ON THE CHOW MOTIVE OF SOME MODULI SPACES.
SEBASTIAN DEL BANO

ABSTRACT. We study the motive of moduli spaces of stable vector bundles over a smooth
projective curve. We prove this motive lies in the category generated by the motive of the curve
and we compute its class in the Grothendieck ring of the category of motives. As applications
we compute the Poincaré-Hodge polynomials and the number of points over a finite field and
we study some conjectures on algebraic cycles on these moduli spaces.

INTRODUCTION

The cohomology of the moduli spaces of stable vector bundles over a smooth projective
curve has been thoroughly studied over the last years. This study has been accomplished
by topological methods involving the Narasimhan-Seshadri correspondence ([34]), by number
theoretical methods ([22], [23]) and using differential geometry ([1]).

The work we present is a generalisation of some of these results to the more general setup
of motives. We use a geometric construction due to E. Bifet, M. Letizia and F. Ghione to
compute the motivic Poincaré polynomial of these moduli spaces and show that its motive lies
in the category of motives generated by the motive of the curve. As corollaries we produce a
closed formula for the Poincaré-Hodge polynomial and the number of points over a finite field
of these varieties. We also study some well known conjectures for these moduli spaces, namely
the Hodge, Tate and standard conjectures.

We have obtained a number of intermediate results which are of independent interest: A
localisation theorem for actions of the multiplicative group and a study of the symmetric
powers of a motive. Similar results have been obtained by E. Getzler in [17], quite surprisingly
in studying a problem similar to ours: the motive of the moduli space of (pointed) curves.
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Notations and Conventions. The Poincaré and Poincaré-Hodge polynomial of a variety X will
be denoted by P;(X) and P,,(X) respectively. X ™ will stand for the n-th symmetric power
of a variety X, that is the quotient of X™ by the natural action of the symmetric group on it.
We shall adopt the notations of Scholl ([36]) for the theory of motives. If X is an object in an
additive category we write [X] for its class in the Grothendieck group. When it is clear from
the context, we shall sometimes drop the [ | and note in the same way the object and its class.

From section 4 onwards we use the theory of [21], therefore we assume that the characteristic
of the base field is zero unless otherwise indicated.
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1. PRELIMINARIES

1.1. Motives.

1.1.1. Definitions. Let k be a field. The category of smooth projective varieties over k will be
noted by Vi. The theory of Chow motives (see [30] or [36]) provides a functor h : V, — M
where M is a Q-linear pseudoabelian tensor category called the category of effective motives.
For each X € Ob (V) the object h(X) is called the motive of X. The class of this object in the
Grothendieck ring Ko(M;") will be noted by x(X) and called the motivic Poincaré polynomial.

1.1.2. Motives for arbitrary schemes. The functor h has recently been extended to the category,
Schy, of arbitrary separated schemes of finite type over a field of characteristic zero k£ by F.
Guillén and V. Navarro ([21]). This extension now takes values in a category of bounded
complexes of effective motives up to homotopy equivalence, h : Schy — Ho C°M}. An
essential role in this extension theorem is played by the simple functor which associates an
object of C* M, to each cubical diagram in C° M}, as in [21] we shall note this functor by s.
The simplest nontrivial example of cubical diagram is a morphism, in this case the functor s
coincides with the cone.

By taking the class in the Grothendieck ring we obtain an extension of the motivic Poincaré
polynomial to arbitrary schemes: y : Ob (Schy) — Ko(M)).

There is also a theory with compact supports giving rise to a functor from the category
of schemes with proper morphisms h, : Sch.y — Ho C®M; . It is characterised by the
following property: For any closed immersion ¢ : ¥ < X we have an homotopy equivalence
he(X =Y) ~s(i*: h X — h.Y).

Again by taking classes in KoM, we obtain a morphism x. : Ob (Schy,) — Ko(M}).

1.1.3. Realisations. A cohomology functor is defined to be a functor V, — C to a graded
tannakian category such that composed with a fibre functor of C yields a Weil cohomology.
The cohomology functors we will use are: singular cohomology taking values on the category of
rational pure Hodge structures V, — PHSg and ¢-adic cohomology taking values in the cate-
gory of graded (-adic representations of the Galois group Gal(k|k) Vi, — Gr-Repg, Gal(k|k).
A cohomology functor canonically gives rise to an additive functor defined on M. We call
this extension a realisation functor. Observe that a realisation functor M, — C actually
maps to the full subcategory of non-negative degree objects, we shall note this category by C*.
A realisation functor M, — C* gives rise to a ring morphism Ky(M,) — Ky(CT). For
instance, singular cohomology with complex coefficients defines a ring morphism Ko(M;) —
Ko(PHS{) = Z[z, y], noted P,,, which extends the Poincaré-Hodge polynomial. Over a finite
field, F,, (-adic cohomology defines a ring morphism Ky(M}) — Ko(Gr-Repg, Gal(k|k)™T).
Composing this morphism with the trace of Frobenius, [®V;] — > Tr(Fr|y:) - (—t)*, we obtain
a ring morphism v : Ko(M;’) — Q[t]. The trace formula shows that v;(x(X)) = #X (F,).

1.1.4. The ring K. We define K to be the completion of KoM, along the ideal generated
by the Lefschetz motive. Given that P,,(L) = zy we see that P, defines a ring morphism
K — Z[[x,y]] which we still note P,,. Also, as v/(L) = ¢t*, v} extends to a ring morphism
v K — Qu[[]

Given an ind-scheme (X,),ecp, we say that its motivic Poincaré polynomial stabilises if for
each n € N we can find a p,, € M such that for all p > p1,, we have x(X,) — x(X,,) € (L"). In
this case (x(X,))uem converges to an element of K that we call x(X).



1.2. Moduli spaces. Let C be a smooth projective curve of genus g > 1 over a field k. We
shall note by N¢(n,d) the moduli space of stable bundles of rank n and degree d over the curve
C. If (n,d) = 1 this is a smooth projective variety over k.

The construction of these moduli spaces can be extended to smooth projective curves over
the spectrum of a discrete valuation ring.

Theorem 1.1. (Seshadri) Let S be the spectrum of a discrete valuation ring with residue field k.
Let C be a smooth projective curve over S with special fibre C', and coprime integers n > 1 and d.
There exists a smooth projective scheme N¢(n, d) over S whose generic fibre is the corresponding
moduli space over the generic fibre of C and a natural morphism N¢(n,d) Xg Spec(k) —
Ne(n,d) that induces a bijection on the set of k-points.

Proof. The proof runs along the lines of the corresponding proof over a field (see [33]) combined
with the results of Seshadri on Geometric Invariant Quotients over an arbitrary base (see
appendix 1G in [31]). O

2. LOCALISATION OF G,,-ACTIONS

The purpose of this section is prove a localisation theorem relating the Chow groups of a
variety acted on by G,, to the Chow groups of the fixed components. We obtain a similar
result concerning the Chow motive and algebraic K-theory. In the case of the fixed compo-
nents being points this action yields a decomposition in cells and the results are well known:
Grothendieck determined the Chow groups ([18]) and in the particular case of projective vari-
eties homogeneous under reductive groups, Kock ([26]) has found an expression for the Chow
motive.

