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1 Introduction

In 1979, H. Matano [19] gave an important result on the existence of stable nonconstant equilib-

rium solutions of reaction-diffusion equations with homogeneous Neumann boundary conditions

Au+k f(u) inD,

Uyt
1
{ul, = 0 on 0D , (L

for some nonconvex domains . For the same question, more results were obtained later, with
different methods, by other authors like J.IX. Hale and J.M. Vegas, [11], S. Jimbo, [14] and E.
Yanagida, [28].

In 1995 we wrote a short note [5] pointing out that the proof of H. Matano’s results could
also be extended, with the suitable changes, to prove existence of stable nonconstant equilibria

of diffusion equations with nonlinear boundary conditions

{ut = Au in D, 2)

u, = kf(u) on dD .

In that note we mentioned that problem (2) is also a model of reaction and diffusion like (1),
but when the reaction happens only at the boundaries of the container, for example because of
the presence of a solid catalyzer. A detailed justification of the apparence of (2) in a combustion
problem appears at the end of the paper [16] and earlier motivations in [3]. Other types of
stable nonconstant equilibrium solutions for problem (2), in the case that 9D has several
connected components, were obtained also in [3] for one space dimension and in [6] for the
multidimensional case (see also [17]).

The proofs in our note were presented, as we said, following the paths of [19], with the
suitable changes. But there was a point where we used a really different argument, reliying on
the one-dimensionality of central manifolds for local minima instead of using the monotonicity
of the flow. And we have recently realized that our argument can also be applied to existence of
stable nonconstant equilibria also for non-monotonic problems like the strongly damped wave
equation

(3)

Uy —aAuy+buy, = Au+k fu) inD,
u, = 0 on 0D ,

for a,b > 0, that has the same equilibrium solutions as (1) but which stability, at least in the
critical cases, it is no clear if it is the same for the two cases.

Our results on stability will use the fact that the equilibria that we find are local minima of
suitable Lyapunov functionals .J, that in problems (1), (2) and (3) are the well known energy
functionals. But since (1) and (2) are the strict gradient flows of these functionals, we have
been asking ourselves if local minima are automatically stable in gradient flows. The general
answer 1s that they need not to be so, except if the phase-space is one-dimensional, and we have

constructed a counter-example in two dimensions, that we include in the present paper. This



example makes more clear the use in our stability arguments of the condition for the central
manifold to be one-dimensional. It is also worth noting that our example is smooth (of class
C>) but that it also proved that it can not be real-analytic.

So the main purposes of the present paper are to present a complete proof of the results
of [5] for the problem (2), with special emphasis on our argument on the central manifold for
the local minima, to show that this argument can be used for equation (3), and to present an
example of instability of local minima for gradient flows in finite dimensions. Section 2 below
is completely devoted to the abstract reasoning on stability of local minima using the central
manifold, in section 3 this argument is applied to (2), so obtaining the results of [5], in section
4 problems (1) and (3) are discussed, and section 5 presents the example of instability of local

minima for gradient flows in two dimensions.

2 A result on stability of local minima
The initial value problem for semilinear equations of type
ur = Au + F(u), (4)

where A is linear and F'is nonlinear, gives a dynamical system in a Banach space X in several
functional settings. Must of them fit into the following framework: there are four Banach spaces
Xo C X CVY CYg, Xpis the domain of A as a closed operator of the space Yy and F'is a
regular map from X to Y. In [24], in a formulation which is suitable for wave-like equations,
A is the generator of a C° semigroup in Y and X =Y = Y{. For parabolic-like equations one
possible formulation is that of [23] or [1], where A generates an analytic semigroup in Xo = X
and Y < Yg, and another possibility is that of [12] where A also generates an analytic semigroup
on Xo, X = D(A?) for some 0 < o < 1 and Y = Y.

In this section we suppose that we are in one of these cases and that the following hypotheses

are satisfied.

(H1) The equation (4) defines a local semidynamical system T'(¢) in the space X (defined either

for strict or mild solutions of (4)).

(H2) There is a Lyapunov functional .J : X — R that is a continuous function that decreases

strictly except at equilibria.

(H3) The equation (4) is such that if eg € Xj is an equilibrium point (Aeg + F'(eg) = 0) then
the following property holds for the spectrum of the linear part L = A + DF(eg): if
(L) C {Re XA <0} but o(L)N{Re A =0} # 0 then o(L)N{Re A =0} = {0} and 0 is

an algebraically simple eigenvalue.

(H4) In addition of (H3) we will suppose, as it often happens, that



(i) If o(L) C {Re A < 0} then eg is asymptotically stable.

)

(i1) If o(L) N {Re A > 0} # 0 then there exists a nonconstant solution u(t) of (4) such
that u(t) — eg as t = —o0.

