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Abstract

A measure of the centrality of a vertex of a graph is the portion of shortest paths crossing

through it between other vertices of the graph. This is called betweenness centrality and here

we study some of its general properties, relations with distance parameters (diameter, mean

distance), local parameters, symmetries, etc. Some bounds for this parameter are obtained,

using them to improve all the known bounds for the mean distance of the graph.

1 Introduction

Freeman introduced a set of centrality indices for social networks [1]. One of them is the

betweenness centrality of a vertex, that gives us an idea of the importance of the vertex in a

social network. Recently other authors have introduced the same concept for edges [2], studying

its distribution in complex networks and using it for finding communities in them. Other authors

showed that is strongly related with the distribution of load in an interconnection network, and

that it is an important factor to predict synchronizability of dynamic networks. The strong

relation of the parameter for vertices with the mean distance and other known parameters of

the graph is the object of our study. Laplacian spectral bounds of the betweenness centrality

for vertices and for edges and relations with other indices of networks have been studied by the

author et al. in [3].

2 Definitions and first properties

Let u, v ∈ V (G), if σuv(w) denotes the number of shortest paths (geodetic paths) from vertex u

to vertex v that go through w, and σuv is the total number of geodetic paths from u to v, then
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the betweenness centrality of the vertex w between the vertices u and v is buv(w) = σuv(w)/σuv ,

and so the betweenness of vertex w is Bw =
∑

u,v 6=w buv(w). The (vertex) betweenness of a graph

G = (V,E) of order n is BG = (
∑

w∈V Bw)/n and the maximum (vertex) betweenness of G is

Bmax
G = max{Bw | w ∈ V }.

We can find some properties of this parameter for a graph G of order n:

1. 0 ≤ buv(w) ≤ 1 ∀ u, v,w ∈ V ,

2. 0 ≤ Bmin
G ≤ BG ≤ Bmax

G ≤ (n − 1)(n − 2) ∀ w ∈ V , reaching the upper bound for the

central vertex of a star graph,

3. buv(w) = bvu(w) ∀ u, v,w ∈ V ,

4. if δw = 1 then Bw = 0.

Symmetries in graphs are also useful to simplify the calculation of these parameters. For

instance, if π is an automorphism of G and u, v ∈ G are two vertices such that π(u) = v, then

all the shortest paths crossing for u will be the same of the ones Bu = Bv. Therefore, in a

vertex-transitive graph G the group of automorphisms of the graph Aut(G) acts transitively on

V (G), so Bu = Bmax
G = BG, ∀u ∈ V . For two isomorphic graphs, G1 and G2 there exists a

bijective mapping Φ between the vertices of G1 and G2, such that Φ(G1) = G2. Then all the

shortest paths of one graph will be equal to the ones of the other, so Bu = BΦ(u) for all u ∈ V1,

and BG1 = BG2.

3 Relations with distance parameters

The idea of centrality in a graph is related with the idea of distance. A vertex will be more

central if we have to cross through it going to other vertices of the graph. In this section we

study a first approximation of the betweenness to some known distance parameters of the graph

as the mean distance, the diameter, the radius...

Given two vertices u and v of G at a distance d = d(u, v), we consider the following sets

called lawyers P h
uv = {w ∈ V | d(u,w) = h, d(w, v) = d − h}, 0 ≤ h ≤ d, introduced in

[3], and their union as Puv =
⋃d

h=0 P h
uv. Of course P 0

uv = {u} and P d
uv = {v}. Considering the

lawyers P h
uv , 1 ≤ h ≤ d − 1, all the shortest paths from u to v cross through all the vertices

of each lawyer, thus
∑

w∈P h
uv

buv(w) = 1, 1 ≤ h ≤ d − 1. For any other vertex of the graph

w 6∈ P h
uv, there is no shortest path from u to v crossing through w, so buv(w) = 0. Then

∑

w∈V

buv(w) =
∑

w∈Puv

buv(w) =

d
∑

h=0

∑

w∈P h
uv

buv(w) =

d−1
∑

h=1

1 = d − 1. (1)

We can use this to prove the following theorem:

2



Theorem 1. Let G be a graph of order n and mean distance l, then

BG = (n − 1)(l − 1).

