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Novel Monopolar MFIE MoM-Discretization for the
Scattering Analysis of Small Objects

Eduard Ubeda and Juan M. Rius, Member, IEEE

Abstract—We present a novel method of moments (MoM)-mag-
netic field integral equation (MFIE) discretization that performs
closely to the MoM-EFIE in the electromagnetic analysis of mod-
erately small objects. This new MoM-MFIE discretization makes
use of a new set of basis functions that we name monopolar Rao–
Wilton–Glisson (RWG) and are derived from the RWG basis
functions. We show for a wide variety of small objects -curved and
sharp-edged-that the new monopolar MoM-MFIE formulation out-
performs the conventional MoM-MFIE with RWG basis functions.

Index Terms—Electromagnetic scattering, integral equations,
method of moments (MoM), numerical analysis, radar cross
sections (RCS).

I. INTRODUCTION

THE method of moments (MoM) discretization of the elec-
tric field integral equation (EFIE) formulation with Rao–

Wilton–Glisson (RWG) basis functions [1], a low order example
of divergence-conforming set [2], [3], is widely used in the anal-
ysis of objects to obtain scattering parameters such as the radar
cross section (RCS). However, it is well-known that there is a
low-frequency breakdown problem with this operator because
the condition number blows up at very low frequencies. In order
to overcome such problem, a loop and tree basis decomposition
[4] was introduced, allowing the solution of EFIE-problems at
extremely low frequencies. Recently, Yunhua Zhang et al. [5]
have presented an approach based on the loop-tree bases and
the perturbation method for the MFIE formulation.

The use of MoM-EFIE with RWG basis functions is valid as
long as the condition number of the system of equations can
be managed, which depends on the discretization size adopted.
In the scattering analysis of moderately small objects, the EFIE
operator with RWG basis functions can be successfully used in
practice for dimensions bigger than one hundredth of the wave-
length [1].

Since the condition number of the MoM-operators derived
from the MFIE is stable when the frequency decreases, one may
also consider the use of a MoM-MFIE formulation in the anal-
ysis of such problems. However, it has been reported some clear
disagreement of the conventional MoM-MFIE respect to the
MoM-EFIE [6], [12] in the analysis of moderately small objects
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in scattering problems. This discrepancy, for which a heuristical
correction is provided in [6], becomes especially evident in the
analysis of moderately small sharp-edged objects. The conven-
tional MoM-MFIE must introduce some error at sharp edges
because as the dimensions of the object decrease, the relative
influence of the sharp edges in the overall result is more impor-
tant, and the discrepancy with MoM-EFIE becomes more no-
ticeable [6], [9].

Recently, a MoM-MFIE formulation with a low-order curl-
conforming set of basis functions and very accurate Kernel-
integration [8], [9] has shown to be better performing than
the conventional MoM-MFIE with RWG basis functions in
the analysis of electrically small sharp-edged objects. In this
paper we present a novel MFIE formulation based on a new
set of basis functions—monopolar RWG—derived from the
conventional formulation with RWG basis functions, with very
similar performance to the EFIE operator for any type of small
object, provided that the electrical size is not too small to keep
the EFIE condition number bounded.

II. INTEGRAL OPERATORS: EFIE AND MFIE

The formulations for the EFIE and for the MFIE are derived
from the electric and magnetic field boundary conditions over
the surface of the scatterer

(1)

(2)

where denotes the normal vector to the surface of the scatterer
and , and , stand for the incident and the scattered
fields, respectively. By we mean the field component tan-
gential to the surface.

The Galerkin approach in MoM requires the testing of the
fields and the expansion of the current with the same set of basis
functions . The impedance elements become then for
each operator

-

(3)

-

(4)
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where the general expression for the inner-product stands for

(5)

and , denote the integration over the th and
th source- and field-domains, which embrace a pair of trian-

gles sharing an edge, and [1].
From the MoM-expressions above we can readily build

several MoM-integral operators in accordance with the set of
basis functions adopted. The RWG basis functions, a low-order
example of divergence-conforming set, leads to the EFIE and
MFIE[RWG] operators [1], [10]. The use in the MoM-MFIE
formulation of a low-order curl-conforming set like the one de-
rived from RWG by cross-multiplying by the normal unit vector
to the surface ( RWG) results in the operator MFIE[ RWG]
[7]–[9].