(iii) If o(L) C {Re A <0} but o(L) N {Re A = 0} = {0} (as in (H3)) then there exists
a local central manifold M, which is invariant, one-dimensional and tangent in eg
to the eigenvector associated to the eigenvalue A = 0 with the property that eq is

Lyapunov stable in X if and only if it is stable in M.

(See [4] for a recent and more general approach to local properties near equlibria like (H4)).
Under these assumptions we are going to prove the following general theorem, that will be

applied to several specific problems in the next sections.

Theorem 2.1 Let the hypotheses (H1)-(H4) hold and let ey be a local minimum of the func-
tional J. Then eq is a stable equilibrium of (4).

Proof. As ¢ is a local minimum of the functional J it cannot decrease in time. Then, by the
hypothesis (H2), eg must be an equilibrium point of (4).

To see that eg is stable we have to consider three cases depending on the location of the
spectrum of the linear operator L.

The case o(L)N{Re A > 0} # () is not possible by the hypothesis (H4(ii)), because it implies
that ey can not be a local minimum of the functional J.

In the case that o(L) C {Re A < 0}, by the hypothesis (H4(i)) eg is asymptotically stable.

For the case o(L) C {Re A < 0} but o(L) N {Re A = 0} = {0}, (H4(iii)) says that if the
equilibrium point eg is stable inside M (which is one-dimensional) then e is also stable in X.

But let us see that in dimension one a local minimum of a Lyapunov function is always
stable. We can consider, without loss of generality, that M is the interval —r < = < r, the
equilibrium point eg = 0 and J(0) = 0. We are going to see that 0 is stable from the right
and the same arguments prove the stability from the left. We consider two cases depending on
whether 0 is or not a strict minimum of the functional .J in [0, ).

First we consider that 0 is a strict minimum of .J in [0,7). As J(0) = 0 there exists ry < r
such that J(x) > 0 in (0,r1]. Given ¢ > 0, let J. be the minimum of J on [¢,r{]. As J is a
continuous function there exists § > 0 such that for # < § we have J(z) < J.. So, if x € [0, 4],
as J decreases in time, J(T'(t)x) < J. for all t > 0. Then, T'(t)x & [e,r1] for all £ > 0 and 0 is
stable because T'(t)x € [0,¢].

To finish off let us consider the case where x = 0 is not a strict minimum in [0,r). In this
case there exists a sequence x,, — 0, as n — oo, such that J(x,) = 0. These x, are equilibria.
For any ¢ > 0 there is an equilibrium z. such that 0 < x. < ¢. Then the end points of the
interval [0, z.] are equilibria. So the interval [0, z.] is a positively invariant set. Now, taking
0 = . and = € [0, 8] we have T'(¢)x € [0,¢], for all £ > 0. That is, 0 is stable.

Therefore the equilibrium point eq always is stable inside M and so it is stable in X.
O



Remark 2.1 Without the hypothesis (H3) the central manifold M could have dimension big-
ger than one, and then inside M the local minima would not need to be stable. This could be

true even for the gradient flow of J, as the example of section 5 shows.

3 The Diffusion Equation with Nonlinear Boundary

Conditions

We are going to present the result of existence of nonconstant stable equilibria for (5). It was
already announced by the authors, together with a sketch of the proof, in [5]. We consider the

problem of a diffusion equation with nonlinear boundary conditions

{ut = Au in D, (5)

u, = kf(u) on 0D ,

with D C R"™ a bounded domain with regular boundary 9D and the function f € C'(R,R).
Following the approach of H. Amann [1], the problem (5) admits a semilinear formulation, that

is, it can be written in the form
ur = Au+ F(u) . (6)
Here A is the linear part and it maps W) on (W) (the dual space of W) with p > n,
p>2and 1/p+ 1/p’ =1 and it is defined as follows: Au(v) = —/Q(Vu Vv + uv)de. The
nonlinear function F' maps I/Vp1 not only on (Wpl,)’ but on a smaller space F and it is defined by
F(u) = u + v, f(7,u), where v, and 7/, denote the trace on the boundary in L” and the dual
of the trace operator on the boundary in L.

Using interpolation results (see [2]) one can see that A is the infinitessimal generator of an

analytic semigroup {e=4!, ¢+ > 0} in Wpl. Also we have a dynamical system
t
T(thuo = g + / A=) B (T (7 )ug) dr |
0

for a given up € W), in the space W. (See [6], [7] for the details). So the equation (6) satisfies
the hypothesis (H1). (See [20], [21] for a different functional setting).
Let us consider the functional J : I/Vp1 — R defined by

J(u) :/D%(Vu)zdx—/achp(u) de, (7)

where ¢(u) = /u f(s)ds. Tt can be proved that .J is continuous and twice differentiable with
0

continuity. As u; € I/Vp1 we can derive J(u) with respect to ¢ and aplying Green’s formula we

obtain

d 2
() = —/D(ut) dr <0 .



