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Absfrucf- A novel algorithm designed to compute efficiently 
and accurately the high-frequency electromagnetic scattering 
from open-ended waveguide cavities is presented. The cavity is 
converted into a stepped-waveguide model so that the field spectra 
are propagated, forward and backward, along each waveguide 
section. As boundary conditions for perfect electric conductors 
are applied via image theory, they are of local nature and take 
into account only the first-order interactions between each pair of 
waveguide sections. Accordingly, additional forward-backward 
iterations must be performed if multiple interactions are to be 
taken into account. Finally, the radar cross section due to the 
interior irradiation is calculated by a Kirchhoff-based aperture 
integral. Good agreement with Method of Moments and Hybrid 
Modal solutions is found, as well as with experimental data, for 
two-dimensional and three-dimensional cavities with rectangular 
cross section. 

I. INTRODUCTION 
HE analysis of electromagnetic (EM) scattering from T open-ended waveguide cavities has received strong atten- 

tion in the last years in relation to radar cross section (RCS) 
reduction and target signatures. For RCS analysis of complex 
targets, duct structures such as jet engine intakes can often be 
modeled by more simple waveguide cavities. 

When the dimensions are electrically small, numerical tech- 
niques such as Method of Moments (MOM) [l]  or Finite 
Elements Method (FEM) [2] can be applied, leading to rig- 
orous solutions. In electrically large cavities, on the other 
hand, high frequency (HF) approximations must be used to 
compute the interior radiation due to the large number of 
unknowns involved in the numerical solution. In cavities with 
regular uniform geometry, modal methods have proved to be 
efficient over a broad range of frequencies [3], [4], though the 
geometrical constraints prevent realistic modeling of complex 
targets. 

In the case of more arbitrarily shaped cavities, geometrical 
optics based ray-shooting [5] or Gaussian beam (GB) [6] 
approaches can be used to deal with smooth nonuniform 
geometries, but they are limited to very high frequency prob- 
lems. Recently, several hybrid schemes [7], [SI have been 
reported to treat cavities that can be modeled by uniform 
waveguide sections connected by arbitrary transitions, though 
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some of them [SI introduce low-frequency techniques in the 
HF approximations, which results in an important increase in 
the computational requirements. 

Another relevant scheme reported recently [9] allows for 
the low-frequency analysis of three-dimensional cavities using 
a connection technique closely related to the Microwave 
Network Theory. It is based on the division of the cavity into 
sections which are independently analyzed. When each of them 
has been represented by a generalized admittance matrix, the 
aperture admittance is derived by cascading the matrixes of 
every individual section. 

We present in this paper an alternative technique concep- 
tually related to the above-mentioned connection scheme [9]. 
Our technique is based on the spectral domain representation 
of electromagnetic fields, first introduced by Bojarski in the 
1970's [15], [16]; it can be considered an evolution of previ- 
ously existing spectral methods, namely the Spectral-Iterative 
Technique (SIT) [lo] and the Spectral Incremental Procedure 
(SIP) [ 113. The new technique provides the approximate RCS 
of simple cavity structures in a broad frequency range with 
high efficiency, and with a progressive refinement of the 
solution. This particular feature adapts the computational cost 
to the complexity of the cavity. 

The algorithm, however, accounts only for the interior irra- 
diation, so that asymptotic methods such as Physical Theory of 
Diffraction (FTD) [12], Method of Equivalent Currents (MEC) 
[13], or Uniform Theory of Diffraction (UTD) [14] should be 
employed to include first-order edge effects. If the cavity is 
embedded in a more complex body, classical theories such as 
physical optics (PO) could be used to incorporate the external 
scattering. 

The formulation of the algorithm will begin with the de- 
scription of the two-dimensional version, which is conceptu- 
ally more simple. Extension to a 3-D nonuniform rectangular 
cross section will follow. Results for both two-dimensional 
and three-dimensional cavities will be presented to illustrate 
the performance of the method and to establish comparison 
with reported results. Finally, the features and drawbacks of 
the algorithm will be discussed. 

