) = Tw sinΨw cos θw − Tb cos ε sinΨb

Mg + T u
b sin θb = ρaV g + N + T l

b sin θb + Tw sin θw

(9)
The above set of equations is written in a way that
highlights the effect of each contribution. Terms in the
LHS act in the positive directions whereas terms in the
RHS act in the negatives. In thex-direction, friction,
hydrodynamic drag and tensions at both backstrop at-
tachments oppose to movement and are balanced just
by the component of the warp tension along the tow
direction (x < 0 direction). In they-direction hydro-
dynamic lift tends to spread the otterboards (y > 0 di-
rection) whereas warp and backstrop attachment com-
ponents do the opposite (note thatΨw > 0 andΨb < 0
so that both terms have a positive sign). Finally, in the
verticalz-direction, the otterboard weight and the up-
per backstrop attachment rig pull downwards (z > 0
direction) whereas buoyancy, ground reaction, warp
tension and lower backstrop attachment rig pull the
otterboard upwards.

3.1.2Balance of moments

In addition to the balance of forces, the equilibrium
hypothesis requires also a zero net balance of pairs.
The balance of moments for thex andz-directions is
calculated with respect to the origin of reference of
the system̂xo (i.e. the center of pressure). It follows
that the pair exerted by the hydrodynamic forces is
zero because, by definition, the resultant force acts at
the center of pressure. On the other hand, weight and
buoyancy forces do not either produce any moment
under the hypothesis zero heel. In consequence, we
limit to the pairs exerted by the warp and backstrop
attachments:

(1) Warp moment(Mw). Let (rw)x̂o
= (xw, yw, zw)T

be the position vector of the warp bracket in thex̂o
frame of reference. It follows from (1) that:

(rw)x̂ = D · (rw)x̂o (10)

so that the moment exherted by the warp yields
Mw = D · (rw)x̂o × Tw with Tw given by (5).

(2) Backstrop moment (Mb). Let (r u
b)x̂o

=

(xu
b , y

u
b , zu

b )T and(r l
b)x̂o

= (xl
b, y

l
b, z

l
b)

T be the position
vectors of the upper and lower backstrop attachments
in the x̂o frame of reference. Then:

(ru
b)x̂ = D · (r u

b)x̂o (11)

and analogously for the lower component(r l
b)x̂. The

moment exheretd by the two backstrop attachments
yields:

M b = r u
b × Tu

b + r l
b × T l

b (12)

with Tu
b andT l

b given by (7). Finally, imposing equi-
librium one gets the x and z components:

{
(Mw)x + (Mb)x = 0
(Mw)z + (Mb)z = 0

(13)

Given the values of tension and yaw angle at the
backstrop attachment point (Tb, Ψb) and the pitch an-
gle of the warp at the warp-otterboard bracket (θw),
equations (9) and (13) together with the constrains
(8) constitute a system of 7 non-linear equations for
the 7 unknowns: otterboard angle of attackΨ, ground
reactionN , warp tension and yaw angle at the otter-
board attachment (Tw andΨw), tensions at the upper
and lower chain backstrop attachments (T u

b andT l
b),

andε angle. In fact, the non-linear system can reduce
to 5 equations with unknowns:Ψ, Tw, Ψw, T u

b andε.

3.2 Warp equations
Consider a warp of lengthL and diameterD towed
from a vessel at speedu. The warp has neither stretch
nor torsion. The goal is to determine the tensionT
and the coordinates of each point of the warp on the
Cartesian basiŝx = < x,y,z >. An ortonormal set of
unit vectorŝxw = < t,n,b > is defined at each point
of the warp witht tangential to the warp,n normal
to the warp and laying in the vertical plane, andb or-
thogonal to the formers (b = t × n). The orientation
of this local basis at a certain length or parameter arc
s ∈ [0,L] is given by the Euler anglesΨ(s) andθ(s),
that is, the system̂xw and the cartesian frame of refer-
encêx are related bŷxw = R · x̂, where:

R =




cosΨcos θ sinΨcos θ sin θ
− cosΨsin θ − sinΨsin θ cos θ

sinΨ − cosΨ 0


 (14)
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andR−1 = RT (R is an orthogonal matrix). In addi-
tion to tension, forces per unit of length acting on the
warp include:

(1) Mass forces due to weight and buoyancy (FM ):

(FM )x̂ =




FMx

FMy

FMz


 =




0
0
w


 (15)

or, using (14):

(FM )x̂w =




FMt

FMn

FMb


 = w




sin θ
cos θ

0


 (16)

where ρw is the warp density andw = (ρw −
ρa)πD2g/4.