So J is decreasing in time except at equilibria and the hypothesis (H2) holds. (See [7] for all
the details).

For the spectrum of the linear operator L = A 4+ DF(ep) (eo an equilibrium point of (6))
we know (theorem 2.3 in [6]) that the first eigenvalue of o(L) is

/ —(Vu)2 d:z:—l—/ f’(eo)u2 dl
Ao = sup 2 2D .
uew; / u? dx
u#0 D
If o(L) C {Re XA <0} but o(L) N {Re A = 0} # 0 necessarily o(L) N {Re A = 0} = {0}

because only real eigenvalues are possible. Then Proposition 3.2 in [6] proves that if A\g = 0

then Xq is a simple eigenvalue. So hypothesis (H3) holds for (3.2).

For the hypothesis (H4), Theorem 2.2 in [6] gives a principle of stability and instability
that ensures the hypotheses (H4(i)) and (H4(ii)). Also hypothesis (H4(iii)) holds when the
nonlinearity f is a C'(R,R) function (see [26]).

So all hypotheses of section 2 hold and we are going to use Theorem 2.1 to prove that there
exists a nonconstant stable equilibrium solution for (5) under some additional assumptions on
fand D.

The main result in this section is the next theorem.

Theorem 3.1 Let f: R — R be a smooth function satisfying
(i) f(a) = F(0) = f(b) = 0 for some a < 0 < b.
(i) 0 < uf(u) <u? fora<u<bandu0.
(iii) Defining o(u) = /0 " f(s)ds, let us assume that o(b) > (a).

Let D C R™ with n > 2 be a smooth bounded domain. Let Dy and Dy be two subdomains of D
with smooth boundaries and I'; be a smooth portion of 0D; N dD with |I';| >0 (1 =1,2) and
p2(D1) and p2(D3) be the constants given in lemma 3.1 below. Choose p > n, so Wpl(D) C C(D).
If the set
R={veW}(D) : a<v<bonD, vdl <0, vdl >0,

Iy Iy

J(v) <eog—ke(b)|0D|}

*is nonempty, where J is as above and

co = p(b) min {|Tymin {k,pa(D1)}, [Talmin {k, pa(D2)}} -

then problem (5) has at least one stable nonconstant equilibrium solution.



Lemma 3.1 Let Q be a smooth bounded domain. Then there exists a positive constant p2(§2),

depending only on the domain, such that if w € W} (Q) the inequality
w”dl <

[ _m&wgv)@+ﬁﬂ0"w@z (8)

holds. The optimal constant ps(§2) is the second eigenvalue of the Steklov problem

Aw' = 0 in €,
w = pw on 0N .

v

Moreover, for a smooth portion I' of 982, with |I'| > 0, the inequality

(Ve dwwﬂ/wﬂ 9)

also holds.

Proof. The second eigenvalue py(€) of the Stekloff problem can be characterized by

p2(Q2) = min M

faﬂ w =0 w? dl
219

(See [13]). Then, for w € Wj satisfying / wdl =0 we have
1)

1
20 < [(vw?d
o0 ~ p2(Q) Q( w)” de

: 1 :
For any w € W), let us consider u = w — w, where W = —— wdl. Then w =0 and it

|09 Jaq
satisfies the last inequality. Finally, by using the definition of @ we obtain (8) as we wanted.

We are going to see (9). Let u € W, be such that / udl = 0. Then
r

1 1
2 0 < 2 4 d0y? .
AQ“ —pr>K¥V“> $+|mupémr“ )

Now, by the Cauchy-Schwarz inequality

| 00\ T
20 < Vu)td 2 g
[t < pxﬂ)lx u) de |8Q|.Amru

Joining the boundary integrals in this inequality we obtain

AﬁﬂﬁpiDAGMfm, (10)

for any v € W}, with / udl = 0.
r




Finally, for a given w € W, let us consider u = w —w, with @ =

|F| / wdl. Clearly w =0,
(10) holds for w and we obtain (9). 0

Proof of Theorem 3.1.
Step 1. The set R is positively invariant under T'(t).

This is a consequence of the maximum principle, the fact that J(u) decreases in time and
the fact that D; and Dy are such that (9) is satisfied:

Given an initial condition ug € R, as a < ug < b, the maximum principle implies that
a < T(t)ug < b, fort > 0.