11. TWO-DIMENSIONAL ALGORITHM 
An arbitrary 2-D cavity is plotted in Fig. 1. To begin 

with, a segmentation process must be carried out in order to 
turn the original geometry into a stepped-waveguide cavity 
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Fig. 1. 
cavity. Solid line: Stepped-waveguide model. 

Segmentation process in an arbitrary 2-D cavity. Dotted line: Original 

consisting of several straight sections, each corresponding to 
a parallel plate waveguide. The resolution required in the 
stepped model will be discussed later, but it depends mainly on 
geometrical complexity and smoothness of the original cavity, 
computational resources, and requested accuracy. 

Once the modeling is completed, incident fields due to 
a plane-wave excitement are found via Kirchhoff s Approx- 
imation over the aperture. These fields are then spectrally 
propagated successively through every waveguide section, 
where local boundary conditions are applied. Forward radi- 
ation of equivalent currents is obtained directly via image 
theory, while backward radiation is stored to be used later 
in the process. Once the end-plate of the cavity is reached and 
the forward propagation procedure is thus finished, a backward 
propagation must follow. Reflected fields previously stored are 
now added to the propagating wavefront at every waveguide 
section, before local boundary conditions are applied. Forward 
reflected fields must still be stored if further iterations are to be 
carried out. The outwardly traveling fields obtained over the 
aperture can be considered as a first-order approximation for 
the interior scattering. As it is well known that HF diffraction 
is a local phenomenon, boundary conditions on the whole 
surface of the cavity walls must be achieved through multiple 
interaction between all cavity sections. Therefore, multiple 
iterations should be carried out if a higher order solution is 
requested. 

A detailed description of the entire process is as follows. 

A. Forward Propagation 

First of all, the field components that will be propagated 
throughout the algorithm, namely E, and H, for the TM" and 
TE" cases, must be sampled over the aperture. Local boundary 
conditions must be applied to the fields prior to the propagation 
through the first section. A symmetrization procedure related 
to classical image theory, specular for the TE" polarization 
and antispecular for the T M " ,  is then applied with respect to 
both conductors, leading to periodic field distributions (Fig. 2). 
Samples over the conductors are set to zero in the TM" case 
(E-field parallel to conducting walls must vanish) but not in the 
TE" (H-Field parallel to conducting walls must correspond to 
a maximum or minimum). 
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(b) 
Fig. 2. Sampling and symmetrization procedure in the TM" (top) and T E Z  
(bottom) cases. (a) Original field sampling. (b) Periodic result of applying 
image theory, which is processed by FFT. 

The plane-wave spectrum of the resulting fields is obtained 
via FFT (1) and is propagated in a single step through the 
current waveguide section according to (2): 

f i z (kz ;  yo) = / U+(%, m)ejk"zdx, (1) 

where U, = E,(z,y) or H,(z,y) . 

final plane (3), 
The fields in the spatial domain, recovered via IFFT on the 
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include the Huygens radiation of the fields incident to the 
present waveguide section plus the forward contribution of 
the equivalent currents along the conducting walls forming 
the section. 

Notice that specular or antispecular symmetry is maintained 
after the propagation with independence of the section dimen- 
sions. Null or ma-min samples on both PEC walls are also 
maintained after propagation. 

Radiation of the equivalent currents obtained by image 
theory corresponds to convolution of the incident fields with 
the Green's function of two perfectly conducting infinite 
parallel planes. This approach is locally correct inside the 
current waveguide section. As a result, the scheme is valid 
only locally, so it is necessary to propagate the fields several 
times in forward and backward directions to take into account 
the multiple interaction between different waveguide sections. 
A global solution for the whole cavity is thus obtained, as will 
be seen later. As a major drawback, boundary conditions are 
restricted to perfect electric or magnetic conductors (PEC or 
PMC) so that dielectric loadings cannot be considered. 

In order to adjust the sampling to waveguide sections 
of different widths, keeping samples over both conducting 
walls, an interpolation process must be carried out along 
the boundary between consecutive sections. Reflected field 
samples are to be stored if the following section is narrower 
than the previous one, while additional samples are introduced 
and set equal to zero if it is wider. In the new section, 
symmetrization is again applied to guarantee the fulfillment of 
local boundary conditions. This procedure is repeated for every 
waveguide section, as described in Fig. 3(a), where reflected 
fields are highlighted in black. 