We start by briefly recalling some facts on G;,-actions.

2.1. G,,-actions. Let X be a smooth complete variety acted on by the multiplicative group
and let X% be the closed subscheme of fixed points. By a result of B. Iversen X®» is smooth
([24]). Let X® = 11,X, be its decomposition in connected components. Bialinicki-Birula has
proved the following theorem:

Theorem 2.1. (2], Theorem 4.3) There exists a unique decomposition in Gy, -invariant locally
closed subvarieties

(1) X=||x;

and Gy, -equivariant morphisms w, : X — X, such that

1. (XH% = X,.

2. Ty 1S an affine fibration.

3. The inclusion X} C X identifies TX[|x, with the subbundle of TX|x, on which Gy, acts
with positive weights.

In the projective case we have the following important result.

Theorem 2.2. ([3]) If X is a smooth projective variety acted on by Gy, then decomposition
(1) is filtrable, that is there exists a sequence of Gy, -invariant closed subvarieties

X=Y2Y,D---2Y, DY, =0
with Yy — Yoy = X
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2.2. Localisation. We shall use the higher Chow groups as defined by Bloch in [9]. For each
variety X and non-negative integers i and j we have a group CH'(X,j). For j = 0 these
coincide with the ordinary Chow groups.

Let X be a smooth projective variety over a field £ acted on by the multiplicative group G, .
Let {Xa}a, {X}a and 7, be as in the previous subsection.

Definition 2.3. Define d,, to be the codimension of X in X. Let I'; be the graph of m, :
X — X, and m, the class in

CHdimXa-i-da (Xa % X)
of its closure in X, x X.

The correspondence m, defines morphisms

CH % (X,,j) 2 CH (X, x X, j) ™
CH ™ (X, x X, j) 25 CHY(X, j)

which we still note by m,. Note that this is well defined: pj is defined as p; is flat (][9]
Proposition 1.3), pe, is defined because p, is proper and finally - N'm, is defined by Theorem
4.1 in [9] given the fact that X, x X is smooth.

Theorem 2.4. If X s projective then the m, define isomorphisms of higher Chow groups

2) P CcH *(X,,j) — CHI(X, j),

of algebraic K-theory groups

(3) P K (X.) = K'(X)

and Chow motives

(4) P hXa(—do) — hX.

Proof. Given that X is projective we have a filtration as in theorem 2.2, we use the same
notations as in that theorem.

We first prove (2). This is achieved by splitting the localization exact sequence for the higher
Chow groups of the closed immersion ¢, : Y,i11 — Y,. Let j, be the complementary open
immersion X < Y, and e, = codimy, Y, 1. Then by the localization theorem ([9] Theorem
3.1, corrected in [10] Corollary 0.2) we have an exact sequence

(3) - 2% CH" (Yo, 1) 25 CH(X, 1) -2
2 CH™ (Yo, 0) 225 CHI(Y,,0) 22 CHI(XF,0) — 0.

By the homotopy principle (which is proven for affine fibrations in the same way as for vector
bundles, see [9] Corollary 3.7) the projection 7, : X;f — X, induces an isomorphism

5 CHY(X[}, j) — CH'(X,, ).



Let fﬂa be the closure in Y, x X, of I'; . We have the projections

T,
ZBR
Y, X

As X, is smooth, by [9] Theorem 4.1, p, induces a morphism pi : CH! (X, j) — CH (T, j)
and p; being proper induces py, : CH (T, ,j) — CH! (Y, 7). Let 74 = pr.p5, we claim that
Yo (%)™ is a section of j*. This provides a splitting of the exact sequence (5).

To prove the claim consider the flat base change

Jo =
Fﬂ'a F?T'a

Then according to lemma 2.5 we obtain

Ak %

-k x\—1 - [ k| — * —
Jae (M) = Japrps(m) ™" = P pa(me) ™! = mo(r) ™t = 1d.
This proves the claim.
Now if we put together the split exact sequences (5) from = 0 to n we get

0— CH “(Yi,j) = CHI(X,j) % CHI(X{,j) ™% CH(X,j) — 0

0 — CH ®(Yy,j) 25 CH-%(vy,j) 25 CH (X}, j) 2 CH M (Xy, ) — 0

n

0— CH=&(Y,,j) 2% CH (X[, j) = CH (X,,j) — 0
and adding up all the splittings we have constructed we obtain a natural isomorphism

P CH (X, j) Tttt (X, ).

Next note that 49.i14 - - - 1o 147 18 the morphism induced by fﬂa C X xX, (asin the definition
of v, above). To see that this coincides with m,, it is enough to see that the following diagram

CH" (X4, j) Tr.0d) CH'(X,j)
CH" % (X, x X,j) CH™mXe (X % X, 5)

commutes, where p; and p, are in each case the natural projections and 7 is the closed immersion
.. C X, x X. The two top triangles commute by functoriality, the lower one commutes by
9], 5.8.i. This proves (2).

For (4) note that the isomorphism &,C H*~% X, — C'H*X is induced by the correspondence
me. If S is a smooth projective variety and we replace X by X x S there is still a G,,-action
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with fixed point set LIX, x S, the previous arguments show that the correspondences m, x S
induce an isomorphism @,C H % (X, x S) — CH(X x S). Manin’s identity principle ([30],
see also [36], 2.3) yields the result.

The statement for the algebraic K-theory groups is proved in the same fashion using the
corresponding properties of K-theory in [35]. O

Lemma 2.5. Let X, U and X' be varieties and consider a flat morphism j : U — X and a
proper morphism f : X' — X form the cartesian diagram,

X'xx U —2 X'
f'J{ J{f
v s x
Then j*f. = f'3" in the higher Chow groups.

Proof. This results from the definition of the higher Chow groups in [9] together with the fact
that the equality j*f. = f/j"" holds already for the group of cycles on X' (Proposition 1.7 in
[16]). O

3. A-STRUCTURE IN My

In this section we introduce the notion of a A-structure on a tensor category and show that
each Q-linear pseudoabelian tensor category has a canonical A-structure. A consequence of
this is that the wedge of a motive as defined in [27] verifies the fundamental property 3.1.3.
However we prefer the notation \™ to A" as for instance one has \"IL. = .. We shall use this
to generalise a theorem of Shermenev and a formula of MacDonald.

3.1. A-structures.
Definition 3.1. A A-structure on an additive tensorial category C is a sequence of functors
A C—C, neN

such that:

1. Ag is the functor that takes all objects to 1 and all morphisms to the identity.
2. )\p is the identity functor.
3. M (X @Y) is naturally isomorphic t0 @q1p—nAa(X) @ Mp(Y).