Let us assume that there exists ¢; > 0 such that / T(t)ugdl =0 for t =t;, and ¢ = 1 or

i = 2. Let be u; = T(¢;)ug and let us aply the mequahty (9) to u; on D;. That is,

1 1
2 < 32 a2
/Fu a0 < i /Di(Vuz) d:z;—|—|Fi|(/Fiu2d€)
1
- Vu,)?d
Pz(Dz’) /Di( u) *
So,
2 > . 200 > . . .
/Di(Vuz) dr > pa(D;) /F w2 dl > 2py(D;) /Fic,o(uz)dﬁ (11)

Let us consider J(u;):

1
J(w) = 5/ (Vi) dx—/ach,o(ui)dﬁ
1

> 2/ (V)2 de — k (b )|6D\F|—/ ko(ui) de .
D;
By the inequality (11) we obtain

Jwi) 2 pal D) [ ) dl ~ kg(B) 0D\ T = [ ko) d (12)

As ug € R and J is decreasing in time,
J(w;) < g0 — ko(b) |0D] . (13)
Joining inequalities (12) and (13) we have
(02(D) = k) [ (T (1o} dl < 20—k p(b) 1]
or equivalently

fo > (palD) = k) [ @(T(t:)uo) dl + k() I

Iy

= p(b) [Ti|min {k, p>(Di)}

8



which is a contradiction with the definition of &g.
Finally, as J(u) decreases in time the last condition in R is satisfied and it proves that R is

positively invariant under 7'(¢), for ¢ > 0.

Step 2. If R is nonempty, the interior of I is also nonempty and the absolute minimum in R
of the functional J is achieved at (at least) one (nonconstant equilibrium) point eq, which is an
interior point of R.

Let E be the set of equilibrium points of (6). Let us see that RN E is a compact set in
W, . Since RN E is closed and invariant, and T(¢) is compact (see [7]), it will be enough to
see that BN F is bounded. Acording to (6) the equilibrium points satisfy Ae + F(e) = 0. It is
easy to see that the set F'(R) is bounded in (W), and since A : W) — (W),)" is invertible one
concludes that R N £ is bounded in Wpl.

If R is nonempty, then so is B N E: Let us take wy € R. As R is positively invariant,
7T (wg) € R. The w—limit set of wo, w(wy), is contained in RN E. So, RN E is also nonempty.

Using that J is continuous, we see that there exists ey, a minimum of J on RN E. Let
us see that eg is a minimum of J on R. Let us assume that ey is not a minimum of J on R.
Then there exists u € R such that J(u) < J(eo) and we consider the positive orbit y*(u) C R
(R is also positively invariant). Then the w—limit set w(u) would be a subset of BN E with
J(e) < J(eg) for all e € w(u), which is a contradiction.

To finish off the proof of step 2 we have to see that eq € ]%3 Let us suppose that ¢y € OR
and we are going to arrive to a contradiction. If ¢ = a or ¢g = b for some & € 9D then
Hopf’s maximum principle implies e¢g = @ or eg = b, and this is incompatible with one of the

inequalities / vdl <0 or / vdl > 0. If J(eg) = eo — ke(b)|0D], since R # () we can take
Fl 1_‘2
u € R, for which J(eg) < J(u) < €9 — ke(b)|0D|, and this is a contradiction. Finally, if eg

satisfies / eodl =0 or / eo dl = 0, then we can suppose also that J(eg) < g — kp(b) |0D|.
Fl 1_‘2

So we can suppose that J(eg) < g9 — k ¢(b) |0D], and if e satisfies / eodl =0 or / eodl =0,
r r
then following the same argument as in step 1 we see that this is imlpossible. ’

It is clear that ey € ]%3 is nonconstant.

Step 3.- The equilibrium eq is stable.
This is a direct consequence of Theorem 2.1 above, since eq is a local minimum of J in Wpl.
O

In the following theorem we give, for any f as above and k > 0, the existence of a domain
D for which the set R in Theorem 3.1 is nonempty and so we can conclude the existence of

nonconstant stable equilibrium solution. Let us note that the domain D will be of a dumbbell

type.

Theorem 3.2 Given any function f and any k > 0 satisfying the hypothesis of Theorem

3.1 above, there exists a domain D such that problem (5) has at least one stable nonconstant



equiltbrium solution.

Proof. We will distinguish between the cases n =2 and n > 3.

Case n = 2.- Let Dy and D3 be two domains in R? such that py(D;) > k, 1 = 1,2. Without
loss of generality we can assume |0D;| < |0D;|. Let us assume also that they are so near each

other that ¢ = dist (Dy, D) > 0 is such that
ko(a)|0Dy| — ke(b)30 >0 . (14)

There exist two points P, € dD; and P, € dDy and a segment S joining P, and P, of
length ¢ such that S does not intersect neither D; nor Dy except at the end points.

Let us consider a C! function defined in B? by

a for (x,y) € Dy
w(x,y) =
b for (x,y) € Dy,
such that @ < w(x,y) < b for any (z,y) € B? and with |[Vw(z,y)| globally bounded. Let us
denote by M this bound.
It is clear that there exists a domain D C RB? such that

(i) Dy, Dy C D.

)
(i) Sc D.
(iii) @D is smooth.
(iv) Let be Iy = 9D;\ D, i = 1,2. We suppose that
i) T = k(8) 9D\ (1 U T > 2 D (D, 0 Dy
which is possible because of (14).
Moreover, |I'y] < [Ty].