Proof.

BG =
1

n

∑

w∈V

Bw =
1

n

∑

w∈V

∑

u,v∈V

buv(w) =
1

n

∑

u,v∈V

∑

w∈V

buv(w),

and applying (1)

BG =
1

n

∑

u,v∈V

(d(u, v) − 1) = (n − 1)(l − 1).

The diameter of the graph also give us two lower bounds for these parameters:

Theorem 2. Let G be a graph of order n, w ∈ V (G) with eccentricity e(w), then

e(w)(e(w) − 1)(e(w) − 2)

3n
≤ BG,

e(w)(e(w) − 2)

2
≤ Bmax

G .

Proof. Since the eccentricity of w is e(w), there is at least one vertex of the graph at a distance

ew from w, and so there is at least a path of e(w) vertices contained into the graph Pe(w) ⊆ G.

The idea of the proof is based into calculate the betweenness of Pe(w) and compare it with the

betweenness of the graph G. Let V (Pe(w)) = {w1, . . . , we(w)} be the set of vertices of the path.

First we note that Bw1 = Bwe(w)
= 0. For any other vertex wk we suppose that there are k − 1

vertices on its left and e(w) − k on its right. Thus Bwk
= 2(k − 1)(e(w) − k) and

BPe(w)
=

1

e(w)

e(w)−1
∑

k=2

2(k − 1)(e(w) − k) = (e(w) − 1)(e(w) − 2)/3.

Therefore the betweenness of the whole graph G will be bigger than this value

BG =
1

n

∑

w∈V

Bw ≥
1

n

∑

wk∈Pe(w)

Bwk
= e(w)(e(w) − 1)(e(w) − 2)/3n.

By the same way, we can deduce the bound for Bmax
G from the Bmax

Pew
. To calculate the second,

we can consider Bwk
= 2(k − 1)(e(w) − k) = −2k2 + 2(e(w) + 1)k − 2e(w) = f(k) as a function

of k, and look for its maximum. The first derivative is f ′(k) = −4k + 2(e(w) + 1) = 0, then

k0 = e(w)+1
2 . The second derivative when k = k0 is f ′′(k0) = −4 < 0, so k0 is a maximum. If

e(w) is odd, k = (e(w) + 1)/2 ∈ Z, then Bmax
G ≥ Bmax

Pe(w) = (e(w) − 1)2/2. And if e(w) is even,

k = (e(w) + 1)/2 6∈ Z, the maximum is reached when k0 = e(w)/2 or k0 = e(w)/2 + 1 and its

value is Bmax
G ≥ Bmax

Pe(w)
= e(w)(e(w)/2 − 1).

Corollary 1. Let G be a graph of order n, diameter D and mean distance l, then

1 +
D(D − 1)(D − 2)

3n(n − 1)
≤ l.

3



3.1 Relations with local parameters

Now we are going to study the relation of the betweenness with a local parameter of the vertices

of the graph called the clustering coefficient. This parameter was introduced by Watts and

Strogatz [4] as a measure of the connectivity of the neighbourhood of the vertices of the graph.

The clustering coefficient of a vertex Cu, is the fraction of the number of edges connecting the

neighbors of a vertex nu among the total number of possible edges between them, that is, if u has

degree δu the clustering parameter of the vertex u is Cu =
2nu

δu(δu − 1)
. We can also define the

clustering parameter of the graph G as the average of the clustering parameters of its vertices

C =
1

n

∑

u∈V

Cu. The last one also give us an idea about the number of triangles of the graph.

For instance, the unique graph with C = 1 is the complete graph Kn, and a graph with C = 0

is a triangle-free graph.

We can find some results relating this parameter to the betweenness.

Lemma 1. Let G be a graph of order n, w ∈ G, then Bw = 0 ⇔ Cw = 1.

