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Method of Moments Enhancement Technique for the
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Abstract—The numerical analysis of highly iterated Sierpinski
microstrip patch antennas by method of moments (MoM) involves
many tiny subdomain basis functions, resulting in a very large
number of unknowns. The Sierpinski pre-fractal can be defined
by an iterated function system (IFS). As a consequence, the
geometry has a multilevel structure with many equal subdomains.
This property, together with a multilevel matrix decomposition
algorithm (MLMDA) implementation in which the MLMDA
blocks are equal to the IFS generating shape, is used to reduce the
computational cost of the frequency analysis of a Sierpinski based
structure.

Index Terms—Antennas, fractals, integral equation, method of
moments (MoM).

I. INTRODUCTION

STRUCTURES based on the Sierpinski fractal are partic-
ularly interesting due to their multiband behavior [1], [2].

The radiation parameters of the antenna can be numerically
computed using integral equation methods discretized by
method of moments (MoM) [3].

In the case of highly iterated pre-fractal structures, there are
many small geometry details that require tiny MoM subdomain
basis functions for an accurate discretization of the induced cur-
rent. This, together with the fact that the multiband antenna is
electrically large at the highest operating bands, leads to a very
large number of unknows in the MoM formulation. The
computational requirements to solve the full linear system using
conventional methods (memory increases asand CPU time
as ) can easily overcome the capabilities of desktop com-
puter systems.

This paper will tackle the optimization of the MoM solution
taking advantage of the geometrical properties of the iterated
function system (IFS) [10] that generates the antenna geom-
etry. Since the IFS is inherently multilevel, the most suitable
MoM acceleration algorithms here are multilevel domain sub-
division methods that can use Rao, Wilton, and Glisson linear
triangle basis functions (RWG) [9], namely the multilevel fast
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multipole algorithm (MLFMA) [6] and the multilevel matrix
decomposition algorithm (MLMDA) [7], [8]. This paper will
present results only for the MLMDA, but the optimization
strategies introduced here can be easily implemented also in
the MLFMA.

II. IFS

Like most pre-fractal structures, the Sierpinski antenna can
be built by using the concept of IFS [10]. Every IFS iteration
is defined by a set of affine transformations in the plane

which can be written as

(1)

where and are the coordinates of point. If and are
the coordinates of point. If , with ,
and , the IFS transformation is a contractive sim-
ilarity (angles are preserved) whereis the scale factor and
is the rotation angle. The column matrix is just a translation
on the plane. Fig. 1 shows the Sierpinski fractal obtained from
a single triangle after applying a set of transformations recur-
sively.

Structures generated by an IFS necessarily have many equal
subdomains at different levels. The impedance matrix resulting
from MoM discretization has therefore plenty of redundant in-
formation, since the interaction between equal pairs of subdo-
mains produces equal submatrices (1A, 2A, 3A in Fig. 2) if the
Green’s function has translation symmetry, as is the case here.
There are many sets of equal submatrices in at different
levels. The MoM implementation presented here uses the IFS
definition in order to avoid recomputation and storage of redun-
dant matrix elements.

III. M ULTILEVEL ALGORITHMS

The electric field integral equation (EFIE) in the frequency
domain discretized by MoM may be expressed in matrix form
as [3], [9]

(2)

where are the coefficients of the induced current discretized
in RWG basis functions (unknowns), is the discretization of
the incident field and is the impedance matrix. This matrix
includes the Green’s function with all the information about the
multilayer media.
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Fig. 1. Four iteration Sierpinski fractal obtained after a set of affine transformations.

Fig. 2. Method of moments impedance matrix for a five iteration Sierpinski patch antenna. Grey scale shows the magnitude of the matrix elements. If thestructure
is generated by an IFS, the impedance matrix has plenty of redundant information: submatrices 1A, 2A and 3A are identical. Besides, due to the recursive application
of the IFS, each one of these submatrices has also redundant information, as shown in B and C.

The induced current coefficients are found using the Gen-
eralized Minimum Residual (GMRES) [4] iterative method. In
each iteration, the main computational effort to obtain theth
estimation of the induced current are the matrix-vector
products . Using direct matrix-vector multiplication,
the operation count and the memory requirements for each iter-
ation are proportional to .