In this case ¢g = k() [I'1].

To finish off the proof we are going to see that the restriction of w(x,y) on D belongs to R.

By definition, a < w(z,y) < b, w € W, /1“1 wdl = a|l'y] <0 and /1“2 wdl =b|l'y| > 0. So
we only have to prove the energy inequality:

J(w) = %/D(Vw)de—/achp(w)dﬁ

1
= = Vuw)*de — k I'y| — ke(b) |’
5 ) oy (V07 e = pla) 4] = kgl I
k drl
/QD\(FlLJFQ) S‘Q(w)
M2
< 2 IDA(DLU Do)l — k() 0] — ko) T

k dr .
/QD\(FlLJFQ) S‘Q(w)

10



Now by the assumption (iv) above and using that ¢(w) > 0, we have

J(w) < kola) 1] =ke) [0D\ ('t UT2)| = kp(a)|l'y|
— kp(b) I
= —k(b)|0D\T| = o — ko(b)|0D) .

So w € R and R is nonempty. Aplying now Theorem 3.1 we finish the proof for the case

n = 2.

Case n > 2.- In this case we can construct a domain D by similar way as in the previous one.
Nevertheless there is an important difference between both cases. While in the case n = 2 the
“bridge” joining [y and Dy must be short with small area, in this case Dy and D, are not
needed to be so near each other because we can make the (n — 1)—dimensional measure of
dD\ (I'y UTy) small at the same time as the n—dimensional measure of D\ (D; U Dy) becames

small, admiting values of ¢ not necessarily small. a

4 The reaction-diffusion equation and the strongly

damped wave equation

We are going to consider the reaction-diffusion equation

{ut = Au+k f(u) inD , (15)

u, = 0 on 0D ,

with D C R"™ a bounded domain with regular boundary 9D and the function f € C'(®,R).

In [19] H. Matano presented a way of obtaining examples of nonconstant stable equilibria
for (15) from which our Theorem 3.1 is a generalisation. But he also used the monotonicity
property of the flow and Zorn’s lemma. We are going to present the same results but by only
using Theorem 2.1. As it will be seen later, this will have the advantadge that the result
will admit a straightforward application to a non-monotonic equation, namely the semilinear
strongly damped wave equation (3).

The problem (15) admits the semilinear formulation
ur = Au+ F(u) . (16)

Here A = A is the linear operator as a closed operator of L?(D) (with p > n) and with domain
D(A) = W}(D)y (where N stands for the boundary condition). The nonlinear function I maps
W, (D) on LP(D). It is known that A is the infinitessimal generator of an analytic semigroup
{eA" t >0} in D(A) and that the equation (16) defines a dynamical system 7'(¢) in the space
D(A”) for a € (1/2,1] (such that D(A*) C W}(D)). (See [12]). We recall that D(A%) is dense

11



in W)(D), since D(A) = W2(D)y is so. Hence, the equation (16) satisfies the first hypothesis
(H1).
The energy functional J : I/Vp1 — R defined by

I = [ (Vo)) do

where ¢(u) = /u f(s)ds, is continuous and strictly decreasing except at equilibria (see [19]).
So the hypothesis (H2) holds.

With respect to the spectrum of the linear operator L = A+ DF(eg) (eg an equilibrium point
of (16)), as only real eigenvalues are possible, if o(L) C {Re A < 0} with o(L)N{Re A =0} £ 0
necessarily (L) N {Re A = 0} = {0}. Now, arguments based on the Krein-Rutman theorem
prove the simplicity of A; = 0 and hypothesis (H3) holds.

Moreover, in [12], one can find the details to ensure the last hypothesis (H4).

So, as (16) satisfies all the hypotheses of section 1 we are going to use Theorem 2.1 in order
to prove the existence of a nonconstant stable equilibrium solution. We are going to need some
additional assumptions on the function f and the domain D.

The main result in this section for problem (15) is the next theorem:

Theorem 4.1 (H.Matano, [19]) Let f : R — R be a smooth function satisfying (i), (ii) and
(iii) as in Theorem 3.1.

Let D CR™ with n > 2 be a smooth bounded domain. Let Dy and Dy be two subdomains of
D with smooth boundaries and Ay(Dy) and Xo(Dz) be the second eigenvalues of the Neumann
problem for —A in Dy and D,.

Then the problem (15) has at least one stable nonconstant equilibrium solution ey if the set

R={veDA*) : a<v<bonD, vde <0, vdr >0,
Dy D»

J(v) <o — k() [D]}

is nonempty, where J is as above and
Eo = g@(b) min {|D1|mm {k, )\Q(Dl)}, |D2|mm {k, )\Q(DQ)}} .
Moreover, eq is a local minimum of J in D(A®).