Proof. If Bw = 0 there are no shortest paths connecting two vertices of the graph containing w,

thus w has degree 1 or all the neighbors of w must be connected, and therefore if and only if

Cw = 1.

Proposition 1. Let G = (V,E) be a graph of order n and size e, w ∈ V a vertex of degree

δw > 1 and Cw = 0, then
δw(δw − 1)

n − δw
< Bw.

Proof. Since Cw = 0 the vertex w has δw neighbors no connected between them. Let u and v be

two of these neighbors, that is the edges euw ∈ E, evw ∈ E, then buv(w) = σuv(w)/σuv ≥ 1/σuv.

On the other hand σuv ≤ n − δw, since the worse thing that could happen for going from

u to v is that we would have to cross through the rest of the vertices of the graph. Hence

buv(w) ≥ 1/σuv ≥ 1/(n − δw) and
∑

euw∈E,evw∈E buv(w) ≥ δw(δw − 1)/(n − δw). Finally

Bw ≥
∑

euw∈E,evw∈E

bu,v(w) +
∑

euw /∈E,evw /∈E

bu,v(w) ≥
δw(δw − 1)

n − δw
.

Now applying this result we obtain two lower bounds for the betweenness of triangle-free

graphs:

Corollary 2. Let G be a triangle-free graph of order n, let ∆ be the maximum degree of the

vertices of the graph and δ the minimum degree, then

δ(δ − 1)

n − ∆
≤ BG ≤ Bmax

G .
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Corollary 3. Let G be a regular triangle-free graph of order n, and let r be the degree of its

vertices,
r(r − 1)

n − r
≤ BG ≤ Bmax

G .

We can get another result for vertices w such that Cw 6= 0:

Proposition 2. Let G be a graph of order n, w ∈ V (G) a vertex of degree δw, then

• if δw > 1, 2(n − δw − 1) ≤

δw
∑

i=1

Bui
.

• if δw = 1, 2(n − 2) ≤ Bu1 .

Proof. All the shortest paths connecting w with the rest of the n− δw − 1 vertices of the graph

cross through its neighbors u1, . . . , uδw
. Then Bui

≥
∑n−1

j=δw
bwuj

(ui) and

δw
∑

i=1

Bui
≥

δw
∑

i=1

n−1
∑

j=δw

bwuj
(ui) = 2(n − δw − 1).

Corollary 4. Let n1 be the number of vertices of degree 1 of the graph G,

2(n − 2)n1

n
≤ BG.

Corollary 5. If the graph G is vertex-transitive of degree r,

2(n − r − 1)

r
≤ Bi = Bmax

G = BG.

4 Some Bounds

In this section we are going to study what happens with the betweenness and the maximum

betweenness of the graph when we make some operations like connecting two vertices with an

new edge or connecting a new vertex with one or more vertices of the graph. This will help us to

find some bounds for the betweenness in some particular cases of graphs like trees, hamiltonian,

etc.

4.1 Adding a new edge

Proposition 3. Let G be a graph of order n and G′ the graph obtained connecting two vertices

u, v ∈ V (G) at distance d = d(u, v) > 1 with a new edge, then

BG′ ≤ BG − 2(d − 1)/n.
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Proof. First we suppose that d = 2. Let Puv = {w1, . . . , wh} be the set of vertices in a shortest

path between u and v. We denote by bw(u, v) and b′w(u, v) the betweennes of w in G and G′.

By previous result (1) we know that
∑h

i=1 bwi
(u, v) = 2 − 1 = 1. Connecting u and v with

a new edge, all the shortest paths that cross through those vertices w1, . . . , wh are eliminated

thus
∑h

i=1 b′wi
(u, v) =

∑h
i=1 b′wi

(v, u) = 0 and
∑

w∈V (G′) B′
w ≤

∑

w∈V (G) Bw − 2. By the same

reasoning, the rest of the shortest paths between two vertices of the graph containing u and v

will not pass through w1, . . . , wh, thus
∑

u B′
u ≤

∑

u Bu − 2 and BG′ ≤ BG − 2/n.