B. Backward Propagation 

Once the cavity end is reached, a backward propagation 
procedure starts with the fields reflected in the termination end- 
plate (Fig. 3(b)). The process is analogous to that described in 
Section 11-A, though additional samples are not padded with 
zeros but with field values previously stored in the forward 
propagation. If further iterations are to be carried out, new 
reflected fields must be saved again, as indicated in Fig. 3(b). 

C. Multiple Iterations 
A first-order solution for the outwardly travelling fields 

is obtained after the initial iteration (forward + backward). 
Radiation of all interior induced currents has been taken into 
account, though these currents have been obtained taking 
into account only first-order interaction between every pair 
of waveguide sections. An improved solution for the currents 
and the scattered fields, including higher order effects between 
different parts of the cavity, may be obtained by additional 
forward + backward iterations. The scheme, for every new 
iteration, is analogous to that of the first one, though in the 
additional forward propagations there is no incident field. The 
only contribution to the propagating wavefront is due to the 
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Fig. 3. Forward-backward iteration in an arbitrary 2-D cavity modeled 
with seven waveguide sections: (a) forward propagation and (b) backward 
propagation. In (a) the field reflected in wide to narrow transitions is saved to 
be used in the backward propagation, while in (b) the field reflected is saved 
to be used in the next iteration. 

reflected fields stored in the previous backward iteration, which 
would represent higher order terms in a series expansion of 
the currents. The outwardly traveling fields obtained at each 
iteration must be coherently added over the aperture to form 
a higher order solution. As the amplitude of the successive 
wavefronts decreases constantly, a progressive convergence 
of the solution is achieved. Finally, the RCS can be calculated 
by an aperture integration based again on the Kirchhoff 
approximation, with some kind of edge correction if necessary. 

In theory, this iterative procedure should always converge 
for the following reason: The fields added by each new 
iteration take into account a higher degree of multiple in- 
teraction between any pair of waveguide sections. In fact, 
the first iteration (only forward and backward propagations) 
computes the scattering due to the incident field and the 
first interaction between any pair of waveguide sections, the 
second forward + backward iteration adds the effect of the 
second-order interaction, etc. As the scattered field is the 
infinite summation of all these multiple interactions, and is 
finite, in theory the procedure should always converge. In our 
experience the procedure has always converged for a large 
number of conducting cavity configurations. 

111. RESULTS FOR TWO-DIMENSIONAL CAVITIES 

To illustrate the performance of the algorithm and the 
convergence of the interior field distribution towards a correct 
solution, graphical representation of the fields inside a simple 
cavity (Fig. 4) will be presented. The results correspond to 
frontal TM" incidence. Results for the total E, field along the 
cavity axis are shown in Fig. 4 for 1 and 12 forward-backward 
iterations. Notice that the solution is similar to a stationary 
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Fig. 4. Field inside a 2-D simple cavity (y-axis). Frontal TM" incidence. 
Magnitude of the total E+ field after 1 and 12 iterations. Convergence is 
achieved in six iterations. 

wave inside a transmission line. Significant improvement over 
the first iteration is achieved when multiple interactions are 
taken into account, which shows the important role played 
by the high-order effects at intermediate frequencies and 
the proper convergence of the solution. In this example, 
convergence is achieved in six iterations. 
HF backscattering pattems of a short double-bend S-shaped 

cavity for the TM" and TE" polarizations are shown in 
Figs. 5 and 6, where comparison has been established with 
reference solutions. Excellent agreement is observed with the 
GB shooting method and hybrid modal results [6], with a 
single iteration, in both TM" and TE" cases. Very slight 
variation is appreciated in the two-iteration results because, as 
previously stated, diffraction becomes a local phenomenon as 
the frequency is increased and, therefore, multiple interactions 
can be neglected. 