In order to establish a fair comparison between the perfor-
mance of the different operators it is critical to ensure the accu-
rate computation of the impedance elements. This is particularly
important in our case of interest of electrically small objects.
From the decomposition of the kernels of EFIE and MFIE

(6)

(7)

we see that the high-order terms or are singular when
and almost singular for pairs of basis and testing func-

tions involving very close triangles. In the MFIE formulation,
the integration of the almost singular contributions coming from
very near interactions between basis functions on noncoplanar
triangles must be carried out in a very accurate manner [9].

III. NOVEL MONOPOLAR MFIE OPERATOR

In all the operators of the previous section the impedance el-
ements result from the interactions between pairs of triangles
sharing an edge. This is due to the usual definition of the op-
erators because it is a consequence of the definition of the sets
of basis functions, which force either the normal component or
the tangential component of the current across the edge to be
constant [2], [3]. Therefore, the number of edges is equal to the
number of unknowns.

In this paper, we propose a different strategy to establish the
set of basis functions and build the MoM-MFIE formulation.
The new set of basis functions adopts the definition for the RWG
basis functions inside each triangle [1] but no constraint about
the continuity of the normal component of the current across
the edge is imposed (see Fig. 1). Therefore, we set independent
basis functions, and thus different unknowns, at each side of the
edge.

We can intuitively see these new basis functions as elemen-
tary electric monopoles at both sides of the edges. Since they are
derived from the RWG set, we name them as monopolar RWG
(see Fig. 1). In contrast, the RWG basis functions can be seen
as elementary dipoles assigned to each edge because by defini-
tion the charge accumulation across the edge is prevented and
because total null charge over the two triangles is ensured.

Fig. 1. Definition of the monopolar RWG basis functions.

The new MoM-MFIE formulation proposed in this paper
comes from setting the monopolar RWG set as testing and basis
functions in a Galerking approach in MoM. We thus name the
new formulation as monopolar MoM-MFIE (MFIE[mono]).
Note that it has to compute each of the four triangle-to-triangle
interactions that
form one edge-to-edge interaction in the conventional
MFIE[RWG] operator (see Fig. 1). Therefore the definition of
the impedance elements for the new operator is closely linked
to the definition in (3) and becomes

(8)

where the surface source-integrals or and the testing
integrals or of the inner-product now embrace one of
the two triangles ( or ) defining either the -edge or the

-edge in the MFIE[RWG] operator.
For a given meshing, the monopolar MoM-MFIE formula-

tion, when compared with the dipolar MFIE[RWG], doubles
the number of unknowns and multiplies the memory storage
for by four. Indeed, while we set as the normal com-
ponent across the edge in the conventional MFIE[RWG], in
MFIE[mono] we set two different unknowns and at
both sides of the edge corresponding to the normal compo-
nent of the current at both sides of the edge (see Fig. 1). Simi-
larly, the impedance element of MFIE[RWG] leads to four
elements , , , in MFIE[mono]. This
increase of the number of unknowns is not a major problem
in general in the analysis of electrically small objects because
the number of unknowns is normally moderate and because
the matrix fill-time is longer than the linear system solution
time. The time for generating the matrix is moreover anal-
ogous for MFIE[mono] and for MFIE[RWG] because, since
the impedance elements in MFIE[RWG] come from the com-
bination of four impedance elements of the new operator, we
end up managing the same computational load. Additionally, it
must be remarked that for a given discretization, the RCS-per-
formance with the new monopolar MoM-MFIE formulation is
closer to EFIE than making the meshing twice finer and solve
the problem with the conventional MFIE[RWG], which equiv-
alently doubles the number of unknowns as well.
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In the analysis of sharp-edged objects, we can define a hybrid
formulation by setting monopolar basis functions only for those
edges between noncoplanar triangles. These are the edges that
affect most in the discrepancy of MFIE[RWG] respect to EFIE
[6], [9]. We then obtain a hybrid MoM-MFIE formulation that
shows an RCS-performance very similar to the pure monopolar
formulation and provides less computational load because the
number of unknowns is reduced drastically. We name this for-
mulation as MFIE[hybrid].