If the vertices u, v are at a distance d(u, v) = d > 2, following a similar reasoning with the

intermediate vertices we get that
∑

u B′
u ≤

∑

u Bu − 2(d − 1), and so on.

Corollary 6. Let G′ = (V ′, E′) be a maximal connected subgraph of a graph G = (V,E) such

that V ′ = V , E′ ⊂ E, and let m =| E \ E′ |, then

BG ≤ BG′ − 2m/n.

Proof. The result can be proved by applying Proposition 3 in m steps.

Theorem 3. Let G = (V,E) be a graph of order n and size e > n, and let T be one of its

spanning trees, then

BG ≤ BT − 2(e − n)/n.

Proof. Any spanning tree is a maximal connected subgraph of G with n edges, so applying

Proposition 3 with m = e − n we get the result.

Corollary 7. Let G be a hamiltonian graph of order n and size e > n, then

• BG ≤ (n2 − 4n)/4 − 2(e − n)/n if n is even.

• BG ≤ (n2 − 4n + 3)/4 − 2(e − n)/n if n is odd.

Proof. Let Cn be the hamiltonian cycle containing all the vertices of G. We can calculate the

betweenness of Cn and then apply the last result to find the bounds. As Cn is vertex-transitive,

Bmax
G = BG = Bw for all w ∈ V , so we just need to calculate Bw for only one vertex:

• If n is odd (n = 2k+1), let ui be the vertex at a distance i on the left of w and let vj be the

vertex at a distance j on the right of w. If i + j ≤ k we will have to cross through w if we

go from ui to vj , so buivj
(w) = bvjui

(w) = 1. Then Bw =
∑k−1

i=1

∑k−i
j=1 2 = 2

∑k−1
i=1 (k − i) =

k(k − 1).

• If n is even (n = 2k), each vertex of the graph has one vertex at a maximum distance

k, and two possible paths to get to it. The contribution of the vertices that are not at
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maximum distance from w will be equal to the ones of the odd case and we just have to

add 1
2 for the vertex at the maximum distance, so Bw = k(k − 1) + 2(k − 1)/2 = k2 − 1.

Finally we just have to apply Proposition 3 again to get the result.

We note that these bounds are tight for graphs with many edges and few vertices (dense graphs).

Using the relation between the betweenness centrality and the mean distance of a graph given by

the Theorem 1, the bounds are also useful for the mean distance of a graph. They also improve

the bounds for the mean distance of Doyle in [5].

4.2 Adding a new vertex

Proposition 4. Let G be a graph of order n, G′ the graph obtained connecting a new vertex v

to a vertex w ∈ G with degree δw, then BG ≤ BG′.

Proof. We denote as Bw the betweenness of a vertex before adding the new vertex and B′
w the

betweenness of a vertex afterwards, and we define B′
n+1 = B′

v and B′
n = B′

w. The vertex v has

degree 1, then B′
n+1 = B′

v = 0. How much B′
w is affected? All the shortest paths between w

and the n− 1 vertices of the graph cross through w, so B′
w = B′

n = Bn + 2(n − 1). By the way,

considering all the δw neighbors of w, the new B′
n will be increased in 2(n − 1 − δw) as all the

shortest paths between w and the rest of the vertices of G will cross through all these vertices.

We can not know how the rest of Bw will increase, but we can insure that
∑n−1−δw

w=0 B′
w ≥

∑n−1−δw

w=0 Bw. Then
∑n

w=0 B′
w =

∑n−1−δw

w=0 B′
w +

∑n−1
w=n−1−δw

B′
w + B′

n ≥
∑n

w=0 Bw + 2(n − 1 −

δw) + 2(n − 1), and so

BG′ =

∑n
w=0 B′

w

n + 1
+

B′
n+1

n + 1
≥

nBG + 4(n − 1) − 2δw

n + 1
.

Observe that the larger the degree of the vertex to which we connect the new vertex, the lower

the bound. The increment of the betweenness will be

BG′ − BG ≥ [−1 + 4(n − 1) − 2δw]/(n + 1) ≥ 0.