Remark 3.2. Given an additive tensor category, C, with a A-structure. Property 3 in definition
3.1 shows that the function

A :ObC — K C[t]]"
M = Y N(M)] -t

is additive, i.e. \y(M @& N) = M\(M) - \y(N). Therefore it defines a morphism of groups
A 0 KoC — K\ C[[t]]*. Properties 1 and 2 in definition 3.1 show that this makes K,C a A-ring.



3.2. A-structure on a pseudoabelian tensor category. Let C be a Q-linear pseudoabelian
tensor category. Whenever p € End (M) is a projector we shall use the notation (M, p) for the
image of p.

The tensor category, C, comes equipped with commutation constraints ([13]), that is an
isomorphism @y : M @ N — N ® M for every pair of objects M and N. In Proposition 1.5
in loc.cit. these commutation constraints are extended to more than one factor. In particular
for M € Ob C they give a morphism of groups

0:6, — Aute(M®")
o — (o).
It is readily checked that ) s (o) defines a projector in the Q-algebra Endc(M®").
Definition 3.3. (c.f. [27]) For each M € ObC and n € N set

i

ceS,

(this makes sense since C is pseudoabelian). For f € Hom¢ (M, N) set

~ LS o Lefo- LS p(0) € Home(A"(M), A"(NV)).

ceB, e,
This defines a functor A\ : C — C for each n € N .

Now we come to the main result of this section.
Theorem 3.4. The functors A" define a \-structure on the category C.

Proof. Note that 3.1.1 and 3.1.2 are obvious from definition 3.3. The proof of 3.1.3 is more
intricate.

The one thing we need to prove is X"(M & N) ~ @, , \*M ® \’N. Write X = M & N
and let p € Endc X be the projection on M so that M = (X,p) and N = (X, 1 — p).

Throughout the proof we shall simplify the notation ¢, and write ¢ for the morphism induced
by 0 € G,.

We are concerned with

(x) = ( .Z)

write I'dyen as a sum of orthogonal projectors

Z products of a p's

ldxen = (1-p
xer = (P4 — and b (1 —p)s’

in order to write this expression more Convenlently choose a set of representatives oy, ..., o, of

S,/ (6, x 6,), then
[dx®n = Z ZO'ipa(l

a+b=n 1
We claim that for fixed a and b, &,, leaves the projector

(6) Z oip*(1
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invariant. To prove the claim note that for each o € &,, the element oo; can be uniquely
written in the form oyh with h € &, X &, in fact i — ¢’ is a bijection. Then as h commutes
with p*(1 — p)°

UZUZ]) (1-p Zalhp
—ZWP (1-p ZUZ';D (1-p

This proves that (6) is &,-invariant.
We have the decomposition

(X)) = @ <X®",% Z UZaip“(l —p)b0i1> :

a+b=n ceG, 7

By lemma 3.5 that follows this is isomorphic to

@ ()((X)n7 5 Z Upa(l . p)b>

at+b=n ’ €S, X6y
1 1
_ RKa a ®b b
- @ (vl T ar)e (x0T e w)
a+b=n 0EB, 0EB,
= P ‘M NN.
a+b=n
This proves the theorem. O

Lemma 3.5. There is a natural isomorphism
1 AN, 1
<X®n’ E Z UZUipa(l N p)bUZ- 1) :) <X®n’ w Z O'pa(l . p)b> .
o€G, i €S, X6y

Proof. Define f € Ende X®" to be
= Zp“ x (1 —p)oo;.

Recall that in a pseudoabelian category

{f € Hom¢(X,Y)| foq =g o f}
{f € Home(X,Y)| foq =quo f =0}

So we need to see that foq; = gy 0 f, where ¢; and ¢y are the two projectors in the statement

of the lemma,
Gpof = Z hp*(1—p oZp“(l
' hEGa XSy i

1 . _
= o 2. M-l =

hEGy X6y, 1

1
- lblp Z g

ceG,

Hom (X, q1), (Y, ¢q2)) =




On the other hand

foam = > p"(1—p)o; ,Z > o p(

: €6y, )
1 - —
ol Z (L —p)'o; 10’20%19“(1 —p)o; =
T 0EG,,i i
1 n! . - ny
= ram 2o PA=preTt Y ot
lalb! == i
L —ip® - a _
— ! Z h'pt(1—p)'o; IZ‘%’P (1—p)lo; ' =
T hEGL X Gy, i P
! o, a - a _
=, 2 M ("“’ (L=p)or' Y ow'(1=p)o, ) )
T hEGL X Gy, i P
1,4 _ .,
— R = =) S
- h7Z e UEGTL

This proves that f defines a morphism. We show now that f is an isomorphism by giving
its inverse. Define g to be

alb! Zo’lp 1 _

It suffices to prove that fog = Id and go f = Id. It is easy to deduce from the expression for
Home ((X, ¢1), (Y, ¢2)) quoted that f € Home(X, X) represents the identity of (X, q) if go f = ¢
or f oq = g, we shall use this in the course of the proof.

a'b'

fog = p*( ZUZU p*( )

alb! b "
= (- p)”,—b,ldp (1-p)=p"(1-p)=1d

a'b'
gof = Zazp (1-p

a'b! " b g 1
= —'Zaip(l—p)aj OH =
,] ceG,
alb! 1 " p 1!
= D> o' (1-p)' s =
7 eSS,
1
= =Y o' (l-ploi Y o=1d
g eSS,
This proves the lemma O

3.3. A motivic MacDonald theorem. Let X be a compact polyhedron. By using the
representation theory of the symmetric groups; MacDonald proved the following expression
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that relates the Betti numbers of X and its symmetric powers:

S px . gn = LI (A BT
par t (1—T)bo - (1—{2T)b2 -

where b; is the i-th Betti number of X. In this section we will generalise this result by applying
Theorem 3.4 to the case in which C is the category of Chow motives, M.

3.3.1. Chow motives. Let X be a smooth projective variety. If dim X > 1, the symmetric
power X is a singular variety, its singularities are however very mild. In fact it is easy to
extend the theory of motives to this setup. This way we obtain a functor from the category of
varieties which are quotients of smooth projective varieties by finite groups to M, we still note
this functor by A ([12]).

Proposition 3.6. The Chow motive of the symmetric power X™ is naturally isomorphic to
A"hX.

Proof. From the definition A"h(X) = h(X")®", as a consequence of the proof of proposition
1.2 in [12] this is isomorphic to h(X"/&,) € Ob M} . O

MacDonald’s formula ([29]) relates the Betti numbers of X(™ to those of X. The motivic
counterpart of the Betti numbers are the factors in the conjectural weight decomposition h.X =
X @ -+ @ h24mX X described, for instance, in [36], 6.2. Thus we can only expect to prove an
analogous to MacDonald’s formula if we assume such a decomposition exists. This explains the
hypothesis in the following proposition. A similar result for the case X is a smooth projective
curve has been obtained by Shermenev ([37], Proposition 4).