IV. RESULTS

To prove the validity of the monopolar MoM-MFIE formula-
tion we show results for a significant variety of electrically small
curved and sharp-edged objects (a sphere, a cube, a prism and a
cone). Since the objects are not too small to make the EFIE con-
dition number blow up, EFIE is adopted as the reference result.
For the case of noncurved sharp-edged objects we also show the
performance of MFIE[ RWG] with very accurate Kernel-in-
tegration, which shows an RCS-performance very close to EFIE
[9]. The impinging plane wave is -polarized and with -prop-
agation and . To establish a fair and thorough compar-
ison between the different formulations, we present for all the
objects a far-field and a near-field testing.

The far-field testing stands for the comparison of the RCS
patterns due to the different formulations. As it is well-known,
there may be cancellation of errors of the current in the far-
field computation that may lead to conceal the real behavior of
each formulation. Therefore, as suggested in [13], we need to
ensure most accuracy in the computation of the current to yield
a reliable far-field computation. We thus minimize these error
sources through the direct noniterative inversion of the matrix,
through the adoption of fine and nondistorted meshing grids,
through the accurate computation of the impedance elements
and through the selection of testing bodies with polyhedrical
shape to allow a proper modeling with flat-facet meshes.

Special attention must be cast into the accurate computation
of the impedance elements. For the RWG-based formulations
EFIE[RWG], MFIE[RWG] and MFIE[mono] we carry out the
analytical integration of the high-order terms in (6) and (7)
for any pair of field-source interactions as described in [1],
[10], [11]. Similarly, the computation of MFIE[ RWG] is
also undertaken with an accurate Kernel-integration technique
described in [9]. We have computed the inner integral of the re-
maining low-order terms in (6) and (7) and the outer integral with
the same number of points through accurate Gaussian quadrature
rules [15]. We have set the number of integrating points by
choosing the minimum order of the quadrature rule for which
the RCS-performance barely varies. We have then observed that
MFIE[RWG] and MFIE[mono] need more integrating points to
reach a stable result than EFIE and MFIE[ RWG]. In partic-
ular, we have adopted six points for the analysis of all the testing
objects with EFIE and MFIE[ RWG] and for the analysis
of the sphere, the prism and the cube with MFIE[RWG] and
MFIE[mono]. For the analysis of the cone with MFIE[RWG]
and MFIE[mono] nine points have been required.

We carry out the near-field testing by computing the relative
error in accomplishing the equivalence principle inside the se-
lected objects. Since the electromagnetic fields inside the body

must be null, we have computed the total electric field (for the
EFIE formulation) and the total magnetic field (for the MFIE for-
mulations) at a set of testing points inside: . We choose this
set of points for each object to be regularly spread so that they fill
up the whole volume of the object; we then compute the quantity

(9)

where and stand for the electric or magnetic incident
and scattered fields and denotes the number of testing
points employed. Therefore, represents an independent
measure for the accuracy of each formulation that complements
the far-field observations in the RCS patterns. Moreover, we
can assess if EFIE is valid and still unaffected by the low-fre-
quency breakdown. Again, in the computation of the scattered
magnetic and electric fields in (9) we must provide high accu-
racy in order to obtain reliable evidences about the behavior of
the formulations. The scattered magnetic field due to the dipolar
RWG and monopolar RWG sets is computed accurately through
the analytical source-integral of the highest-order terms of the
Kernel together alongside a six-point quadrature rule for the re-
maining low-order terms [10]. However, the accurate procedure
used in the computation of the impedance elements in EFIE and
MFIE[ RWG] cannot be now applied in (9). Indeed, since the
scattered fields are not tested with the outer integral, we cannot
take advantage of swapping the source- and field-integrals to
make the singularity extraction easier [1], [9]. Therefore, we
have computed the electric scattered field due to RWG by inte-
grating analytically the highest-order terms in [10] together
with a six-point quadrature rule for the remaining terms. Sim-
ilarly, we have computed numerically the magnetic scattered
field due to RWG with a 61-point quadrature rule [15]. This
integrating criterion is not suitable for testing the magnetic field
on the surface of a sharp-edged object [9], but, since in these
near-field computations we need to obtain the field inside the
volume, this rule turns out sufficiently accurate for the set of
testing points adopted.