Remark. The domains D and D, have to be such that the second Poincare’s inequality

1 / wd:z;
— )V dx + >/ wide, i=1,2,
)\Q(DZ) /D, / dr D;

holds for any w € W} (D) .

12



Proof. The set R C D(A®) is positively invariant under T'(¢), (see [19]). The same arguments
used in step 2 of the proof of Theorem 3.1 prove that if R is nonempty then the interior of
R is also nonempty and the absolute minimum in R of the functional J is achieved at one
equilibrium point ey which is an interior point of K. Finally, as a direct consequence of theorem

2.1 we obtain that the equilibrium eq is stable (and clearly nonconstant). a

For any function f as above and any k£ > 0 it can be constructed a domain D for which
the set R in Theorem 4.1 is nonempty. So we can conclude the existence of at least one stable
nonconstant equilibrium solution for (15) that is also a local minimum of J in D(A%). A way
of constructing these domains can be found in [19]. The domain is of dumbbell type and can
be constructed in the following way: Let D; and Dy be two smooth bounded domains with
disjoint closures and such that A(D;) > k, ¢ = 1,2. Then the domain D can be taken as the
junction of Dy and Dy by means of a “smooth bridge” for which it can only be required to have a
“sufficiently small” n-dimensional volume. To see that R is nonempty one can choose a suitable
piecewise linear function v. This function belongs to Wpl(D) but it can be approximated by

functions of D(A®) because of density, and these approximating functions can be chosen in R.

The following theorem gives an example of an extension of Theorem 4.1 to a non-monotonic
system, such as a strongly damped wave equation. (See [10] and the references therein for
informations concerning the appearence and properties of this equation). We believe that this

is a small but significative advantage of the use of Theorem 2.1.

Theorem 4.2 Under the same hypotheses as in Theorem 4.1, the equilibrium eq is also a stable

(nonconstant) equilibrium solution of the problem

(17)

Uy —aAuy +buy, = Au+ f(u) in D,
u, = 0 on dD ,

with a,b > 0.

Proof. Problem (17) can be written as the first order system v, = Bv+G(v) with v = (vy,v) =
0 1

A aA —bl
the space X = D(A) x LP(D) = W;(D)N x LP(D) with domain D(B) = W;(D)N X W;(D)N

which is the infinitessimal generator of an analytic semigroup (using that a > 0, see [8] and

(u,us), B = and G(v) = (0, f(vy)). It is known that B is a closed operator of

[27], and see also [18] for related results). Remember that we take p > n and as in the proof of
Theorem 4.1 the Nemitskii operator u — f(u) is a smooth map from W?(D)y to LP(D), so G
is a smooth map from X to X.

So we are in the functional framework of the theory of D. Henry [12]. In fact we are in
the simplest case, since G maps D(B”) to X with v = 0. So this way we have existence of
solutions, uniqueness, a criterium for stability and instability of equilibria by linearization and

existence of central manifolds at equilibria with the usual properties.
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Our solutions of the initial value problem are continuous functions v : [0, T] — X, smooth
for t > 0, such that v(t) € D(B) for t > 0 and v, = Bv 4+ G/(v) holds also for ¢ > 0. By using

this, one can perform the time derivative of the functional along a trajectory

- 1 1
Jw)= [ (Fui+5(Tuf - elw)) da
and, after performing integration by parts, obtain

So we see that j(v(t)) is monotone decreasing. If j(v(t)) is not strictly decreasing, necessarily
u; = 0 in some interval t; < ¢ < t3 (here we use that b > 0), and, because of uniqueness, the
whole trajectory v(?) must be an equilibrium.

In order to apply Theorem 2.1 to the equilibrium vy = (€g,0) we observe that because of
Theorem 4.1 eq is a local minimum of the parabolic functional J(u), and then vy is also a local
minimum for our actual modified functional J(v).

It only remains to check the spectral condition (H3) of Theorem 2.1.

The linearized evolution operator around the point vy = (eg,0) is

A+ fl(eg) aA—0bl

Because of the lemma 4.1 below if A is a point of the spectrum of By with Re A > 0 it must
be an eigenvalue.

We will proceed in three steps. In the first step we will show that the points A of the
spectrum of By satisfy Re A < 0. In the second step, that if one of these points satisfies
Re A = 0 then it is A = 0 and it is geometrically simple. In the third step we will show that
A = 0 is also algebraically simple.

Going to the first step, if a spectral value A of By satisfies Re A > 0, we already said that it
has to be an eigenvalue. If we call (v1, v2) the corresponding eigenfuction, then Awvy 4 f'(eg)vy +
MaAv; —bvy) = Avy. If we multiply this equation by ¥, and integrate over D we obtain the
equation r{+Ary = A?rg, where ry, 7y, 73 are real numbers and ry < 0 and r3 > 0. Since we know
that e is a stable equilibrium of (15) all the eigenvalues p of the operator A+ f'(eg) are u < 0.
This means that the quadratic form / (— Vo Vg 4+ f'(eg)v1Ty) da is negative semidefinite. So
r1 < 0, and an elementary analysis olf? the equation r; + Arg = A?r3 when r; <0, ry < 0 and
r3 > 0 shows that Re A <0.