Proposition 3.7. Let X be a smooth projective variety and n a positive integer. Assume hX
has a decomposition

hX =X oh'X - - -@hp2dmXyx

as described above. Then the motive of the n-fold symmetric power of X is isomorphic to

(7) @ A R0 X R R )\nQdithZdimXX

no+--+n2 gim X =N
Moreover X™ also has a decomposition of the above type with

(8) XM ~ D NOROX ® -+ @ A" p2 X
ng+-+nag=n
ni1+2n2+4--42dngg=t
Proof. By Proposition 3.6 hX™ = A"hX. Repeated application of theorem 3.4 to the decom-
position of hX in the hypothesis yield the isomorphism (7).

To prove the second assertion call M; the motive on the right hand side of (8) and note
that hX(™ = @M;, it is easy to see that H,(hX™ Q) ~ H}(M;,Q), this implies that the
cohomology classes of the projectors defining the direct summands M; in hX ™ are the Kiinneth
components of the diagonal class. O

The previous proposition applied to the category of motives modulo an homological equiva-
lence shows that if X verifies standard conjecture C ([20]) so does X (™.



3.3.2. Cohomology. Let H* : M) — C be a realisation functor. We have the following gener-
alisation of MacDonald’s formula.

Proposition 3.8. Let X be a smooth projective variety of dimension d, we have the following
1somorphism

(9) H (X™) ~ £ ( Q) sH* (X)® (K) A" HE (X)> .

no+-+nsg=n k even k odd
n1+2nz+-+2dnsg =1

Proof. By functoriality, H* (X(”)) = H* (A\"h(X)). But this is not isomorphic to A"H*(X)
because the functor H* is not a tensor functor ([13]). This is so because if

cuy : H*N @ H*N —— H*(M ® N)
is the Kiinneth isomorphism. Then the diagram
H*M @ H*N 25 H*(M ® N)
WH*MH*NJ{ J{H*(‘PNM)
H*N @ H*M 5 H*(N ® M),
where vertical arrows are the commutativity constraints in each category, does not, in general,
commute.

To remedy this we change the commutation constraints in C. Let C* be the category C with
the commutativity constraints given by

(10) (—)Ypyny : M®N — N®@ M

on objects M, N of pure weights ¢ and j respectively. Then the functor H* : M, — C® is a
tensor functor and we thus have H*A\"hX ~ \"H*X where A" is performed in the category C*.
But by iterated application of theorem 3.4

NH'X~  f AHX@ANH'X®---@ A" H"X.
no+ni—+---+nqgg=n

If M is an object of C* of even weight the commutation constraints &,, — Aut (M®") in
C* coincide with the usual ones in C, this implies that for even j, A" (H’(X)) is the ordinary
symmetric power S™ (H?(X)).

On the other hand if M is of odd weight the commutation constraints &,, — Aut (M®")
in C* are the ordinary ones multiplied by the signature morphism &,, — {#1}. This implies
that for odd j A" (H’(X)) is the wedge A" (H’(X)).

This shows that

H*X™ ~ P THXAH'X®---@ S HYX.
no+ni+--+nzg=n
The statement of the proposition results from taking the part of degree . O

In the case that C is the category of pure Hodge structures over C, PHS¢, and H* is the
cohomology functor V, — PHS¢ the previous proposition yields an isomorphism

HP,Q(X(n)7 C) ~ @ ( ® S™a HPY( X, C) ® ® A P9 (X (C))
> np,g=n \p+q even p+q odd
> npep=P
2o Mp,qa=Q
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for P, Q € N. Taking the class of this in Ko(PHS¢) = Z[x,y,z~", y~'] and using the generating
functions

» dimAC-T' = (147T)"
1
1-7)"
proves the following generalisation of MacDonald’s formula obtained by J. Burillo by represen-
tation theoretic methods.

Corollary 3.9. ([11]) If h,(X) = dim H?9(X,C) are the Hodge numbers of X then the
Poincaré-Hodge polynomial of X™ is
Py (X™) = Coefrn [T (1 — (—1)P*92?y'T)!

p.q

Zdim sicr TP =

_1)p+q+lhpq (X)

4. THE MOTIVE OF MODULI SPACES OF VECTOR BUNDLES

4.1. On work by Bifet, Letizia and Ghione. We briefly recall some of the main results in
5].

Let C' be a smooth projective curve over a field k. Recall that a matrix divisor of rank n
over C'is a rank n vector bundle £ together with an inclusion of O¢-modules ¢ : £ — K7, here
K¢ notes the constant sheaf of rational functions on C'. Given a matrix divisor ¢ : & < K we
can always find an effective divisor D such that ¢ factors via Oc (D)™ C K.

Fix an integer d. Given an effective divisor D over C, the set of rank n matrix divisors of

degree d that lie in O¢ (D)™ is the set of k-points of the Quot scheme @, 4(D) = Quot%%e(g[)l;gfk,

this is a smooth projective irreducible variety. If D < D’ we have a natural closed immersion
Qna(D) C Qna(D'). This defines an ind-variety Q4 = {Qn.q4(D)}p which is called the ind-
variety of matrix divisors of rank n and degree d.

The universal bundle on these Quot schemes gives rise to a Shatz stratification according to
the Harder-Narasimhan type of the underlying vector bundle.

(11) Qna=J Qi

n,d
where (n,d) = ((n1,d1), ..., (n,d;)) is the Shatz polygon.

Theorem 4.1. 1. ([5], 4.2) The cohomology of Qy.4 stabilizes. Its Poincaré series converges
to

(1+1)% ’ﬁ (14 2 1)2
1 _ 420 11 (1 — ¢%)2
2. ([5], 7.1) For each Shatz polygon (n,d) the cohomology of the strata Q4 stabilizes. There

is a natural morphism [, Q;° ;. — Q3'q that induces an isomorphism on cohomology.
3. ([5], 8.1) If n and d are coprime P,Q5, = Tz PNe(n,d).

1—¢2

The stratification (11) is proven to be perfect in the sense that all the Gysin exact sequences
split in short exact sequences (see [5] §10 for details). The main outcome of this is the following
formula,

(12) Pth,d = Z Pt 78181,d1 ..... Pt 7szsl,dlt20(n7d)

n=(ny,...,ny)
d=(dy,... ,d)



where (n,d) runs over the Shatz polygons and
¢(n,d) = Z (nid; — nd; + nin;(g — 1)) .
i>j

This expression combined with theorem 4.1.2 can be used to compute P;Q);’; inductively.

4.2. Chow motive of varieties of matrix divisors. We shall give a motivic version of the
results of E. Bifet ([4]) concerning the scheme Quot%g‘qk. The key to the results in [4] is the

use of a torus action and the results of Bialynicki-Birula, using theorem 2.4 we can now prove:
Theorem 4.2. The Chow motive of Quot%ac‘k is tsomorphic to the Chow motive of the d-fold
symmetric power of C x P71,
d ~ \d n—1
hQU’Ot(’)g\CUc ~ \h (C x P ) .

