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� Introduction

In ����� H� Matano ���� gave an important result on the existence of stable nonconstant equilib�

rium solutions of reaction�di	usion equations with homogeneous Neumann boundary conditions

��
� ut 
 �u� k f
u� in D �

u� 
 � on �D �

��

for some nonconvex domains D� For the same question� more results were obtained later� with

di	erent methods� by other authors like J�K� Hale and J�M� Vegas� ����� S� Jimbo� ���� and E�

Yanagida� �����

In ���� we wrote a short note ��� pointing out that the proof of H� Matano�s results could

also be extended� with the suitable changes� to prove existence of stable nonconstant equilibria

of di	usion equations with nonlinear boundary conditions

��
� ut 
 �u in D �

u� 
 k f
u� on �D �

��

In that note we mentioned that problem 
�� is also a model of reaction and di	usion like 
���

but when the reaction happens only at the boundaries of the container� for example because of

the presence of a solid catalyzer� A detailed justi�cation of the apparence of 
�� in a combustion

problem appears at the end of the paper ���� and earlier motivations in ���� Other types of

stable nonconstant equilibrium solutions for problem 
��� in the case that �D has several

connected components� were obtained also in ��� for one space dimension and in ��� for the

multidimensional case 
see also ������

The proofs in our note were presented� as we said� following the paths of ����� with the

suitable changes� But there was a point where we used a really di	erent argument� reliying on

the one�dimensionality of central manifolds for local minima instead of using the monotonicity

of the �ow� And we have recently realized that our argument can also be applied to existence of

stable nonconstant equilibria also for non�monotonic problems like the strongly damped wave

equation ��
� utt � a�ut � b ut 
 �u� k f
u� in D �

u� 
 � on �D �

��

for a� b � �� that has the same equilibrium solutions as 
�� but which stability� at least in the

critical cases� it is no clear if it is the same for the two cases�

Our results on stability will use the fact that the equilibria that we �nd are local minima of

suitable Lyapunov functionals J � that in problems 
��� 
�� and 
�� are the well known energy

functionals� But since 
�� and 
�� are the strict gradient �ows of these functionals� we have

been asking ourselves if local minima are automatically stable in gradient �ows� The general

answer is that they need not to be so� except if the phase�space is one�dimensional� and we have

constructed a counter�example in two dimensions� that we include in the present paper� This

�



example makes more clear the use in our stability arguments of the condition for the central

manifold to be one�dimensional� It is also worth noting that our example is smooth 
of class

C�� but that it also proved that it can not be real�analytic�

So the main purposes of the present paper are to present a complete proof of the results

of ��� for the problem 
��� with special emphasis on our argument on the central manifold for

the local minima� to show that this argument can be used for equation 
��� and to present an

example of instability of local minima for gradient �ows in �nite dimensions� Section � below

is completely devoted to the abstract reasoning on stability of local minima using the central

manifold� in section � this argument is applied to 
��� so obtaining the results of ���� in section

� problems 
�� and 
�� are discussed� and section � presents the example of instability of local

minima for gradient �ows in two dimensions�

� A result on stability of local minima

The initial value problem for semilinear equations of type

ut 
 Au� F 
u� � 
��

where A is linear and F is nonlinear� gives a dynamical system in a Banach space X in several

functional settings� Must of them �t into the following framework� there are four Banach spaces

X� � X � Y � Y�� X� is the domain of A as a closed operator of the space Y� and F is a

regular map from X to Y � In ����� in a formulation which is suitable for wave�like equations�

A is the generator of a C� semigroup in Y and X 
 Y 
 Y�� For parabolic�like equations one

possible formulation is that of ���� or ���� where A generates an analytic semigroup in X� 
 X

and Y �� Y�� and another possibility is that of ���� where A also generates an analytic semigroup

on X�� X 
 D
A�� for some � � � � � and Y 
 Y��

In this section we suppose that we are in one of these cases and that the following hypotheses

are satis�ed�


H�� The equation 
�� de�nes a local semidynamical system T 
t� in the space X 
de�ned either

for strict or mild solutions of 
����


H�� There is a Lyapunov functional J � X � R that is a continuous function that decreases

strictly except at equilibria�


H�� The equation 
�� is such that if e� � X� is an equilibrium point 
Ae� � F 
e�� 
 �� then

the following property holds for the spectrum of the linear part L 
 A � DF 
e��� if

�
L� � fRe � � �g but �
L� � fRe � 
 �g �
 	 then �
L� � fRe � 
 �g 
 f�g and � is

an algebraically simple eigenvalue�


H�� In addition of 
H�� we will suppose� as it often happens� that

�




i� If �
L� � fRe � � �g then e� is asymptotically stable�


ii� If �
L� � fRe � � �g �
 	 then there exists a nonconstant solution u
t� of 
�� such

that u
t�� e� as t��
�


iii� If �
L� � fRe � � �g but �
L� � fRe � 
 �g 
 f�g 
as in 
H��� then there exists

a local central manifold M� which is invariant� one�dimensional and tangent in e�

to the eigenvector associated to the eigenvalue � 
 � with the property that e� is

Lyapunov stable in X if and only if it is stable inM�


See ��� for a recent and more general approach to local properties near equlibria like 
H����

Under these assumptions we are going to prove the following general theorem� that will be

applied to several speci�c problems in the next sections�

Theorem ��� Let the hypotheses �H����H�� hold and let e� be a local minimum of the func�

tional J � Then e� is a stable equilibrium of ����

Proof� As e� is a local minimum of the functional J it cannot decrease in time� Then� by the

hypothesis 
H��� e� must be an equilibrium point of 
���

To see that e� is stable we have to consider three cases depending on the location of the

spectrum of the linear operator L�

The case �
L��fRe � � �g �
 	 is not possible by the hypothesis 
H�
ii��� because it implies

that e� can not be a local minimum of the functional J �

In the case that �
L� � fRe � � �g� by the hypothesis 
H�
i�� e� is asymptotically stable�

For the case �
L� � fRe � � �g but �
L� � fRe � 
 �g 
 f�g� 
H�
iii�� says that if the

equilibrium point e� is stable insideM 
which is one�dimensional� then e� is also stable in X�

But let us see that in dimension one a local minimum of a Lyapunov function is always

stable� We can consider� without loss of generality� that M is the interval �r � x � r� the

equilibrium point e� 
 � and J
�� 
 �� We are going to see that � is stable from the right

and the same arguments prove the stability from the left� We consider two cases depending on

whether � is or not a strict minimum of the functional J in ��� r��

First we consider that � is a strict minimum of J in ��� r�� As J
�� 
 � there exists r� � r

such that J
x� � � in 
�� r��� Given 	 � �� let J� be the minimum of J on �	� r��� As J is a

continuous function there exists 
 � � such that for x � 
 we have J
x� � J�� So� if x � ��� 
��

as J decreases in time� J
T 
t�x� � J� for all t � �� Then� T 
t�x �� �	� r�� for all t � � and � is

stable because T 
t�x � ��� 	��

To �nish o	 let us consider the case where x 
 � is not a strict minimum in ��� r�� In this

case there exists a sequence xn � �� as n�
� such that J
xn� 
 �� These xn are equilibria�

For any 	 � � there is an equilibrium x� such that � � x� � 	� Then the end points of the

interval ��� x�� are equilibria� So the interval ��� x�� is a positively invariant set� Now� taking


 
 x� and x � ��� 
� we have T 
t�x � ��� 	�� for all t � �� That is� � is stable�

Therefore the equilibrium point e� always is stable inside M and so it is stable in X�

�

�



Remark ��� Without the hypothesis 
H�� the central manifoldM could have dimension big�

ger than one� and then insideM the local minima would not need to be stable� This could be

true even for the gradient �ow of J � as the example of section � shows�

� The Di�usion Equation with Nonlinear Boundary

Conditions

We are going to present the result of existence of nonconstant stable equilibria for 
��� It was

already announced by the authors� together with a sketch of the proof� in ���� We consider the

problem of a di	usion equation with nonlinear boundary conditions

��
� ut 
 �u in D �

u� 
 k f
u� on �D �

��

with D � R
n a bounded domain with regular boundary �D and the function f � C�
R�R��

Following the approach of H� Amann ���� the problem 
�� admits a semilinear formulation� that

is� it can be written in the form

ut 
 Au� F 
u� � 
��

Here A is the linear part and it maps W �
p on 
W

�
p��

� 
the dual space of W �
p � with p � n�

p � � and ��p � ��p� 
 � and it is de�ned as follows� Au
v� 
 �
Z
�

rurv� uv� dx� The

nonlinear function F maps W �
p not only on 
W

�
p��

� but on a smaller space E and it is de�ned by

F 
u� 
 u� ��p�f
�pu�� where �p and ��p� denote the trace on the boundary in L
p and the dual

of the trace operator on the boundary in Lp��

Using interpolation results 
see ���� one can see that A is the in�nitessimal generator of an

analytic semigroup fe�At � t � �g in W �
p � Also we have a dynamical system

T 
t�u� 
 eAtu� �
Z t

�
eA�t���F 
T 

 �u�� d
 �

for a given u� � W �
p � in the space W

�
p � 
See ���� ��� for the details�� So the equation 
�� satis�es

the hypothesis 
H��� 
See ����� ���� for a di	erent functional setting��

Let us consider the functional J � W �
p � R de�ned by

J
u� 

Z
D

�

�

ru�� dx �

Z
�D

k �
u� d� � 
��

where �
u� 

Z u

�
f
s� ds� It can be proved that J is continuous and twice di	erentiable with

continuity� As ut � W �
p we can derive J
u� with respect to t and aplying Green�s formula we

obtain
d

dt
J
u� 
 �

Z
D

ut�

� dx � � �

�



So J is decreasing in time except at equilibria and the hypothesis 
H�� holds� 
See ��� for all

the details��

For the spectrum of the linear operator L 
 A � DF 
e�� 
e� an equilibrium point of 
���

we know 
theorem ��� in ���� that the �rst eigenvalue of �
L� is

�� 
 sup
u�W�

�
u���

Z
D
�
ru�� dx �

Z
�D

f �
e��u
� d�Z

D
u� dx

�

If �
L� � fRe � � �g but �
L� � fRe � 
 �g �
 	 necessarily �
L� � fRe � 
 �g 
 f�g

because only real eigenvalues are possible� Then Proposition ��� in ��� proves that if �� 
 �

then �� is a simple eigenvalue� So hypothesis 
H�� holds for 
�����

For the hypothesis 
H��� Theorem ��� in ��� gives a principle of stability and instability