A. Curved Objects

We show the RCS for an electrically small sphere with ra-
dius and meshed with 128 triangles. It is analyzed with
the operators EFIE, MFIE[RWG] and MFIE[mono]. In view of
Figs. 2 and 3, the agreement between EFIE and MFIE[mono]
is very good. The discrepancy of the conventional MFIE[RWG]
appears clearly because the moderately small dimensions of the
sphere allow a somewhat inaccurate modeling of the curvature
that introduces edges with significant degree of sharpness. We
have observed that for electrically bigger spheres, with smaller
triangles and better modeling of the curvature, the degree of
sharpness of the edges introduced in the discretization dimin-
ishes and so does the RCS-discrepancy in MFIE[RWG].

The near-field testing of EFIE, MFIE[RWG] and
MFIE[mono] for the sphere is carried out in a grid of 198
testing points regularly spread over three concentric spherical
surfaces of radii 0.05, 0.1, and 0.15 m placed inside the testing
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Fig. 2. Bistatic E plane RCS for a sphere with radius 0:2� meshed with 128
triangles.

Fig. 3. Bistatic H plane RCS for a sphere with radius 0:2� meshed with 128
triangles.

object (see Fig. 4). In Fig. 5, we show that MFIE[mono] shows
a smaller than MFIE[RWG] for both the coarse dis-
cretization with 128 tiangles and the fine discetization of 512
triangles. Interestingly, the values of for MFIE[mono]
and MFIE[RWG] become much more similar for the fine dis-
cretization. In this case, with better modeling of the curvature,
the sharp-edges arising in the discretization become milder and
therefore MFIE[RWG] behaves much better.

B. Noncurved Sharp-Edged Objects

The analysis of noncurved sharp-edged objects is convenient
in order to make a fair comparison of the behavior of the different
operators with planar basis functions: the sets RWG, RWG
and the monopolar RWG. All these basis functions are defined
over flat-facet meshes such as triangles and they are therefore
suitable to model geometries with polyhedrical shape. Since
cubes and prisms do not allow perfectly regular meshings with

Fig. 4. Distribution of testing points inside the volume of the sphere and
the cone.

Fig. 5. Relative error (err in) inside the sphere with radius of 0:2� and the
cone with radius and height 0:1� for several discretizations.

equilateral triangles, we have chosen fairly nondistorted dis-
cretizations with very similar lengths of the sides, with two sides
of the triangles with equal size in most of the cases. Thanks to
this rigorous modeling of the geometry, we can focus only on the
way the different formulations expand the current and generate
the fields. For this type of objects, MFIE[ RWG] show very
similar RCS-performance with respect to EFIE, overcoming
the known discrepancy arising in MFIE[RWG] [9]. In Figs. 6
and 7, we show the RCS for a moderately small prism with
dimensions meshed with 336 triangles
resulting from the numerical analysis with EFIE, MFIE[RWG],
MFIE[ RWG] and MFIE[mono]. The performance of the
reference operators EFIE and MFIE[ RWG] is much more
similar to MFIE[mono] than to the conventional MFIE[RWG].
In Figs. 8 and 9, we show the RCS for an electrically bigger cube
with side and the discrepancy in MFIE[RWG] is still very
clear. Again, MFIE[mono] performs very closely to EFIE and
MFIE[ RWG]. Even if the improvement of the RCS-perfor-
mance is very evident, it must be pointed out that MFIE[mono]
doubles the number of unknowns respect to MFIE[RWG] with
the same discretization. Let us look into this issue more carefully.
If we assess the RCS-performance of MFIE[hybrid] for the
prism and the cube (Figs. 6–9), we see that MFIE[hybrid] is
still better performing than MFIE[RWG] and with very little
deviation respect to MFIE[mono]. In view of this fact we realize
again the important influence of the sharp-edges on the discrep-
ancy of the conventional MFIE[RWG] with respect to EFIE.
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Fig. 6. Bistatic E plane RCS for a prism with dimensions 0:1��0:1��0:05�

meshed with 336 and 576 triangles.