Supposing that 2n − 5/2 ≤ δw and noting that δw ≤ n − 1, 2n − 5/2 ≤ n − 1 ⇔ n ≤ 3/2.

Therefore, for n ≥ 1 the betweenness increases.

Proposition 5. Let G be a graph of order n, let G′ be the graph obtained connecting a new

vertex w to two vertices u, v of G at a distance d(u, v) = 1 or d(u, v) = 2, then

1

n + 1
[nBG + 2(n − 2)] ≤ BG′ .
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Proof. The proof is similar to the one of the previous proposition:

If d(u, v) = 1, the three vertices form a triangle, so Bw = 0. The sum of the new betweenness

of u and v will be B′
u + B′

w = Bu + Bw + 2(n − 1), since all the shortest paths connecting w to

the rest of the graph pass through u and v. Also the betweenness of the neighbors of u and v

will increase, although we do not know how much, so
1

n + 1
[nBG + 2(n − 2)] ≤ BG′ .

If d(u, v) = 2, we call i1, . . . , is the s intermediate vertices connecting u and v. In G we

have bil(u, v) = 1/s and
∑s

l=1 bil(u, v) = 1, then in G′ w = is+1 ⇒ bil(u, v) = 1/(s + 1) and
∑s+1

l=1 bil(u, v) =
∑s+1

l=1 1/(s + 1) = 1, but B′
u + B′

v = Bu + Bv + 2(n − 2) as before, therefore

with the same reasoning as the other case
1

n + 1
[nBG + 2(n − 2)] ≤ BG′ .

For d = 3 the BG can increase or decrease, depending on the graph.

Theorem 4. Let Tn be a tree of order n, w a vertex of degree δw > 1, ∆ the maximum degree

of the graph, and m1, . . . ,mδw
the size of the branches of Tn (with respect to w), then

1. Bw =
∑δw

i,j=1,i6=j mimj for every w ∈ V (Tn),

2. Bmax
T ≤ (n− 1)2(∆ − 1)/∆, where the upper bound is reached for a tree with a root vertex

of degree ∆ and with all its branches of the same size.

Proof. To go from the mi vertices of one branch of the three to the others n − mi vertices we

have to cross through w, so Bw =
∑δw

i=1 mi · (n − mi) =
∑δw

i,j=1,i6=j mimj = f(m1, . . . ,mδw
).

Now we can apply the Lagrange multipliers formula to calculate the maximum of this function

under the condition m1 + · · · + mδw
= n − 1. The auxiliar function is F (m1, . . . ,mδw

, λ) =
∑δw

i=1 mi

(

∑

j 6=i mj

)

− λ
(

∑δw

i=1 mi − n + 1
)

. So we have to solve the system formed by its

partial derivatives equal to 0, and isolate λ

λ = 2
∑

j 6=i

mj = n − 1 − mi ∀i = 1, . . . , δw.

As λ is the same for all the equations, the mi must be all equal too, so the maximum will be

reached when mi = (n − 1)/δw and its value will be f
(

n−1
δw

, . . . , n−1
δw

)

= (n − 1)2(δw − 1)/δw.

Finally considering the value of this maximum as a function of δw, we note that the function is

increasing, thus Bmax
T ≤ (n − 1)2(∆ − 1)/∆. The bound will be reached for a tree with a root

vertex of degree ∆ and with all its branches of the same size.

Corollary 8. Let G be a graph of order n, size e and maximum degree of vertices ∆, then

BG ≤ Bmax
G ≤ (n − 1)2

(∆ − 1)

∆
−

2(e − n)

n
.

Proof. Considering any spanning tree containing as a root vertex the vertex of maximum degree,

and applying Proposition 3 and (1), we get the result.
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Now we found a bound for the maximum betweenness of a tree and we generalize it for a general

graph G.