A. Multilevel Subdivision of the Object

In order to reduce the operation count in the direct matrix-
vector multiplication from to , the MLMDA and
the MLFMA divide the object into an octal tree in three di-
mensions or a quad tree in two dimensions containing many
nonoverlaping subdomains or boxes. The quad tree domain sub-
division that is generally used for arbitrary structures is applied
here to a Sierpkinski fractal in Fig. 3.

The interaction between a pair of subdomains can be com-
puted as

(3)

where and , respectively, are the indexes of the RWG basis
functions in the source and observation subdomains and
is a submatrix of the impedance matrix. If all possible pairs
of subdomains are considered, the matrix vector multiplication

may be obtained as the addition of submatrix oper-
ations of the form (3).

B. MLMDA

The MLMDA will be only outlined here, more details can be
found in [8]. It consists of a recursive procedure that begins at
level 2 and stops at the finest level. For each nonempty source
and observation boxes which belong to the same subdivision
level there are two possible cases:

Fig. 3. Multilevel decomposition of the box enclosing a Sierpinski fractal in
square subdomains.

1) Boxes are touching one another or are the same:then
they are subdivided into level boxes, except if we
have already reached the finest level, . If this is
the case, direct submatrix-vector multiplication (3) is
performed, requiring the previous computation of the
corresponding matrix terms of . Time and memory
requirements are proportional to where and

are the number of original RWG functions in the
source and observation box, respectively.

2) Boxes are not touching each other:In this case, the
number of degrees of freedom (DoF) of the electric field

at the observation box in (3) is smaller than, and
decreases for larger box-to-box distance and for smaller
box size [7], [8] . Therefore, in (3) can be computed
very efficiently in much less than operations by
replacing the original currents by a very small set of
equivalent ones that radiate the same field.

The computational cost of this recursive algorithm increases
with the number of nonempty boxes in the multilevel subdivi-
sion of a given object. If we realize that boxes do not need to
be square, as in Fig. 3, while they do not overlap and cover the
whole geometry of the antenna, we can use boxes of the same
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TABLE I
COMPUTATIONAL REQUIREMENTS FOR THECONVENTIONAL MOM SOLUTION USING DIRECT INVERSION(f = 9 GHz): MEMORY GROWS ASN AND TIME AS

N . THERE ISNOT ENOUGH COMPUTERMEMORY TO STORE THEIMPEDANCEMATRIX OF THE SEVEN ITERATION CONFIGURATION

TABLE II
COMPUTATIONAL REQUIREMENTS FOR THEMOM SOLUTION USING THE GMRES ITERATIVE METHOD (f = 9 GHz). TIME PERFORMANCEHAS IMPROVED,

HOWEVER THESEVEN ITERATION CONFIGURATION CANNOT BE ANALYZED YET

TABLE III
COMPUTATIONAL REQUIREMENTS FOR THEMOM SOLUTION USING GMRESAND THE MLMDA SCHEME WITH SQUARE BOXES (f = 9 GHz). TIME AND

MEMORY REQUIREMENTS ARESMALLER THAN THE TWO PREVIOUS STRATEGIES, SPECIALLY WHENN GROWS

shape and size as the IFS building blocks. For the case of the
Sierpinski antenna the optimum choice is triangular boxes. This
results in a multilevel subdivision with: a) many empty boxes
and b) many pairs of source and field boxes having the same
interaction matrices either in step 1 or in the equivalent source
formulation of step 2. These matrices will be computed once,
stored in memory and reused whenever required, leading to a
dramatic reduction in computation time and memory storage.

IV. RESULTS

Configurations of a microstrip Sierpinski patch antenna with
four, five, six, and seven iterations have been used as a bench-
mark in order to test different approaches to enhance the MoM
analysis. In all the cases the scale factor is 2 and the height of
the equilateral triangle defining the Sierpinski patch (level 0 in
Fig. 3) is 8.89 cm. The dielectric substrate is 1.57 mm thick with
a relative permitivity of 2.33. The patch was excited with a stan-
dard coaxial probe located in the lower corner of the Sierpinski
fractal.