The second step goes along the same lines. The only possibility of having Re A = 0 in the
previous equation ry + Arg = Mrz with r; <0, r, < 0 and r3 > 0 is having r; = 0 and then
A = 0. Looking then at the equation for v; with A = 0 we see that v, has to be an eigenfunction
of A+ f'(eg) with eigenvalue 0. Since we know that all the eigenvalues p of A+ f'(eq) satisfy
p < 0, we conclude that vy = @, the first eigenfunction of A 4+ f'(eg), that is known to be

14



unique because of the Krein-Rutman arguments. So this eigenvalue A = 0 of By, if it turns out
to exist, it is geometrically simple.

Finally we go to the algebraic multiplicity. We have the eigenfunction (®g,0) of By with zero
eigenvalue, and we ask ourselves if the equation By(vq,vs) = (Po,0) is solvable. This equation
means vy = ®g, so we ask ourselves about the solvability of Avi+ f/(eg)vi+a Ady—b Py = 0. But
it is enough to multiply this equation by @, and integrate over D to see that it is incompatible.
And this concludes the proof of Theorem 4.2. a

Lemma 4.1 The spectrum of By consists of isolated eigenvalues of finite algebraic multiplicities

together with the point A = —1/a, that is the essential spectrum.

Proof. Following the appendix of chapter 5 of [12] (in the spirit of [9]) it will be enough to

prove the same property for the operator

0 I
B, =
! A-ra Lty oaa
b a’?

since By is a relatively compact and bounded perturbation of By. Writting A = (A — (b/a)l),

then

0 I
B, = 1 1
B W Ry Ry |
a a
Defining wy = vy + avy and writting By in terms of (vy,w;) instead of (vy,vs) we get it in

the form

1

1
a a
0 aA

from which all the results follow. O

5 Stability and instability of local minima for gradient

flows 1n finite dimensions

For a smooth function F:R"™ — R, its gradient flow is the dynamical system defined by the

differential equation

2(t) = —VF(z(t)). (18)

The critical points of F' are then equilibrium points of (18) and, since F' decreases strictly along
nonconstant trajectories, local minima of F' are equilibrium points that are good candidates to
be stable in the sense of Lyapunov. This is really the case for a strict local minimum because
F itself is then a Lyapunov function, or also, for a general local minimum if n = 1, as it has
been seen in section 2 above (see also [7]). The aim of this section is to discuss the general

case, when a minimum needs not to be a strict minimum and n > 2.
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In this section we present an example of a C* function F' such that all its local minima
are unstable for the gradient flow (18) and a theorem that says that local minima are always
stable for real analytic F'. Neither the statement of this theorem nor the method of the proof,
which is based on Lojasiewicz’s inequality, can be considered as completely new in the existing
literature. In a more or less hidden form, the statement with an equivalent proof can be found
in [25], section 3.

So the situation is somehow the same as for the question of the so called “convergence”
or “asymptotic limit” property (each w-limit set is a singleton): a negative answer for general
function F' (example of [22]), and a positive answer for real analytic F' ([25] Theorem 2). The
authors are indebted to Prof. P. Polacik for this informations concerning the convergence
property, which have been the basis of the work that follows.

Our example is in B? and we describe its dynamics, in polar coordinates. The point r = 0
and the circle r = 1 are the equilibria. The point r = 0 corresponds to a local strict maximum,
and it is a source. The points in r = 1 are local (and global) minima, but they are not
stable: all the solutions in 0 < r < 1 approach the point r = 1,6 = 0, except the solution
consisting of the segment 0 < r < 1,0 = 7 that approaches the point r = 1,0 = m, and all the
solutions in r > 1 approach the point r = 1,0 = —7/2, except the solution consisting of the
half-line r > 1,0 = 7/2, that approaches the point r = 1,0 = 7/2. So, this is a dissipative
system (all the trajectories approach the bounded set r < 1) with no stable equilibria. We note
that this example has the additional property that, although all of the equilibria are unstable,
each trajectory approaches a single equilibrium. This shows that stability of local minima is a
property that is independent from that of convergence.

For convenience, we use logarithmic-polar coordinates (R, 6) with R = logr because the

system becomes

oF
r 2R
R = e R
oF
r _ 2R
0 = € 50

The geometry of its orbits is the same as that of the simpler system

R = -5,
v _ o (19)
a6 -

Now we define F', and only for —1 < R < 1, because it can be easily extended outside this

annulus with the desired properties:

F d(R)(2+sinf) for R>0,
F = ¢(—R)(2—cosf) for R<O.

with ¢ being the suitable function provided by the following
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Lemma 5.1 There exists a function ¢(s) defined for s > 0, of class C*° and with a zero of
infinite order at s = 0, such that ¢'(s) > 0 for s > 0 and that the quotient ¢(s)/¢'(s) has a

non-integrable singularity at s = 0.