The same holds for the Chow groups and algebraic K -theory with rational coefficients.

Proof. Clearly automorphism group of O, GL,(k), acts on the Quot scheme. By [4] we know
that the action of the standard maximal torus of GL, (k) on Quot has fixed points of the form
Oc(=D;1) & ---Oc(—D,) — OF where Dy, ... D, are effective divisors. This fixed point set

remains the same if we restrict the action to a sufficiently general one parameter subgroup. In
sum, G,, acts on this Quot scheme with fixed point set

(Quot?oz-lc\k)Gm = U Ol - x 01
di+-+dn=d

Moreover, the codimension of the stratum corresponding to (dy, ..., d,) is > (i — 1)d;.
Now our localisation theorem 2.4.(4) together with theorem 3.4 yields

hQuotlu ey =~ Y (O x - x ) (3 (1 —i)dy)
' dy+-tdn=d
> MMCA-1) @@ A" (hC(1 - n))
di+-+dn=d
~ \(hC @ hC(~1)D---dhC(1 —n))
~ h((C x P"~1)@),

The statements for Chow groups and K-theory are proved in the same fashion. O

12

It should be pointed out that (C' xP*~')(¥ is a singular variety and the previous isomorphism
between motives cannot come from an isomorphism of varieties.

Definition 4.3. Let C' be a smooth projective curve over k of genus ¢ define (1 + ]L")hl(c) to
be @ NHIC @ L.

Proposition 4.4. 1. The motivic Poincaré polynomial of Q4 stabilises. It converges to

(]1+ ]l)th n-1 (]l_|_Li)th
iy U a—oye

2. For each Shatz polygon (n,d) the motivic Poincaré polynomial of the strata Qn.a stabilises

SS

and X fl's,d = HZ X n;,d;
3. If n and d are coprime xQ,’; = —=XNc(n, d).
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Proof. 1. First note that tensoring by Oc(—D) defines an isomorphism
Quoty )i = Quotdy ok
In Theorem 4.2 we have proved that
d ~ \a n—1
hQU’Ot(’)g/C/k ~ )\ ( ]P) X O ) y
By splitting off a trivial motive as in [36] 1.11, h(P"~! x C') = 1®h* (P*~" x C), and using
Theorem 3.4 we see that hQuotoﬂc‘k = ®Z<d)\ (hT(P*~! x ). From this we see that
XQuoté?/C/k — XQUOtog/C/k = A (x(P*' x O) - 1)
e L. KoMy

This implies that (xQna(D)), converges. Moreover, using again the additivity of the
A-structure (Theorem 3.4) we obtain

f:x’ (Pt x0)) ~ Z)\Z (RPN (-1) @ hPy (1) @ (RP} ' ®@ R'C))

12

( i:(,)\ L) - (BZAL") - (B2AL) - - - (B2pAL* ) -
(BZARIC) - (BN (A C(—n + 1))
(1+ MO (1 + L)C
(1 —1Ln) P (1 — IL#)2
2. This follows from the proof of theorem 7.1 in [5].
3. Let P be a Poincaré bundle on N¢(n,d) x C and let p; and p, be the projections of
Ne(n,d) x C on its factors. According to [5] there is a morphism
(D) 25 B(D) = Bpy (P* ® p;0c(D)")

which is an open immersion with complementary closed subset of codimension > deg D.
Then corollary 4.7 implies that (xQ:,(D) —X]P’(D))D converges to zero. But P(D)

is a projective bundle of rank n?degD — nd over N¢(n,d) so (xP(D)),, converges to
1
I,LXNC(na d)

O

4.3. The motive of N¢(n,d). Let A C Ob (M) be a collection of effective motives. We
define the pseudoabelian tensor category of M} generated by A to be the full subcategory of
M} whose objects are direct summands of sums of tensor products of motives in A.

The following result shows can the theory of [21] can be applied to classical motives.

Theorem 4.5. Let C' be a smooth projective curve over a field of characteristic zero and let
n > 1 and d be coprime integers. Then the Chow motive hN¢(n,d) lies in the full pseudoabelian
tensor category of M} generated by h*(C) and L.

The proof of the theorem uses the following result.
Lemma 4.6. Let Y be a closed subvariety of codimension d of a smooth quasiprojective irre-
ducible variety X. Then

1. IfY is smooth then there is an isomorphism in Ho C° M}, h(X-Y) ~ s (hY (—d) — hX).

2. There exists a complex of effective motives C* concentrated in negative degree and an
isomorphism in Ho C°M;f, h(X —Y) ~ s (C*(—d) — hX).



By taking classes in KoM} we obtain the following corollary.

Corollary 4.7. Let Y be a closed subvariety of codimension d of a smooth quasiprojective
irreducible variety X. Then

1. If Y is smooth then x(X) — x(X = Y) = x(Y)(—d).
2. In any case X(X) — x(X —Y) lies in the ideal of KoM, generated by L°.

Proof of lemma. 1. Recall from Proposition 6.4.2 in [12] that for each smooth quasiprojective
variety U, we have an isomorphism h(U) ~ h.(U)"(— dim U). Therefore

A(X =Y) ~ h(X =Y)(—=dimX) ~ s (h(X) — h(Y))" (- dim X)
~ 5 (h(Y)" — h(X)Y) (- dim X) ~ s (h(Y)(—d) — h(X)).

2. The proof is by induction on dimY. The statement is obvious for dimY = —1 (i.e.
Y = () so we assume dimY > 0. Let Y*" C Y be the singular locus of Y, we have
dim Y*"8 < dimY. By the smooth case we have

MX —Y) ~s (h(Y — Y*™8)(=d) — h(X — Y*"¢))

and from the induction hypothesis we have a complex of effective motives C§ concentrated
in negative degree and an isomorphism

h(X —Y®8) ~ 5 (C3(—d — 1) — h(X)).
Putting this together we get
MX —Y) ~s (h(Y = Y™8)(=d) — s (CJ(—d — 1) — h(X)))
Next lemma provides us with an isomorphism
s (h(Y = Y*™)(—d) — s (Cy(—d — 1) — h(X))) ~
~ s (s (h(Y — Y¥"8)(—d)[-1] — C3(—d — 1)) — h(X))

The proof of the lemma follows if we define C'* to be the simple of the morphism h(Y —
Vee)[—1] — C§(—1) by noting that the graded object underlying the complex C* is is
the same as that of C3(—1) @ h(Y — Y®"8) which is concentrated in negative degrees.

U

Lemma 4.8. Let A, B and C be complexes of chains in an additive category C and let f :
B—C,G:A—s (B N C) be morphisms of complexes. There exist morphisms of
complexes g and F and an isomorphism of complexes

(458 (85 0)) s (s (411 % B) B 0).