Fig. 7. Bistatic H plane RCS for a prism with dimensions 0:1��0:1��0:05�
meshed with 336 and 576 triangles.

MFIE[hybrid] excels as a very effective formulation because for
the prism it defines 568 unknowns (MFIE[RWG] makes use of
504) and for the cube with side it requires 510 unknowns
(MFIE[RWG] makes use of 450), many less than MFIE[mono]
(1008 and 900 unknowns, respectively) and with fairly similar
performance. Furthermore, we want to emphasize that the con-
ventional MFIE[RWG] formulation defining less unknowns
than MFIE[mono] shows no real advantage in terms of reliable
RCS-performance. If we set a finer meshing for the prism of
dimensions by defining 576 triangles, the
RCS-performance of the conventional MFIE[RWG] operator
is still more distant to EFIE than MFIE[mono] for the previous
coarser discretization with 336 triangles (see Figs. 6 and 7).
Similarly, if we set a finer meshing of 768 triangles for the cube
with side (see Figs. 8 and 9),MFIE[RWG] cannot catch
up with MFIE[mono] and the coarser meshing of 300 triangles
either. Finally, in view of Figs. 6 and 7, it is interesting to remark
that MFIE[mono] and a meshing finer for the prism performs
in a very similar way as with the coarser discretization just like

Fig. 8. Bistatic E plane RCS for a cube with side 0:5� meshed with 300 and
768 triangles.

Fig. 9. Bistatic H plane RCS for a cube with side 0:5� meshed with 300 and
768 triangles.

the EFIE operator, which is again a proof of its robustness
and validity. MFIE[RWG], in contrast, shows a remarkable
variation of RCS-performance as we make the meshing finer.

The near-field testing of EFIE, MFIE[ RWG],
MFIE[RWG], MFIE[hybrid] and MFIE[mono] for the prism
and the cube is carried out in grids of 405 and 216 testing
points, respectively, regularly spread over the volume inside
the testing objects (see Fig. 10). The spatial periodicities
in the grids adopted for the cube and the prism are

and , respec-
tively. We show in Fig. 11 for the prism and in Fig. 12 for the
cube the relative inner field error for different discretizations.
As expected, EFIE and MFIE[ RWG] show the minimum
error, which corroborates their adoption as references and
excludes the low-frequency failure for EFIE. Similarly, in
accordance with the far-field evidences, MFIE[RWG] offers
the poorest figures for all the discretizations and MFIE[mono]
outperforms them drastically. Note that since the management
of the computation of the integrals arising in MFIE[RWG] and
MFIE[mono] is identical, the remarkable improvement on the
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Fig. 10. Distribution of testing points inside the volume of the cube or
the prism.

Fig. 11. Relative error (err in) inside the prism with dimensions 0:1� �
0:1�� 0:05� for several discretizations.

Fig. 12. Relative error (err in) inside the cube with side 0:5� for several
discretizations.

inner-field error values with MFIE[mono] shows the better
suitability of the monopolar choice.

Fig. 13. Bistatic E plane RCS for a cone with height 0:1� and basis radius
0:1� meshed with 980 and 1782 triangles.

Fig. 14. Bistatic H plane RCS for a cone with height 0:1� and basis radius
0:1� meshed with 980 and 1782 triangles.

C. Partially Curved Sharp-Edged Objects

We show the performance of MFIE[mono] compared to
EFIE and MFIE[RWG] for the case of a cone with diameter

and height . In Figs. 13 and 14, we show the RCS
for two different discretizations of 980 and 1782 triangles.
We choose these very fine discretizations to exclude the
inappropriate modeling of the curvature of the cone in the
differences of performance from the different formulations.
We corroborate the observations presented for the previous
cases: 1) MFIE[mono] follows the RCS pattern very closely
to EFIE in comparison with the conventional MFIE[RWG];
2) MFIE[hybrid], with monopolar RWG basis functions only
at sharp-edges, shows very good RCS-agreement with the
MFIE[mono], with monopolar basis functions applied to all
the edges; 3) the RCS-performance of MFIE[RWG] and finer
discretization is clearly insufficient to overcome the RCS-per-
formance of MFIE[mono] operator and coarser discretization.