that ensures the hypotheses 
H�
i�� and 
H�
ii��� Also hypothesis 
H�
iii�� holds when the

nonlinearity f is a C�
R�R� function 
see ������

So all hypotheses of section � hold and we are going to use Theorem ��� to prove that there

exists a nonconstant stable equilibrium solution for 
�� under some additional assumptions on

f and D�

The main result in this section is the next theorem�

Theorem ��� Let f � R� R be a smooth function satisfying

�i� f
a� 
 f
�� 
 f
b� 
 � for some a � � � b�

�ii� � � uf
u� � u� for a � u � b and u �
 ��

�iii� De�ning �
u� 

Z u

�
f
s� ds� let us assume that �
b� � �
a��

Let D � Rn with n � � be a smooth bounded domain� Let D� and D� be two subdomains of D

with smooth boundaries and �i be a smooth portion of �Di � �D with j�ij � � �i 
 �� �� and

��
D�� and ��
D�� be the constants given in lemma ��	 below� Choose p � n� soW �
p 
D� � C
D��

If the set

R 
 fv � W �
p 
D� � a � v � b on D �

Z
��
vd� � � �

Z
��
v d� � � �

J
v� � 	� � k �
b� j�Dj g


is nonempty� where J is as above and

	� 
 �
b�min fj��jmin fk� ��
D��g� j��jmin fk� ��
D��gg �

then problem ��� has at least one stable nonconstant equilibrium solution�

�



Lemma ��� Let � be a smooth bounded domain� Then there exists a positive constant ��
���

depending only on the domain� such that if � � W �
� 
�� the inequality

Z
��
w� d� �

�

��
��

Z
�

rw�� dx�

�

j��j

�Z
��
wd�

��

��

holds� The optimal constant ��
�� is the second eigenvalue of the Steklov problem

��
� �wi 
 � in � �

wi
� 
 �iw

i on �� �

Moreover� for a smooth portion � of ��� with j�j � �� the inequality

Z
�
w� d� �

�

��
��

Z
�

rw�� dx�

�

j�j


Z
�
wd��� 
��

also holds�

Proof� The second eigenvalue ��
�� of the Steklo	 problem can be characterized by

��
�� 
 minR
��

w d���

Z
�

rw�� dxZ
��
w� d�

�


See ������ Then� for w � W �
� satisfying

Z
��
wd� 
 � we have

Z
��
w� d� �

�

��
��

Z
�

rw�� dx �

For any w � W �
� � let us consider u 
 w � w� where w 


�

j��j

Z
��
wd�� Then u 
 � and it

satis�es the last inequality� Finally� by using the de�nition of u we obtain 
�� as we wanted�

We are going to see 
��� Let u � W �
� be such that

Z
�
u d� 
 �� Then

Z
��
u� d� �

�

��
��

Z
�

ru�� dx �

�

j��j


Z
��n�

u d��� �

Now� by the Cauchy�Schwarz inequality

Z
��
u� d� �

�

��
��

Z
�

ru�� dx�

j�� n �j

j��j

Z
��n�

u� d� �

Joining the boundary integrals in this inequality we obtain

Z
�
u� d� �

�

��
��

Z
�

ru�� dx � 
���

for any u � W �
� � with

Z
�
u d� 
 ��

�



Finally� for a given � � W �
� � let us consider u 
 w�w� with � 


�

j�j

Z
�
wd�� Clearly u 
 ��


��� holds for u and we obtain 
��� �

Proof of Theorem ����

Step �� The set R is positively invariant under T 
t��

This is a consequence of the maximum principle� the fact that J
u� decreases in time and

the fact that D� and D� are such that 
�� is satis�ed�

Given an initial condition u� � R� as a � u� � b� the maximum principle implies that

a � T 
t�u� � b� for t � ��

Let us assume that there exists ti � � such that
Z
�i
T 
ti�u� d� 
 � for t 
 ti and i 
 � or

i 
 �� Let be ui 
 T 
ti�u� and let us aply the inequality 
�� to ui on Di� That is�Z
�i
u�i d� �

�

��
Di�

Z
Di


rui�
� dx�

�

j�ij


Z
�i
ui d��

�



�

��
Di�

Z
Di


rui�
� dx �

So� Z
Di


rui�
� dx � ��
Di�

Z
�i
u�i d� � ���
Di�

Z
�i
�
ui� d� � 
���

Let us consider J
ui��

J
ui� 

�

�

Z
D

rui�

� dx�
Z
�D

k �
ui� d�



�

�

Z
DnDi


rui�
� dx�

Z
�Dn�i

k �
ui� d� �
�

�

Z
Di


rui�
� dx

�
Z
�i
k �
ui� d�

�
�

�

Z
Di


rui�
� dx� k �
b� j�D n �ij �

Z
�i
k �
ui� d� �

By the inequality 
��� we obtain

J
ui� � ��
Di�
Z
�i
�
ui� d� � k �
b� j�D n �ij �

Z
�i
k �
ui� d� � 
���

As u� � R and J is decreasing in time�

J
ui� � 	� � k �
b� j�Dj � 
���

Joining inequalities 
��� and 
��� we have


��
Di�� k�
Z
�i
�
T 
ti�u�� d� � 	� � k �
b� j�ij �

or equivalently

	� � 
��
Di�� k�
Z
�i
�
T 
ti�u�� d� � k �
b� j�ij

� �
b� j�ijmin fk� ��
Di�g �

�



which is a contradiction with the de�nition of 	��

Finally� as J
u� decreases in time the last condition in R is satis�ed and it proves that R is

positively invariant under T 
t�� for t � ��

Step �� If R is nonempty� the interior of R is also nonempty and the absolute minimum in R

of the functional J is achieved at �at least� one �nonconstant equilibrium� point e�� which is an

interior point of R�

Let E be the set of equilibrium points of 
��� Let us see that R � E is a compact set in