Good agreement with GB and hybrid modal solutions [6] 
was also obtained for a long double-bend S-shaped cavity, 
as shown in Fig. 7. However, results are not so accurate 
at the large-angle directions because the great number of 
waveguide sections required to properly model such a large 
and complex geometry results in a certain staircase modeling 
error. This is particularly significant at the large aspect angles 
of the pattem due to the large number of ray bounces, since 
each ray bounce introduces a slight staircase modeling error. 
In addition, external edge diffraction is not included in the 
spectral results. 

Finally, several RCS pattems for a 30"-offset bend cavity [8] 
(Fig. 8) are presented in Fig. 9. Results obtained with different 
cavity models and number of iterations have been checked. 

w. EXTENSION TO THREE-DIMENSIONAL CAVITIES 

Modeling procedure for nonuniform rectangular cross- sec- 
tion geometries (Fig. 10) is analogous to that previously 
described for 2-D cavities. The cavity is converted into suc- 
cessive straight .waveguide sections. Boundary conditions are 
forced again via specular or antispecular images combined 
with FFT 2-D periodicity properties. Now a double sym- 
metrization in both the X and Y directions is to be performed. 

A 
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Fig. 5. RCS pattems of a short double-bend S-shaped cavity. T M Z  polar- 
ization. (a) - : hybrid-modal reference; . . . . . .. - - - -: GB shooting 
method [6]. (b) Spectral solution, cavity modeled with 22 sections, one 
iteration. 



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 42, NO. 6, JUNE 1994 

@ 
LIS. -n -s. a s. xi. 4s. 

INCIDENCE ANGLE (DECREES) 

(a) 

SPECTRAL SOLUTION CTE Polarization) 

- x "I 

45 -30 -15 0 15 30 45 
ANGLE (Degrees) 

(b) 

Fig. 6.  RCS patterns of a short double-bend S-shaped cavity. TE" polar- 
ization. (a) - : hybrid-modal reference; . . . . . ., - - - -: GB shooting 
method [6 ] .  (b) Spectral solutions with one or two iterations, cavity modeled 
with 22 sections, 

Given that only two of the six vectorial components of the 
fields are linearly independent, only two different matrixes 
must be used by the 3-D algorithm. The field components 
chosen for propagation are E, and Ey,  which means that TM" 
and TE" modes are not propagated separately. 

Since 2-D FFT is used, which is meaningful only in Carte- 
sian coordinates, and since image theory is only applicable in 
two dimensions to rectangular cross sections with conducting 
walls, this procedure is applicable only to 3-D cavities with 
rectangular cross section. 

v. RESULTS FOR THREE-DIMENSIONAL CAVITIES 
Shown in Fig. ll(b) is the comparison between numerical 

results generated by the spectral algorithm and the hybrid 

I .  . . .I . . . . . , 
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@) 

Fig. 7. RCS patterns of a long double-bend S-shaped cavity. T M Z  polar- 
ization. (a) - : hybrid-modal reference; . . . . . ., - - - -: GB shooting 
method [6 ] .  (b) Spectral solution, cavity modeled with 30 sections, one 
iteration. 

BIM/modal approach, together with experimental measure- 
ments [8], for an offset rectangular waveguide cavity with two 
similar transition bends (Fig. ll(a)) at 10 GHz. Since this.is 
a difficult case for the staircase approximation, the agreement 
is not very good even at small aspect angles. At larger angles, 
additional diffraction effects and exterior scattering come into 

A tapered waveguide cavity (Fig. 12) composed of a secto- 
rial section with an open end connected to an uniform section 
with a planar termination has also been analyzed. Results at 

Play* 
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Fig. 8. Geometry of a 3O0-offset bend cavity. 
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Fig. 9. 
tations (37 and 44 sections), TM" polarization. 

Comparison between spectral solutions with different cavity segmen- 

10 Ghz are shown in Fig. 13 against measured RCS and 
modal patterns [4] for the scans corresponding to 4 = 45" 
and q5 = 90" planes. The agreement is very good for q5 = 90" 
0 < 60' but, on the other hand, the spectral results are not 
valid for 4 = 45" 0 > 25". The reason for that behavior is 
still under investigation by the authors. 