(2) Hydrodynamic forces (FH) which, in general,
can be inertial and non-inertial. Under steady tow-
ing conditions the inertial forces vanish and, in con-
sequence, one has to consider only the non-inertial
forces along the tangential (FHt) and normal direc-
tions (FHn and FHb). Hydrodynamic resistance of
a warp is well described by the Morison’s equation
(Faltinsen 1990):

(FH)x̂ =




FHt

FHn

FHb


 =

1

2
ρaD




Ctπ|ut|ut

Cn

√
u2

n + u2
bun

Cn

√
u2

n + u2
bub




(17)
where(ut, un, ub)

T are the components of the water
speed (as seen by an observer attached to the warp),
andCt andCn are the tangential and normal warp co-
efficients. It is obvious that the water speed has the
opposite sense of the vessel towing speed (of the tow-
ing velocityu), that is:




ux

uy

uz


 = |u|




1
0
0


 (18)

and therefore




ut

un

ub


 = |u|




cosΨcos θ
− cosΨsin θ

sinΨ


 (19)

The governing equations for the warp result fi-
nally from imposing equilibrium of forces (Chin et al.

2000):




dT

ds
= −FMt(θ)− FHt(Ψ, θ)

dθ

ds
= − 1

T
(FMn(θ) + FHn(Ψ, θ))

dΨ

ds
=

1

T cos θ
(FMb(θ) + FHb(Ψ, θ))

dx

ds
= cosΨcos θ

dy

ds
= sinΨcos θ

dz

ds
= sin θ

(20)

The above constitutes a system of ODE’s. Given the
coordinates(x, y, z), the Euler angles(θ,Ψ), and the
tension (T ) of the warp at the bracket, the system is
numerically integrated backwards along the parame-
ter arcs ∈ [0,L] from the door (s = L) to the vessel
(s = 0).

4 MODEL IMPLEMENTATION
Model inputs are the total net drag (Tn) and the hor-
izontal net opening (HNO) at the wing ends together
with other general parameters of the gear and the haul.
We present the model implementation step by step:

Step 1. Solve the equilibrium equations of the otter-
boards (9) and (13) given values for the yaw angleΨb

and tensionTb at the backstrop attachment point and
for the pitch angle at the warp bracketθw. Note that
Ψb is also the yaw angle of the sweep and thatTb is
one half of the total net dragTn/2 because a zero ten-
sion drop is assumed to occur along the sweeps. The
outcomes are the attack angleΨ and the tensionTw

and the yaw angleψw at the warp attachment point.
Step 2. Solve the warp ODE backwards in the inter-

val s ∈ [0,L], with initial values:T (L) = Tw,Ψ(L) =
Ψw, θ(L) = θw. The final calculated values for(y, z)
are written asyship = y(0) andzship = z(0).

Step 3. The global functionF (Ψb, θw) =
(yship, zship) is defined following steps 1 and
2.

Step 4. Find(Ψb, θw) such thatzship equals the fish-
ing depthH andyship equals half of the warp separa-
tion at the vessel stern,Y (i.e. ensure that the vessel
lays in the vertical plane of symmetry):

F (Ψb, θw) = (Y,H) (21)

Numerical algorithms to solve steps 1 and 2 have
been implemented using the open software libraries
MINPACK and ODEPACK, respectively. The prob-
lem (21) is equivalent to find a zero of a system
of nonlinear functions which is solved using MIN-
PACK library, the jacobian is calculated by a forward-
difference approximation. The initial condition is
θw = arcsin(H/L) (straight warp) andΨb varying
from−π/4 to 0 until convergence is achieved.
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5 SUMMARY
We have developed a simplified model for bottom
trawl fishing gears. The numerical implementation al-
lows for an efficient and consistent coupling among
gear components. A relevant feature of the model is
that it skips a detailed simulation of the net and hence
proportionates approximate results at negligible com-
putational cost.

The model proportionates a detailed analysis of the
otterboards including the horizontal opening, the an-
gle of attack, the tensions at the backstrop and warp
attachments, and the balance of forces and moments.
In addition, the tensions and the resulting geometry of
the warp are also calculated.
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Figure 1: Port otterboard with a twin backstrop adjustment. Top: Lateral view. Bottom: top view.
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