W �
p � Since R � E is closed and invariant� and T 
t� is compact 
see ����� it will be enough to

see that R �E is bounded� Acording to 
�� the equilibrium points satisfy Ae� F 
e� 
 �� It is

easy to see that the set F 
R� is bounded in 
W �
p��

�� and since A � W �
p � 
W �

p��
� is invertible one

concludes that R � E is bounded in W �
p �

If R is nonempty� then so is R � E� Let us take w� � R� As R is positively invariant�

�	
w�� � R� The w�limit set of w�� w
w��� is contained in R�E� So� R�E is also nonempty�

Using that J is continuous� we see that there exists e�� a minimum of J on R � E� Let

us see that e� is a minimum of J on R� Let us assume that e� is not a minimum of J on R�

Then there exists u � R such that J
u� � J
e�� and we consider the positive orbit �	
u� � R


R is also positively invariant�� Then the w�limit set w
u� would be a subset of R � E with

J
e� � J
e�� for all e � w
u�� which is a contradiction�

To �nish o	 the proof of step � we have to see that e� �
�

R� Let us suppose that e� � �R

and we are going to arrive to a contradiction� If e� 
 a or e� 
 b for some x � �D then

Hopf�s maximum principle implies e� 
 a or e� 
 b� and this is incompatible with one of the

inequalities
Z
��
v d� � � or

Z
��
v d� � �� If J
e�� 
 	� � k�
b�j�Dj� since R �
 	 we can take

u � R� for which J
e�� � J
u� � 	� � k�
b�j�Dj� and this is a contradiction� Finally� if e�

satis�es
Z
��
e� d� 
 � or

Z
��
e� d� 
 �� then we can suppose also that J
e�� � 	� � k �
b� j�Dj�

So we can suppose that J
e�� � 	��k �
b� j�Dj� and if e� satis�es
Z
��
e� d� 
 � or

Z
��
e� d� 
 ��

then following the same argument as in step � we see that this is impossible�

It is clear that e� �
�

R is nonconstant�

Step ��� The equilibrium e� is stable�

This is a direct consequence of Theorem ��� above� since e� is a local minimum of J in W �
p �

�

In the following theorem we give� for any f as above and k � �� the existence of a domain

D for which the set R in Theorem ��� is nonempty and so we can conclude the existence of

nonconstant stable equilibrium solution� Let us note that the domain D will be of a dumbbell

type�

Theorem ��� Given any function f and any k � � satisfying the hypothesis of Theorem

	�� above� there exists a domain D such that problem ��� has at least one stable nonconstant

�



equilibrium solution�

Proof� We will distinguish between the cases n 
 � and n � ��

Case n 
 ��� Let D� and D� be two domains in R� such that ��
Di� � k� i 
 �� �� Without

loss of generality we can assume j�D�j � j�D�j� Let us assume also that they are so near each

other that � 
 dist 
D��D�� � � is such that

k �
a�j�D�j � k �
b� �� � � � 
���

There exist two points P� � �D� and P� � �D� and a segment S joining P� and P�� of

length � such that S does not intersect neither D� nor D� except at the end points�

Let us consider a C� function de�ned in R� by

w
x� y� 


��
� a for 
x� y� � D�

b for 
x� y� � D� �

such that a � w
x� y� � b for any 
x� y� � R� and with jrw
x� y�j globally bounded� Let us

denote by M this bound�

It is clear that there exists a domain D � R� such that


i� D��D� � D�


ii� S � D�


iii� �D is smooth�


iv� Let be �i 
 �Di nD� i 
 �� �� We suppose that

k �
a� j��j � k �
b� j�D n 
�� � ���j �
M�

�
jD n 
D� �D��j �

which is possible because of 
����

Moreover� j��j � j��j�

In this case 	� 
 k �
b� j��j�

To �nish o	 the proof we are going to see that the restriction of w
x� y� on D belongs to R�

By de�nition� a � w
x� y� � b� w � W �
p �
Z
��
w d� 
 a j��j � � and

Z
��
wd� 
 b j��j � �� So

we only have to prove the energy inequality�

J
w� 

�

�

Z
D

rw�� dx�

Z
�D

k �
w� d�



�

�

Z
Dn�D��D��


rw�� dx� k �
a� j��j � k �
b� j��j

�
Z
�Dn�������

k �
w� d�

�
M�

�
jD n 
D� �D��j � k �
a� j��j � k �
b� j��j

�
Z
�Dn�������

k �
w� d� �

��



Now by the assumption 
iv� above and using that �
w� � �� we have

J
w� � k �
a� j��j � k �
b� j�D n 
�� � ���j � k �
a�j��j

� k �
b� j��j


 �k �
b� j�D n ��j 
 	� � k �
b� j�Dj �

So w � R and R is nonempty� Aplying now Theorem ��� we �nish the proof for the case

n 
 ��

Case n � ��� In this case we can construct a domain D by similar way as in the previous one�

Nevertheless there is an important di	erence between both cases� While in the case n 
 � the

�bridge� joining D� and D� must be short with small area� in this case D� and D� are not

needed to be so near each other because we can make the 
n � ���dimensional measure of

�D n 
�� ���� small at the same time as the n�dimensional measure of D n 
D��D�� becames

small� admiting values of � not necessarily small� �

� The reaction�di�usion equation and the strongly

damped wave equation

We are going to consider the reaction�di	usion equation

��
� ut 
 �u� k f
u� in D �

u� 
 � on �D �

���

with D � Rn a bounded domain with regular boundary �D and the function f � C�
R�R��

In ���� H� Matano presented a way of obtaining examples of nonconstant stable equilibria

for 
��� from which our Theorem ��� is a generalisation� But he also used the monotonicity

property of the �ow and Zorn�s lemma� We are going to present the same results but by only

using Theorem ���� As it will be seen later� this will have the advantadge that the result

will admit a straightforward application to a non�monotonic equation� namely the semilinear

strongly damped wave equation 
���

The problem 
��� admits the semilinear formulation

ut 
 Au� F 
u� � 
���

Here A 
 � is the linear operator as a closed operator of Lp
D� 
with p � n� and with domain

D
A� 
 W �
p 
D�N 
whereN stands for the boundary condition�� The nonlinear function F maps

W �
p 
D� on L

p
D�� It is known that A is the in�nitessimal generator of an analytic semigroup

feAt � t � �g in D
A� and that the equation 
��� de�nes a dynamical system T 
t� in the space

D
A�� for � � 
���� �� 
such that D
A�� �W �
p 
D��� 
See ������ We recall that D
A

�� is dense

��



in W �
p 
D�� since D
A� 
 W �

p 
D�N is so� Hence� the equation 
��� satis�es the �rst hypothesis


H���

The energy functional J �W �
p � R de�ned by

J
u� 

Z
D

�
�

�

ru�� � �
u�

�
dx �

where �
u� 

Z u

�
f
s� ds� is continuous and strictly decreasing except at equilibria 
see ������

So the hypothesis 
H�� holds�

With respect to the spectrum of the linear operator L 
 A�DF 
e�� 
e� an equilibrium point

of 
����� as only real eigenvalues are possible� if �
L� � fRe � � �g with �
L��fRe � 
 �g �
 	

necessarily �
L� � fRe � 
 �g 
 f�g� Now� arguments based on the Krein�Rutman theorem

prove the simplicity of �� 
 � and hypothesis 
H�� holds�

Moreover� in ����� one can �nd the details to ensure the last hypothesis 
H���

So� as 
��� satis�es all the hypotheses of section � we are going to use Theorem ��� in order

to prove the existence of a nonconstant stable equilibrium solution� We are going to need some

additional assumptions on the function f and the domain D�

The main result in this section for problem 
��� is the next theorem�

Theorem ��� �H�Matano� �	�
� Let f � R� R be a smooth function satisfying �i�� �ii� and

�iii� as in Theorem ����

Let D � Rn with n � � be a smooth bounded domain� Let D� and D� be two subdomains of

D with smooth boundaries and ��
D�� and ��
D�� be the second eigenvalues of the Neumann

problem for �� in D� and D��

Then the problem �	�� has at least one stable nonconstant equilibrium solution e� if the set

R 
 fv � D
A�� � a � v � b on D �
Z
D�

vdx � � �
Z
D�

v dx � � �

J
v� � 	� � k �
b� jDj g

is nonempty� where J is as above and

	� 
 �
b�min fjD�jmin fk� ��
D��g� jD�jmin fk� ��
D��gg �

Moreover� e� is a local minimum of J in D
A���

Remark� The domains D� and D� have to be such that the second Poincare�s inequality

�

��
Di�

Z
Di


rw�� dx�


Z
Di

w dx��Z
Di

dx
�
Z
Di

w� dx � i 
 �� � �

holds for any w � W �
� 
D� �

��



Proof� The set R � D
A�� is positively invariant under T 
t�� 
see ������ The same arguments

used in step � of the proof of Theorem ��� prove that if R is nonempty then the interior of

R is also nonempty and the absolute minimum in R of the functional J is achieved at one

equilibrium point e� which is an interior point of R� Finally� as a direct consequence of theorem

��� we obtain that the equilibrium e� is stable 
and clearly nonconstant�� �

For any function f as above and any k � � it can be constructed a domain D for which

the set R in Theorem ��� is nonempty� So we can conclude the existence of at least one stable

nonconstant equilibrium solution for 
��� that is also a local minimum of J in D
A��� A way

of constructing these domains can be found in ����� The domain is of dumbbell type and can

be constructed in the following way� Let D� and D� be two smooth bounded domains with

disjoint closures and such that ��
Di� � k� i 
 �� �� Then the domain D can be taken as the

junction ofD� and D� by means of a �smooth bridge� for which it can only be required to have a

�su�ciently small� n�dimensional volume� To see that R is nonempty one can choose a suitable

piecewise linear function v� This function belongs to W �
p 
D� but it can be approximated by

functions of D
A�� because of density� and these approximating functions can be chosen in R�

The following theorem gives an example of an extension of Theorem ��� to a non�monotonic

system� such as a strongly damped wave equation� 
See ���� and the references therein for

informations concerning the appearence and properties of this equation�� We believe that this

is a small but signi�cative advantage of the use of Theorem ����

Theorem ��� Under the same hypotheses as in Theorem ���� the equilibrium e� is also a stable

�nonconstant� equilibrium solution of the problem��
� utt � a�ut � b ut 
 �u� f
u� in D �

u� 
 � on �D �

���

with a� b � ��

Proof� Problem 
��� can be written as the �rst order system vt 
 Bv�G
v� with v 
 
v�� v�� 



u� ut�� B 


�
� � I

� a�� bI

�
A and G
v� 
 
�� f
v���� It is known that B is a closed operator of

the space X 
 D
�� 
 Lp
D� 
 W �
p 
D�N 
 Lp
D� with domain D
B� 
 W �

p 
D�N 
W �
p 
D�N

which is the in�nitessimal generator of an analytic semigroup 
using that a � �� see ��� and

����� and see also ���� for related results�� Remember that we take p � n and as in the proof of

Theorem ��� the Nemitskii operator u� f
u� is a smooth map from W �
p 
D�N to Lp
D�� so G

is a smooth map from X to X�

So we are in the functional framework of the theory of D� Henry ����� In fact we are in

the simplest case� since G maps D
B�� to X with � 
 �� So this way we have existence of

solutions� uniqueness� a criterium for stability and instability of equilibria by linearization and

existence of central manifolds at equilibria with the usual properties�

��



Our solutions of the initial value problem are continuous functions v � ��� T �� X� smooth

for t � �� such that v
t� � D
B� for t � � and vt 
 Bv � G
v� holds also for t � �� By using

this� one can perform the time derivative of the functional along a trajectory

�J
v� 

Z
D

�
�

�
u�t �

�

�

ru�� � �
u�

�
dx

and� after performing integration by parts� obtain

d

dt
�J
v
t�� 
 �

Z
D

	
a 
rut�

� � b u�t


dx �

So we see that �J
v
t�� is monotone decreasing� If �J
v
t�� is not strictly decreasing� necessarily

ut 
 � in some interval t� � t � t� 
here we use that b � ��� and� because of uniqueness� the

whole trajectory v
t� must be an equilibrium�

In order to apply Theorem ��� to the equilibrium v� 
 
e�� �� we observe that because of

Theorem ��� e� is a local minimum of the parabolic functional J
u�� and then v� is also a local

minimum for our actual modi�ed functional �J
v��

It only remains to check the spectral condition 
H�� of Theorem ����

The linearized evolution operator around the point v� 
 
e�� �� is

B� 


�
� � I

�� f �
e�� a�� bI

�
A �

Because of the lemma ��� below if � is a point of the spectrum of B� with Re � � � it must

be an eigenvalue�

We will proceed in three steps� In the �rst step we will show that the points � of the

spectrum of B� satisfy Re � � �� In the second step� that if one of these points satis�es

Re � 
 � then it is � 
 � and it is geometrically simple� In the third step we will show that

� 
 � is also algebraically simple�

Going to the �rst step� if a spectral value � of B� satis�es Re � � �� we already said that it

has to be an eigenvalue� If we call 
v�� v�� the corresponding eigenfuction� then �v��f �
e��v��

�
a�v� � bv�� 
 ��v�� If we multiply this equation by v� and integrate over D we obtain the

equation r���r� 
 ��r
� where r�� r�� r
 are real numbers and r� � � and r
 � �� Since we know

that e� is a stable equilibrium of 
��� all the eigenvalues � of the operator ��f �
e�� are � � ��

This means that the quadratic form
Z
D

� rv�rv� � f �
e��v�v�� dx is negative semide�nite� So

r� � �� and an elementary analysis of the equation r� � �r� 
 ��r
 when r� � �� r� � � and

r
 � � shows that Re � � ��

The second step goes along the same lines� The only possibility of having Re � 
 � in the

previous equation r� � �r� 
 ��r
 with r� � �� r� � � and r
 � � is having r� 
 � and then

� 
 �� Looking then at the equation for v� with � 
 � we see that v� has to be an eigenfunction

of � � f �
e�� with eigenvalue �� Since we know that all the eigenvalues � of �� f �
e�� satisfy

� � �� we conclude that v� 
  �� the �rst eigenfunction of � � f �
e��� that is known to be

��



unique because of the Krein�Rutman arguments� So this eigenvalue � 
 � of B�� if it turns out

to exist� it is geometrically simple�

Finally we go to the algebraic multiplicity� We have the eigenfunction 
 �� �� of B� with zero

eigenvalue� and we ask ourselves if the equation B�
v�� v�� 
 
 �� �� is solvable� This equation

means v� 
  �� so we ask ourselves about the solvability of �v��f �
e��v��a� ��b � 
 �� But

it is enough to multiply this equation by  � and integrate over D to see that it is incompatible�

And this concludes the proof of Theorem ���� �

Lemma ��� The spectrum of B� consists of isolated eigenvalues of �nite algebraic multiplicities

together with the point � 
 ���a� that is the essential spectrum�

Proof� Following the appendix of chapter � of ���� 
in the spirit of ���� it will be enough to

prove the same property for the operator

B� 


�
B� � I

��
a

b
I �

�

a�
I a�� bI

�
CA

since B� is a relatively compact and bounded perturbation of B�� Writting A 
 
�� 
b�a�I��

then

B� 


�
B� � I

A�
�

a�
I �

�

a�
I aA

�
CA �

De�ning w� 
 v� � av� and writting B� in terms of 
v�� w�� instead of 
v�� v�� we get it in

the form �
B� �

�

a

�

a
� aA

�
CA

from which all the results follow� �

� Stability and instability of local minima for gradient

�ows in 	nite dimensions

For a smooth function F �Rn � R� its gradient �ow is the dynamical system de�ned by the

di	erential equation

x�
t� 
 �rF 
x
t��� 
���

The critical points of F are then equilibrium points of 
��� and� since F decreases strictly along

nonconstant trajectories� local minima of F are equilibrium points that are good candidates to

be stable in the sense of Lyapunov� This is really the case for a strict local minimum because

F itself is then a Lyapunov function� or also� for a general local minimum if n 
 �� as it has

been seen in section � above 
see also ����� The aim of this section is to discuss the general

case� when a minimum needs not to be a strict minimum and n � ��

��



In this section we present an example of a C� function F such that all its local minima

are unstable for the gradient �ow 
��� and a theorem that says that local minima are always

stable for real analytic F � Neither the statement of this theorem nor the method of the proof�

which is based on Lojasiewicz�s inequality� can be considered as completely new in the existing

literature� In a more or less hidden form� the statement with an equivalent proof can be found

in ����� section ��

So the situation is somehow the same as for the question of the so called �convergence�

or �asymptotic limit� property 
each ��limit set is a singleton�� a negative answer for general

function F 
example of ������ and a positive answer for real analytic F 
���� Theorem ��� The

authors are indebted to Prof� P� Pol!a"cik for this informations concerning the convergence

property� which have been the basis of the work that follows�

Our example is in R� and we describe its dynamics� in polar coordinates� The point r 
 �

and the circle r 
 � are the equilibria� The point r 
 � corresponds to a local strict maximum�

and it is a source� The points in r 
 � are local 
and global� minima� but they are not

stable� all the solutions in � � r � � approach the point r 
 �� � 
 �� except the solution

consisting of the segment � � r � �� � 
 � that approaches the point r 
 �� � 
 �� and all the

solutions in r � � approach the point r 
 �� � 
 ����� except the solution consisting of the

half�line r � �� � 
 ���� that approaches the point r 
 �� � 
 ���� So� this is a dissipative

system 
all the trajectories approach the bounded set r � �� with no stable equilibria� We note

that this example has the additional property that� although all of the equilibria are unstable�

each trajectory approaches a single equilibrium� This shows that stability of local minima is a

property that is independent from that of convergence�

For convenience� we use logarithmic�polar coordinates 
R� �� with R 
 log r because the

system becomes

R� 
 �e��R
�F

�R
�

�� 
 �e��R
�F

��
�

The geometry of its orbits is the same as that of the simpler system

R� 
 ��F
�R

�

�� 
 ��F
��
�


���

Now we de�ne F � and only for �� � R � �� because it can be easily extended outside this

annulus with the desired properties�

F 
 �
R�
� � sin �� for R � � �

F 
 �
�R�
�� cos �� for R � � �

with � being the suitable function provided by the following

��



Lemma ��� There exists a function �
s� de�ned for s � �� of class C� and with a zero of

in�nite order at s 
 �� such that ��
s� � � for s � � and that the quotient �
s����
s� has a

non�integrable singularity at s 
 ��

This lemma is proved below and we use it to continue our construction� Observe that even

disregarding the zero of in�nite order it is impossible for a real analytic function � to have this

quotient with the required singularity�

We analyze the system only in the region R � �� because in R � � the dynamics is the

same� but rotated by an angle of ���� System 
��� becomes

R� 
 ���
R�
� � sin ��

�� 
 ��
R� cos � �

Since ��
R� � � for R � �� it is clear that the trajectories approach R 
 �� It is also clear that

R � �� � 
 ��� and R � �� � 
 ���� are orbits of the system� So an initial condition 
R�� ���

with R� � � and ���� � �� � ��� evolves inside this region with � decreasing in time� Let us

show that � approaches ���� as R � �� supposing the contrary� we would have cos � � 	 for

some 	 � � as long as R� � R � � and then

d�

dR



�
R�

��
R�

cos �

� � sin �
�

�
R�

��
R�

	

�

�� � �
R� �
	

�

Z R�

R

�
R�

��
R�
dR �

So� �
R� � �
 as R � �� a contradiction� So �
R� � ����� because the trajectory cannot

cross � 
 �����

The case with ��� � �� � ���� can be obtained by symmetry�

Proof of the Lemma� Let �
t� for � � t � � be a function of class C�� �
t� � � with

zeroes of in�nite order at t 
 � and t 
 �� Suppose also that
R �
� �
t�dt 
 �� We de�ne