This lemma is proved below and we use it to continue our construction. Observe that even
disregarding the zero of infinite order it is impossible for a real analytic function ¢ to have this
quotient with the required singularity.

We analyze the system only in the region B > 0, because in B < 0 the dynamics is the
same, but rotated by an angle of 7/2. System (19) becomes

R = —¢'(R)(2+ sin#)
9 = —&(R)cosh.

Since ¢'(R) > 0 for R > 0, it is clear that the trajectories approach R = 0. It is also clear that
R>0,0 =7/2and R > 0,0 = —7/2 are orbits of the system. So an initial condition (Ry, o)
with Ry > 0 and —7/2 < 0y < 7/2 evolves inside this region with § decreasing in time. Let us
show that § approaches —7/2 as R — 0: supposing the contrary, we would have cos§ > ¢ for
some ¢ > 0 as long as Ry > R > 0 and then

dd  ¢(R) cosd d(R) €

dR ~ J(R)2+smf  #(R)3
= R G(B)

o —0(R) > 5 [ 7 D R,

So, §(R) — —oo as R — 0, a contradiction. So §(R) — —n/2, because the trajectory cannot
cross § = —7 /2.

The case with 7/2 < 0y < 37 /2 can be obtained by symmetry.

Proof of the Lemma. Let a(f) for 0 < ¢ < 1 be a function of class C*, a(t) > 0 with
zeroes of infinite order at ¢+ = 0 and ¢ = 1. Suppose also that [} a(t)dt = 1. We define
d(s) = e=2/s 1 A(s) where

Als) = { n(n+1)e"a(n(n+1)s—n), for =45 <s<1/n and n odd, and

0, for#ﬁsgl/n and n even.

It is clear that A(s) is of class C* for s > 0. Let us see that it has a zero of intinite order at

s = 0: y
—A(s)

0 <t <1
ds™ = }

< [n(n+ D))" e " sup {‘jt—mmoz(t)

if 1/(n4+1) <s<1/n,n odd, and it is clear that this expression tends to zero, for fixed m, as

n — oQ.
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Observe now that if 1/(n +1) < s < 1/n,n even, then

o0

o)z [Cama = X

k=n+4+1,kodd” &

A(t)dt =

F -

+

1

o0 o0

S k(k—|—1)e‘k/z ok(k+ 1)t —k)ydt= 3 e
k=n+1,k odd k-ll-_l k=n+1,k odd
e—n+1

e2—1"

So finally we have

1 oo % O 1 —n+1 1
qb/(s) dS Z qb/(S) dS Z Z 62 ' _
0 ¢ (S) n=2,n even 77«;4'1 qb (S) n=2,neven n(n —I_ 1) €" — 1 = n

- Z n(n—|—1)62—1€

n:2,n even

Y

"= o0.

The situation in the analytical case is summarized in the following theorem.

Theorem 5.1 ([25], Section 3) Let Q C R™ be an open set and and F:Q — R a real-analytic
function. Suppose that z,, € Q is a local minimum of F. Then z,, s a Lyapunov-stable

equilibrium point of the gradient flow (18).

Proof. We suppose that x, = 0 and F(0) = 0. There exist §; > 0 such that ||z| < § =
F(x) >0, and §; > 0 and a with 0 < a < 1 such that

le]l < &2 = [[VE(x)]| = [F(2)[*

(this is Lojasiewicz’s inequality, valid since F' is real-analytic, see [15] (Prop. 1 of n. 16) and
the comments in [25]).

Let ¢ > 0 be given, and suppose that ¢ < §; and ¢ < d3. Let v > 0 be such that
1 €
— F(e\Vlr <« Z
el <3 = R <

and define § = min(e/3, 7).

Let x be the initial condition of a solution x(#) of (1) and suppose that ||ao|| < 6. If ¢ is
an equilibrium point of (18), then ||x(¢)|] < e for all ¢ > 0. If it is not so, we can change the
variable ¢ by the variable s = F'(x(¢)), and s is a monotone decreasing function of ¢. Suppose
that for some sy,||z(s)|| < &€ when 51 < s < F(x) = so and that ||(s1)]| = ¢ (it is clear that
s1 > 0). This leads to a contradiction:

dx 1 1 1

=l = < - ==
ds IVF(z)|| = F(x) 3

50 d 50 d F 11—«
la(so) = (sl < [T [T = Flag)' ™
51 0

€
T 1l -« 3
So ||z(s1)|| < ||x(s0)]| + /3, a contradiction. O

Q
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