VI. DISCUSSION AND CONCLUSIONS 
The spectral iterative algorithm presented in this paper 

has shown remarkable features as well as some important 
drawbacks. To sum up, the following advantages can be 
pointed out: 

1) The algorithm requires 1-D vectors in 2-D problems 
and 2-D matrixes in 3-D problems, leading to reduced 
storage and CPU necessities. 

2) Geometrical uniformity of the cavity under analysis 
is exploited: In simple bodies the number of sections 
required is small, whereas in complex bodies many 
sections must be used in the stepped model. Hence, 
computational cost depends basically on the geometrical 
complexity but not on the electrical depth. 

Fig. 10. Modeling procedure in a 3-D cavity with rectangular cross section. 
(a) Original cavity. (b) Stepped-waveguide model. 
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Fig. 11. (a) Geometry of the offset rectangular cavity. (b) Comparison 
between BMmodaJ, experiment [8] and spectral results (two iterations, cavity 
modeled with 30 sections), f = 10 GHz, &$-polarization. 

3) The algorithm is iterative with successive refinement. 
The nth forward-backward iteration appends to the 
result the fields caused by multiple interaction of order 
(n + 1) between waveguide sections. As HF scattering 
is a local phenomenon, only a single forward-backward 
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Fig. 12. Geometry of a 3-D tapered waveguide cavity. 
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Fig. 13(a). Comparison between measured, modal [4], and spectral (two 
iterations, cavity modeled with 20 sections) RCS pattems, f = 10 GHz. 
88-polarization, 4 = 45' scan. (b) @$-polarization, q5 = 90° scan. 

propagation is necessary for electrically large objects, 
whereas a few iterations are required for scatterers of 
intermediate size. 

As main drawbacks we should mention that: 
1) The fields are distorted by the stepped shape of the 

cavity. In order to reduce the distortion, the model- 
ing resolution must be increased, resulting in a higher 
number of sections, and thus in more FFT calculations. 

2) Boundary conditions are restricted to PEC or PMC. 
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Fig. 13(b). Comparison between measured, modal [4], and spectral (two 
iterations, cavity modeled with 20 sections) RCS pattems, f = 10 GHz. 
&$-polarization, q5 = 90' scan. 

3) As stated in Section IV, the algorithm is applicable 
only to three-dimensional cavities with rectangular cross 
section, which can be modeled by successive rectangular 
waveguide sections. 

The results provided by the new algorithm are good for a 
broad variety of 2-D and 3-D problems. Cavities with different 
shape and electrical size have been compared with numerical 
results reported by other authors and with experimental data, 
showing good agreement in the incident angles where interior 
backscattering is the dominant contribution to the global RCS. 

The computational cost relies mainly on three parameters, 
which are closely interrelated: 

1) Number of sections used in the stepped model of the 
cavity, which depends on the geometrical complexity of 
the original geometry. 

2) Number of forward-backward iterations, which de- 
creases with higher frequency. For electrically large 
cavities, a single forward-backward iteration might be 
enough. 

3) Sampling rate. The minimum number of samples in- 
creases with the electrical size of the cross section of the 
duct (Nyquist rate). In addition, a certain oversampling 
factor over the Nyquist rate must be used so as to 
broaden the spectral window to account for some of the 
slower evanescent modes. The higher the sampling rate, 
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the larger the dimension of the matrixes whose FFT has 
to be computed. Values ranging from 64 to 512 have 
been utilized in the results presented in this paper. 

In conclusion, the computational cost increases with the 
geometrical complexity of the cavity, the number of iterations 
(which is usually smaller at higher frequencies) and the 
electrical size of the cross section of the duct. 

Notice that spectral propagation is equivalent to a wave- 
guide modal matching approach where the modes on each 
waveguide section are computed in a very efficient way. No 
more than a few seconds per incident angle in the 2-D cases 
and no more than a few minutes per incident angle in the 3-D 
problems were necessary to compute the RCS patterns in a 
HP-Apollo 720 workstation. 
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