The computer used in the simulation is a desktop PC with an
AMD Athlon CPU at 1.33 GHz and 1.5 GB of RAM. The pro-
gramming language is MATLAB 6 with time-critical routines
coded in C language.

Table I shows the computational requirements for the solu-
tion of the MoM linear system (2) using direct matrix inversion.
Memory requirements grow as and time as , as expected.
For the seven iteration configuration, the storage requirements
overcome the available memory.

In Table II the same test is repeated using GMRES instead
of the direct inversion. Preconditioning is used to reduce the
number of iterations [4]. The preconditioner is an sparse matrix
that includes all the impedance matrix elements corresponding
to basis and testing functions that are close to each other, and
zeros elsewhere. The incomplete LU decomposition [4] allows
fast multiplication by the inverse of the preconditioner at each
itaration. The extra time used in the preconditioning and the
small extra increase in memory are more than compensated by
the very small number of iterations. The time for building the
matrix remains the same as before, while frequently the GMRES
iterative solution is one order of magnitude faster. It is therefore
the matrix filling time which now becomes the bottleneck.

The MLMDA scheme can be used to compute the matrix
vector multiplication in GMRES, instead of
building the whole matrix. Table III shows the compu-
tational requirements of MLMDA with the commonly used
square box subdivision (Fig. 3). The matrix filling time and
the iteration time are greatly reduced, since MLMDA does
not need to compute explicitily all the elements of . This
reduction is particularly important for the large problem of
15 310 unknowns, in which the MoM matrix does not fit in
computer memory.

The last level of optimization is reached when triangular
boxes are used in the MLMDA approach and IFS symmetries
are exploited in order to avoid recomputation of redundant
MLMDA matrices (Table IV). Memory requirements increase
only linearly with the number of unknowns, while the CPU
time per iteration increases roughly as . Matrix filling
is no more the slowest part of the process. This is due to the
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TABLE IV
COMPUTATIONAL REQUIREMENTS FOR THEMOM SOLUTION USING GMRESAND THE MLMDA SCHEME WITH TRIANGULAR BOXES(f = 9 GHz). TAKING

ADVANTAGE OF REDUNDANCIES AND THEMULTILEVEL STRUCTURE OF THEOBJECT, THE MEMORY REQUIREMENTS AREVERY SMALL AND GROW ASN WHILE

THE TIME PER ITERATION INCREASESROUGHLY ASN logN . OPTIMIZATION OF PRECONDITIONING IS THEOPEN POINT

Fig. 4. Input reflection coefficient versus frequency for a seven iteration
Sierpinski patch antenna.

Fig. 5. Input reflection coefficient versus frequency for a six iteration
Sierpinski patch antenna. It can be seen as there is not a noticeable loss of
accuracy in the computation with GMRES+ MLMDA with triangular boxes
respect to the solution with direct inversion.

fact that it is only necessary to compute very few interactions
between boxes.

The differences between the reference brute force approach
of Table I and the optimized algorithm in Table IV are impres-
sive, allowing us the analysis of this structure in a wide range of

frequencies (Fig. 4). It must be pointed out that, for the problem
of 15 310 unknowns, the preconditioning, which has not been
optimized for fractal structures yet, is taking most of the com-
putational effort.

Finally, Fig. 5 shows the reflection coefficient of a six iteration
Sierpinski antenna. The whole curve (200 frequencies) obtained
with GMRES MLMDA with triangular boxes is calculated
in about the same time than seven specific frequencies with
the standard MoM, without any noticeable loss of accuracy.

V. CONCLUSION

Computational requirements in the analysis of IFS defined
pre-fractal antennas by MoM can be much reduced by making
use of the redundancy and the multilevel structure of this geom-
etry.

It has been shown that, for the case of a Sierpinski pre-fractal
antenna, the combination of the GMRES and the MLMDA
scheme, together with the appropriate choice of the shape of
the boxes in the multilevel subdivision, leads to a very efficient
solution. Our best implementation (Table IV) produces a reduc-
tion by a factor of 20 in the total computation time and a factor
of 10 in the total memory, compared with a direct application
of MoM (Table I). The bottleneck in the MoM analysis of IFS
defined geometries is now in the preconditioning, which has
not been optimized for IFS structures yet.
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