Theorem 5. Let G be a graph of order n, w ∈ V of excentricity ew and Γk(w) the set of vertices

at a distance k from w. If we connect a new vertex u to w, then

BG′ =
1

n + 1

[

nBG + 2
ew
∑

k=1

k|Γk(w)|
]

.

note 1. We note that the second summand depends on the eccentricity of the vertex w and its

number of extremal vertices, that is, the more vertices at extremal distance the vertex w has, the

more BG will be increased.

Proof. Given a vertex w ∈ V , we denote by nk = |Γk(w)|, and we denote by Bi and B′
i the

betweenness of the vertex i in G and G′ respectively. Connecting a new vertex u to w, all the

shortest paths that go from u to the vertices at a distance l > k, will cross through the vertices

of Γk(w). For this reason their betweenness will be increased as
∑

v∈Γ(k) B′
v =

∑

v∈Γ(k) Bv +

2
∑

i>k ni, 1 ≤ k ≤ ek − 1. The betweenness of the extremal vertices are not affected. Adding

the betweenness of all these sets

ew
∑

k=0

∑

v∈Γ(k)

B′
v =

ew
∑

k=0

∑

v∈Γ(k)

Bv + 2

ew−1
∑

k=0

∑

i>k

ni.

Finally we divide all by n + 1 and get the result.

Theorem 6. Let Tn be a tree of n vertices and diameter D, then

• If n − D is odd, BTn ≤ 1 +
(n − 4)D

2
−

D3 − 6D2 − D + 6

6n
.

• If n − D is even, BTn ≤ 1 +
(n − 4)D

2
−

D3 − 6D2 + 2D

6n
.

Proof. Using Theorem 5 we are going to construct a tree with maximum B. We start from a

path PD+1 of diameter D and connect the n − D − 1 other vertices without incrementing the

diameter, in such a way that the total betweenness would be the maximum.

For constructing the tree, we consider the two vertices with maximal eccentricity (apart from

the ends): u2 and uD. Both have the same number of vertices at a maximum distance (1 in

this moment). We connect a new vertex to one of them. Then the second vertex to be added

must be connected to the other one, because that vertex would have the maximum eccentricity

and also the maximum number of vertices at extremal distance (2 at the moment). The third

vertex can be connected again to one of these vertices u2 or uD, but the fourth would have to

be connected to the other one, for the same reason.
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Following this procedure we just have to add the n − D − 1 vertices to the second and the

D vertex of the path. The betweenness of the tree depends on two cases:

If n − D = 2k + 1, BTn =
1

n

D
∑

i=2

2(k − 1 + i)(n − k − i) +
2k(k + 1)

n
.

If n − D = 2k + 2, BTn =
1

n

D
∑

i=2

2(k + i)(n − k − 1 − i) +
2(k + 1)2

n
.

Simplifying these sums we get the result.

Corollary 9. Let G be a graph with n vertices, e > n edges and diameter D, then

• If n − D is odd, l ≤ 1 +
1

(n − 1)
+

(n − 4)D

2(n − 1)
−

D3 − 6D2 − D + 6

6n(n − 1)
−

2(e − n)

n(n − 1)
.

• If n − D is even, l ≤ 1 +
1

(n − 1)
+

(n − 4)D

2(n − 1)
−

D3 − 6D2 + 2D

6n(n − 1)
−

2(e − n)

n(n − 1)
.

Proof.

Example 1. If we consider the graph of the Figure 1, n = 9, e = 15, D = 3 and its mean

distance is l = 1.75. As n − D = 6 = 2k + 2 we apply the second bound of the Corollary 9,

obtaining l ≤ 1.75. Therefore this is an example of graph where the upper bound is reached.

b b b

b b b

b b b

Figure 1: K3 × P3

Example 2. For the graph of Figure 2 , n = 10, e = 11, D = 7 and its mean distance is

l = 3.022. As n − D = 3 we apply the first bound of the Corollary 9, obtaining l ≤ 3.33. The

bound of Mohar [11] gives l ≤ 15, and the bounds of Kouider et al. [8] and Beezer et al. [10]

are l ≤ 5.33 and l ≤ 3.57 respectively.

b b

b

b

bbb

b

b

b

Figure 2: Example 2.
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