56 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 54, NO. 1, JANUARY 2006

The near-field testing of EFIE, MFIE[ RWG],
MFIE[RWG], MFIE[hybrid] and MFIE[mono] for the cone is
carried out in a grid of 205 testing points regularly distributed
inside the volume of the cone (see Fig. 4). In Fig. 5, we
see again that MFIE[mono] and MFIE[hybrid] outperform
MFIE[RWG] and EFIE excels as the best performing
formulation. It is interesting to remark the identical inner field
performance of MFIE[mono] and MFIE[hybrid] for the cone.

The evidences obtained through these near-field and far-field
observations support each other for all the objects tested and
lead to the fact that the a priori imposition of normal continuity
for the current across the edges is not really required when
discretizing the MFIE formulation. The development of a
monopolar RWG MoM-EFIE formulation is a challenging
task because it must account for the presence of line charges
in the edges of the discretization. However, our attempts to
build a successful monopolar RWG MoM-EFIE formulation
have turned out so far fruitless. Indeed, successful and wide-
spread MoM-EFIE implementations [1], [16], [17] adopt a
MoM-discretization imposing normal continuity of the current
through the edges and thus free of line charges at subdomain
boundaries.

Some authors like Carr et al. [14] have presented in the
context of the EFIE formulation the half-RWG basis func-
tions, which are only applicable to the very particular case
of junctions. Therefore, they appear as the extension of the
RWG basis functions to junctions, for which RWG were not
originally conceived. Moreover, the half-RWG basis function
in [14] must comply with the Kirchoff’s current continuity
requirements at the edge in the junction, in the same way as
RWG do at the remaining edges of the discretization. Inter-
estingly, in contrast, our monopolar RWG basis functions set
independents unknowns at both sides for all the edges arising
in the MoM-discretization of the MFIE formulation.

V. CONCLUSION

We present a novel MoM-MFIE discretization scheme that
outperforms the conventional MFIE[RWG] formulation in the
analysis of moderately small objects. We name this formulation
monopolar MoM-MFIE because it is based on a new set of basis
functions, the monopolar RWG. This set makes use of the RWG
definition inside the triangles but it does not impose continuity
of the normal component of the current across the edge: two dif-
ferent unknowns are defined for the normal component of the
current at each side of the edge. Since the same computational
effort must be applied to compute the impedance elements in
both formulations, the time to generate the impedance matrix is
similar. We show for different types of moderately small objects
and with very accurate Kernel-integration that the RCS com-
puted with this new monopolar MoM-MFIE formulation follow
more closely those due to the EFIE, which can be taken as ref-
erence because the electrical dimensions of these objects are
not small to make the condition number blow up. To comple-
ment these observations, we remark that the monopolar RWG
MoM-MFIE formulation yields a magnetic field inside of these
testing objects closer to zero than the conventional dipolar RWG
MoM-MFIE formulation.

Even though the number of unknowns with respect to the
conventional MFIE[RWG] formulation is doubled, we show
with a few varied examples of sharp-edged objects that the
RCS-performance of the new monopolar MoM-MFIE formu-
lation under a given discretization follows more closely the
RCS-performance of EFIE than the conventional MFIE[RWG]
and a meshing twice finer. Furthermore, as we increase the
degree of meshing of the objects, the RCS-results due to the
monopolar MoM-MFIE formulation are stable, like the EFIE
operator, while MFIE[RWG] struggles to catch up with them.

In the analysis of sharp-edged objects, we have also presented
a MoM-MFIE formulation with the definition of monopolar
RWG basis functions only at the sharp-edges of the meshing.
This hybrid formulation shows an RCS-performance very sim-
ilar to the RCS-performance of the MoM-MFIE formulation
with monopolar basis functions defined at all the edges. This is
an excellent property because it involves managing many less
unknowns than the pure monopolar MoM-MFIE formulation
with little deviation of the performance.
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