Proof. To give a morphism G : A — s(B AN C') is equivalent to giving a morphism of graded
objects in C, (5,’;) : A — B[1] ® C such that

g dpny 0 q
dy =
(h) 4 (f de) \n )’
that is

(13) godi=dgyog y hodi—deoh=fog

(note incidentally that this is equivalent to ¢’ defining a morphism of complexes and h an
homotopy f o ¢" ~ 0).
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The simple of G is the complex with underlying graded object A[1]@® B[1]®C and differentials
given by

dapp 0 0
g dppy 0
h [ de

Note that the simple of ¢ = —¢' = g[—1] : A[-1] — B is the complex with A & B as
underlying graded object and differential (f;‘, d(; )

Define F : s(A[—1] <% B) — C over the graded object by (h, f) : A® B — C, this is a
morphism of complexes for

wn (% 0) = teditsogsodn
B
dolh ) = (eohdeo )

and from the definition of f and (13) these expressions coincide.
As above the simple of F'is A[1] ® B[1] ® C' with differential

dapp 0 0
g dpy O
h f de
this coincides with the simple of G and the lemma is proved. O

Proof of Theorem /.5. Recall from [5] §8 that for every effective divisor D on the curve C' we
have a projective bundle P(D) over N¢(n,d) associated to a vector bundle, call r its relative
dimension. There is an open immersion ip : Q;°y(D) — P(D) with complementary closed
subset of codimension ¢(D) > deg(D). From the previous lemma we obtain an isomorphism

h (Qua(D)) ~ s (CT(=e(D)) — h (P(D)))

where C7 is a complex of effective motives concentrated in negative degree.

If deg(D) is big enough then @Q;’°;(D) is a non empty open set of the smooth irreducible
projective variety @, 4(D). By the lemma there is a complex of effective motives C'§ and an
isomorphism

h( :Lfd(D)) ~s(C5(—1) — h(Qna(D)))
Given that thid(D) is defined up to homotopy equivalence we have morphisms of complexes

f.
L] H L]
(1) (Ot (~e(D)) — h(BD))] 2 [C3(-1) — h (@ua(D))]
with f®*o¢® ~ Id and ¢g°® o f* ~ Id.
Next recall that the natural projection m : P(D) — N¢(n, d) provides with a monomorphism
of motives 7 : hN¢(n,d) — hIP(D) with a natural retraction given by R =, o ¢;Op(p)(1)" :
hP(D) — hN¢(n,d). Clearly 7* defines a morphism of complexes

h,NC (7’1,, d)

(15) m*

C? (—c(D)) —2— hP(D)



The key point now is that if deg(D) is big enough then
hNe(n, d)

R

C! (—c(D)) —2— hP(D)

defines a morphism of complexes. This is so because if C; ' = (X, p)
Rod € Homy; (CTH(=¢(D)), hNe(n, d)) C Hom 4 (hX (—¢(D)), hNc¢(n, d)) ~
~ CHAPHIMX (X 5 Ni(n,d)) = 0.

This last group being zero for dimensional reasons. Therefore (15) is a monomorphism. Com-
posing this monomorphism with the homotopy equivalence (14) gives another monomorphism
with retraction given by R o g.

hN¢(n, d)
fomr*

3 (=1) —— hQua(D)

Therefore Ro go f° o n* ~ Idynona. But as hN¢(n,d) is concentrated in degree zero
we have Ro go f®on* = Idyng(n,a), this implies that f o 7* : hN¢(n,d) — hQ,q(D) is a
monomorphism. By Theorem 4.2 the motive of this lies in the tensor category generated by
h'(C) and L. The result follows. O

4.4. The motivic Poincaré polynomial of the moduli space. The following proposition
is a motivic version of the classical recursion for the Betti numbers of the moduli space (c.f.
[22], [23], [14] and [1]). The reader will note that no perfection arguments are needed in this
context.

Proposition 4.9. We have the following recursion formula

XQnd—ZX ( Z( d'_njdi+ninj(g_1)))a

1<j
where the (n,d) = ((n1,dy),- -+, (ny,d;)) run over the Shatz polygons.
Proof. Let D be an effective divisor. Consider the Shatz stratification Q, ¢(D) = UQ; 4 (D).
Call F(D) the union of the strata, 37, that are not smooth or not of codimension c(n d).

By Proposition 5.2.(3) in [5] F/(D) is a closed subvariety of codimension greater than deg D — ¢
(where ¢ is a constant independent of D) so by corollary 4.7

XQn.a(D) = X (Qna(D) — F(D)) € 1(—deg D +¢) - KoM;.

If Q3 q,(D), ..., Qu q,(D) are the smooth strata of the right codimension then by corollary
4.7 we have

X (@n,a(D) ZXQ —c(ny, dy)) .

The proposition now follows by taking the limit as deg D — oo. O
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We now proceed to invert this motivic recursion by using the work of Laumon and Rapoport
([28]). Asin [28] if x is a real number we note by (x) its decimal part, that is, its representative
modulo Z in [0, 1).

To apply the inversion procedure of Laumon and Rapoport we first notice that the integers
<5§, av> and np introduced in [28] (section 2) are in fact in 27 in the case of vector bundles.
This observation allows one to state and prove a version of theorem 2.4 in [28] substituting

Z[[f]] by K and ¢7(Pe) by 1 (2UE)),

We now introduce some notation to state the inversion theorem in the special case of
vector bundles. The standard parabolic subgroups of GL,k can be identified with the set
P, of partitions of n in sum of positive integers. There is a natural partial order in P,,
n' = (ny,---,ns) C n = (ng,---n) whenever there exist integers 0 = kg < --- < k; with
Njp1 + o+ 0, = nig for each ¢ € {0,--- 1 —1}. Define the function £: P, — N to be the
length of a partition.

Given an integer d let Pnd be the set {(n,d)jn € P,, d € Z“™ Zd d}. We set
(n',d’) C (n,d) whenever n' C n and in the previous notation dj__, + 4+ dy, . = d; for
ie{0,---,1—1}.

Set m(n,d) = Zi<jn~nj [(d—’ — %) +9g-— 1]. Ifn' C n define 7}, 4, to be 1 ifzki—:ll > >

n; i

Z L for each i € {0,---,1 — 1} and 0 otherwise. Note that 77" ; = 1 if and only if (n,d) is a
H—l ?

Shatz polygon.
Then given M, a K-module, complete with the 1(—1)-adic topology, we have

Theorem 4.10. ([28], 2.4) For each function f : P, — M there is a unique function Fo
Pp.a — M such that

-~

fmy= Y Twa /@, d)1(n(n,d) - m@x',d))

(n’d’)C(n,d)

for any d. The value of f on the mazimal element of Py 4, (n,d), is given by

£(n) 1
(=1~ f ()
r;m 31_11 1—1(-n; — nJ-H)
gy nyt ety
_Z”i”j(g -1) - (nj + nj41) <—%d>
1<J 7j=1

Theorem 4.11. Ifn and d are coprime, the motivic Poincaré polynomial of Nc(n,d) is

” I e i
D A ol U U e T e T

s=1 ni+-+ns=n
n; EN

s—1
H]l 1(—n; — ny41) ( anny g—1)— an+nz+1< Wd>>

1<J =1




Proof of theorem 4.11. Apply the previous theorem to the K-module K. If n = (ny,---,ny),
choose any d; € Z and set
!
— H XQTLi,di
i=1

which is independent of the d;.
Then theorem 4.10 combined with proposition 4.9 and proposition 4.4.1 yield the following
expression for x@;%;

YT RS R S AUCORR A
2 H((ﬂ—n(—nmﬂ (ﬂ—ﬂH))Z)

(n1,+ns)EPn =1 j=1
s—1 s—1
1 ni+-o- 4
' i —1) i i ——d
(M) (o0 =Sy (2

If n and d are coprime, dividing by W yields the formula for yN¢(n,d) in the statement
of the theorem. O

5. APPLICATIONS

5.1. Hodge theory. In this subsection we assume the base field to be embeddable in the
complex numbers.

Corollary 5.1. The Poincaré-Hodge polynomial of Nc(n,d) is

Z (—1) (1 + )9 1+y ni—[ l—i-xl (1 4 oyt

1 _ xz—l—lyz-i-l)

ny+-+n;=n (1 7j=1 i=1

o 1 s (0 DS (s ) (= PLE R
Proof. We apply the morphism P,, : K — Z[[z,y]] to the expression in Theorem 4.11. As
P,, is a ring morphism we just need to evaluate P,,(L) and P, ((]l—l—]L”)hl(c)). Clearly
P,y (L) = zy. From definition 2.3 and the additivity of P,

P, ((11+]L” ) ZPW (NRY(C)) (a™y™)'.

If we replace the x™y" coming from L. by an 1ndeterm1nate T we have
S B,(NRC) T = YN dim HP9(JacC, C)aPy? - T
) i ptq=t
Pryry(JacC) = (1 + Tx)?(1 + Ty)?.
Therefore we have shown that
ny(]l—F]Ln)th _ (1 + xn—l—lyn)g(l + xnyn+1)
This proves the corollary. O

Let £ be a line bundle of degree d and note Ng(n, L) the moduli space of stable vector
bundles over C' of rank n and determinant isomorphic to £. We can recover the following result
of Narasimhan and Ramanan from the previous corollary.
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Corollary 5.2. ([32]) The x,-genus of No(n, L) is given by

(1 Vs W) "

1=y i=1

In particular, both the signature and Euler characteristic of Nc(n, L) are zero.

We now consider the category of absolute Hodge motives as defined in [13]. We note M
the category of absolute Hodge motives and hay : Vi — M the motivic functor.

Corollary 5.3. ([6], [7]) Let o be an embedding of an algebraically closed field k in C, then a
o-Hodge cycle on N¢(n,d) is an absolute Hodge cycle.

Proof. By Theorem 4.5 hay(Ne(n,d)) lies in the tannakian category generated by hay(C).
The result is then a consequence of Theorem 6.25 in [13]. O

5.2. Finite fields. Let C be a curve defined over the finite field with ¢ elements, F,.

Corollary 5.4. The number of points of Nc(n,d) over a finite ﬁeld of q elements is given by

s Nnj—

= L (#Jac(
SR SRNEIRLCETS )

s=1 ni+-+ns=n j=1 i=1
n; EN*
sl s—1 nitetn;
IJ——- ¢S mims (g DTS (nitmag) (ML)
1 — gnitni+
J=1

Proof. By a result of Grothendieck ([19]) there exists a smooth projective scheme, C, over the
spectrum of a complete local ring of characteristic zero with residue field IF,, S, whose special
fibre is isomorphic to C'. We shall note the generic fibre of this scheme by Cj.

By Theorem 1.1 one can construct a scheme N¢(n, d) smooth and projective over with generic
fibre N¢,(n,d) together with a morphism N¢(n,d) xg Spec(F,) — N¢(n,d) that induces a
bijection on the sets of F,-points. We write N' = N¢(n, d) xg Spec(F,).

Fix a prime ¢ not dividing ¢q. The base change theorems shows that there is a natural
isomorphism H*(N' ®g, Fy, Q) ~ H*(N¢,(n,d) ®x K, Q) equivariant with respect to the
actions of the Galois groups. In particular #N¢(n, d)(F,) = #N'(F,) = v, (x(N')) is equal to

v, (X(Ngy (1, d))) which can be computed with the aid of Theorem 4.11.

Given that v} : K — Q[[t]] is a ring morphism, we see from the expression in Theorem 4.11
that it is only necessary to evaluate v¢ on L and (1 +L)" (©0). Clearly /(L) = Tr(Fr|q,(_1)) =
qt?.

Call wy, ... wsy be the eigenvalues of the geometric Frobenius morphism acting on H'(C' ®p,
F,, Q) and set Pi(t) = [[%,(1 — w;t). Then we have

n 1
v+ L)H e = ZTr (Fr NHI(ﬁ@zxfni))

— Z Z wj, +- _wjiqnit(Qn-i-l)i - P (qnth-I—l)

i j1<<J;

ti—l—?ni

The result now follows by recalling that (¢(—s) = %. a

5.3. On some conjectures.



5.3.1. Hodge and Tate conjectures. Recall that in each cohomology theory there are cycle class
morphisms ¢l; : CH'(X) — H*(X) for each X € Ob V;. These can be extended to Chow
motives.

Definition 5.5. 1. Define the function P, : KoM} — Z[t] by P4([M],t) =), dimIm
(cl; : CHY (M) — H?*(M)) - t* for M an effective motive.
2. If k = C and H* singular cohomology define the function Py : KoM; — Z][t] by
Py ([M],t) =Y, dim (H*(M,Q) N H*(M,C)) - t* for M an effective motive.
3. If k is finitely generated over Q and H* is f-adic cohomology define the function Pr :
KoM} —s Z[t] by Pr([M],t) = 32, dim (HQi(M)(z’)G“l(’“|k)> -t for M an effective motive.

It is immediate that for ? € {A, H,T} P;(-,t) is an additive function and that for every
integer k we have P (m(—k),t) = P;(m,t) - t*. This allows one to extent it to a function on K.

The Hodge (resp. Tate) conjecture for a variety X is equivalent to the equality P4(x(X),t) =
Py (x(X),t) (resp. Pa(x(X),t) = Pr(x(X),t)). In more generality one can state the Hodge or
Tate conjecture for motives or elements of K as follows:

Definition 5.6. We say the Hodge (resp. Tate) conjecture holds for m € K if Pa(m,t) =
Py (m,t) (vesp. Pa(m,t) = Pr(m,t)). We say either of these conjectures holds for M € ObM;}
whenever it does for [m].

Remark 5.7. Let M and N be effective motives and n € N. It is easy to prove that the Hodge
(resp. Tate) conjecture holds for M and N (resp. for M) if and only if it holds for M & N
(resp. M(—n)).

Our main result here is the following elementary propagation principle.

Theorem 5.8. The elements of K that verify the Hodge (resp. Tate) conjecture are a sub-
Z[[L]]-module.

Proof. Clearly the elements of IC that verify the Hodge (resp. Tate) conjecture are the kernel
of the map

Pa(-,t) — Py(-,t) : K — Z][[t]]
(resp. Pa(-,t)—Py(-,t)). As we have remarked, this is an additive map. It is also a map of Z[[I]]-
modules if we consider Z|[[t]] as a Z[[L]]-module via the natural isomorphism Z[[L|] — Z[[t]].
The result follows ]

The following corollary shows that the Hodge or Tate conjectures for the moduli spaces,
N¢(n,d), can be reduced to the study of these conjectures on certain abelian varieties.

Corollary 5.9. If the Hodge (resp. Tate) conjecture holds for the n-th power of the jacobian,
Jac(C)", then it also holds for No(n,d).

Proof. By Shermenev and Kiinneman we know there is a decomposition of the form h(JacC) ~
@M (h'(C)). The Kiinneth formula yields

goer

We are assuming the Hodge (resp. Tate) conjecture to hold for Jac(C)™ so by remark 5.7
the same assumption holds for the motives A'h'(C) ® - --@ A" k! (C). But Theorem 4.11 states
that x(N¢(n,d)) lies in the Z[[L]]-module generated by these motives. The result now follows
from the previous theorem. O
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Given that the Hodge conjecture holds for the general jacobian we recover the following result
of Biswas and Narasimhan:

Corollary 5.10. ([8]) The Hodge conjecture for Nc(n,d) holds for the general curve.

5.3.2. Standard conjecture of Lefschetz type. In this subsection we shall use motives with respect
to a given homological equivalence (see [36]), M}°™". From the definition of M}°™" it is
immediate to see that the function P, defined above gives a function on Kg/\/l},;‘)mJr and on its
completion along L which we shall note K™,

We start by extending this conjecture to elements of K"™. The standard conjecture of
Lefschetz type A is equivalent to the equality of polynomials Pa(x(X)Y,t71) = Pa(x(X),1).
More generally we conjecture that for every m € KUM},;O“”:

A(m): Py(mY;t7") = Pa(m;t).

Note that the function f(m) = Py(mV;t™') — Pao(m;t) is additive and verifies f(m(—k)) =
f(m)-t*. This serves to prove that for m, n € KoeM™" and k € N A(m+n) (resp. A(m(k)))
holds if A(m) and A(n) do (resp. A(m) does). It also shows that the statement A(m) makes
sense for m € Khom,

Recall that the general standard conjecture of Lefschetz type implies that the Kiinneth
components of the diagonal are algebraic. In other words B(X) < C'(X). Therefore for such
a variety we have a unique decomposition h(X) = ®h*(X) descending to the usual one in
cohomology.

Our main result here is the following propagation principle.

Theorem 5.11. Let Xy, ... ,X,, € ObVy verify the standard conjecture of Lefschetz type B.
Let X € Ob 'V, be such that x(X) lies in the sub-Z[[L]]-algebra of K generated by h*(X;). then
B(X) holds.

Proof. By [25] we know that A(X x X) = B(X), therefore it is enough to see that for an X
as in the statement of the theorem , A(X) holds. For such an X we have that y(X) is a sum
of elements of the form

a-[h(X;,) ® - ®h7(X;,)](—m), a€Z, meN
As we have remarked it is enough to prove that A holds for motives of the form
(16) h'(X;) ®---®h"(X,).
Set © = i1 + -+ 1,. By lemma 5.12 we have an isomorphism of motives
WHXG) @ - @ BT (XG,) = (WH(X;) @ @ " (X5,)) ().
Taking A"/?

12

AP (B (X)) @ @A (X,) = AT (B (X)) @+ @ b (X)) (<)
:,rw(mme®-n®mm&ﬁy)

As A2 is the only nonzero cycle class space of (16) A follows. O

Lemma 5.12. Let X wverify the standard conjecture B. Then hi(X) ~ h*(X)V(—i) for all i.

Proof. By taking into account the natural isomorphism

hH(X)Y ~ p2dmX=i(X)(— dim X),



we may assume that ¢ < dim X. Let L be the Chern class of an ample line bundle on X. We
claim that the morphism ‘multiplication by LdmX—¢

(17) LAmX—i pi(X) — p2ImA=(X) (dim X — 4) ~ h(X)"(—4)
(see [36] 2.1 for the notation) is an isomorphism.
From the assumption on X we have a morphism of motives
AdimX—i . p2dimX=i(X)(dim X —4) — h'(X)

The claim follows from the fact that the cohomology functor from motives with respect to
homological equivalence to vector spaces is faithful. From standard Lefschetz theory A2dmX—io
[2AmX =i (regp, [2dimX—i o A2dmX =) ig the identity on H'(X) (resp. on H24mX={(X)) by
faithfulness A2dimX—io [2dimX—i — [ and L2dimX—io A2dimX—i = [ g0 (17) is an isomorphism
as claimed. O

We can now prove that the standard conjecture of Lefschetz type B holds for our moduli
spaces. This has already been proved over the field of the complex numbers by I. Biswas and
M.S. Narasimhan by monodromy techniques ([8]).

Corollary 5.13. The standard conjecture of Lefschetz type B holds for No(n,d).

Proof. By theorem 4.11 the motivic Poincaré polynomial x(N¢(n,d)) lies in the sub-Z[[L]]-
algebra of K generated by A'h'(C) for i € {0,...,2g}.

The Corollary now follows from the previous Theorem taking in account that conjecture B
is true for Jac(C') as is shown in [25]. O

5.3.3. Semisimplicity of Galois actions. Let k be finitely generated extension of Q. The ab-
solute Galois group Gal(k|k) acts on the f-adic cohomology of any variety defined over k. In
the case the variety is smooth and projective such action is conjectured to be semisimple by
Grothendieck and Serre.

Proposition 5.14. For coprime n and d the action of the Galois group Gal(k|k) on H*(N¢(n, d)®y
k, Q) is semisimple.

Proof. Theorem 4.5 shows that h(Ng(n,d)) lies in the tensor category generated by h'(C) and
L. This implies that the Gal(k|k)-module H*(N¢(n,d) ®; k, Q) is a subobject of a sum of
Gal(k|k)-modules of the type H'(C ®j k, Q)®" @ Q(—1)®™ with n, m € N.

A result of Faltings ([15] Chapter IV) implies that the Gal(k|k)-module H'(C ®y, k, Q) is
semisimple. The result follows. O
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