��
s� 
 e��	s �A
s� where

A
s� 


��
� n
n� ��e�n�
n
n� ��s � n� � for �

n	� � s � ��n and n odd� and

� � for �
n	� � s � ��n and n even�

It is clear that A
s� is of class C� for s � �� Let us see that it has a zero of intinite order at

s 
 �� ����� d
m

dsm
A
s�

����� � �n
n� ���m	�e�nsup

������ d
m

dtm
�
t�

����� # � � t � �




if ��
n� �� � s � ��n� n odd� and it is clear that this expression tends to zero� for �xed m� as

n�
�

��



Observe now that if ��
n � �� � s � ��n� n even� then

�
s� �
Z s

�
A
t�dt 


�X
k�n	�
k odd

Z �
k

�
k��

A
t� dt 




�X

k�n	�
k odd

k
k � ��e�k
Z �

k

�
k��

�
k
k � ��t� k� dt 

�X

k�n	�
k odd

e�k



e�n	�

e� � �
�

So �nally we haveZ �

�

�
s�

��
s�
ds �

�X
n��
n even

Z �

n

�

n��

�
s�

��
s�
ds �

�X
n��
n even

�

n
n� ��

e�n	�

e� � �

�

e��n





�X

n��
n even

�

n
n� ��

e

e� � �
en 

 �

�

The situation in the analytical case is summarized in the following theorem�

Theorem ��� �
���� Section �� Let � � R
n be an open set and and F � �� R a real�analytic

function� Suppose that xm � � is a local minimum of F � Then xm is a Lyapunov�stable

equilibrium point of the gradient �ow �	���

Proof� We suppose that xm 
 � and F 
�� 
 �� There exist 
� � � such that kxk � 
� �

F 
x� � �� and 
� � � and � with � � � � � such that

kxk � 
� � krF 
x�k � jF 
x�j�


this is Lojasiewicz�s inequality� valid since F is real�analytic� see ���� 
Prop� � of n� ��� and

the comments in ������

Let 	 � � be given� and suppose that 	 � 
� and 	 � 
�� Let � � � be such that

kxk � � �
�

�� �
F 
x���� �

	

�

and de�ne 
 
 min
	��� ���

Let x� be the initial condition of a solution x
t� of 
�� and suppose that kx�k � 
� If x� is

an equilibrium point of 
���� then kx
t�k � 	 for all t � �� If it is not so� we can change the

variable t by the variable s 
 F 
x
t��� and s is a monotone decreasing function of t� Suppose

that for some s��kx
s�k � 	 when s� � s � F 
x�� 
 s� and that kx
s��k 
 	 
it is clear that

s� � ��� This leads to a contradiction�

k
dx

ds
k 


�

krF 
x�k
�

�

F 
x��


�

s�

kx
s��� x
s��k �
Z s�

s�

d



�
�
Z s�

�

d



�


F 
x�����

� � �
�

	

�
�

So kx
s��k � kx
s��k� 	��� a contradiction� �

��



References

�
� H� Amann� Parabolic Evolution Equations and Nonlinear Boundary Conditions� Jour� of Di��

Eq� �� �
�		�� 
�
�
���

�
� H� Amann� Semigroups and Nonlinear Evolution Equations� Linear Algebra and its Applications

�� �
�	��� ���
�

��� D�G� Aronson� L�A� Peletier� Global Stability of Symmetric and Asymmetric Concentration Pro�

�les in Catalytic Particles� Arch� Rat� Mech� Anal� �� �
����� 
���
���

��� X�Y� Chen� J�K� Hale� B� Tan� Invariant Foliations for C� Semigroups in Banach Spaces� Jour� of

Di�� Eq� ���� N� 
 �
����� 
	���
	�

��� N� C�onsul� J� Sol�a�Morales� Stable Nonconstant Equilibria in Parabolic Equations with Nonlinear

Boundary Conditions� C�R� Acad� Sci� Paris t	���
 S�erie I �
����� 
�������

��� N� C�onsul� On Equilibrium Solutions of Di�usion Equations with Nonlinear Boundary Conditions�

Z� angew Math� Phys� �� �
����� 
���
���

��� N� C�onsul� Equacions de Difusi�o amb Condicions de Contorn No Lineals� Ph� D� Thesis� Univer�

sitat Polit�ecnica de Catalunya �
�����

�	� W�E� Fitzgibbon� Strongly Damped Quasilinear Evolution Equations� Jour� of Math� Analysis

and Applications �� �
�	
�� ��������

��� I�C� Gohberg� M�G� Krein� �Introduction to the Theory of Linear Nonselfadjoint Operators��

Transl� Math� Monog�� vol� 
	� Am� Math� Soc�� Providence� R�I�� 
����

�
�� J�K� Hale� �Asymptotic Behavior of Dissipative Systems�� American Mathematical Soc�� Provi�

dence� R�I�� 
�		�

�

� J�K� Hale� J�M� Vegas� A nonlinear parabolic equation with varying domain� Arch� Rational Mech�

Anal� �� �
�	��� no�
� ���

��

�

� D� Henry� �Geometric Theory of Semilinear Parabolic Equations�� Springer Verlag� Berlin� 
�	�

�
on ed��� Lectures Notes in Mathematics � 	���

�
�� C�O� Horgan� L�E� Payne� Lower Bounds for Free Membrane and Related Eigenvalues� Rendiconti

di Matematica �
 �Serie VII� �
����� ������
�

�
�� S� Jimbo� Singular perturbations of domains and the semilinear elliptic equation II� Jour� of Di��

Eq� �� �
�		�� no�
� 
���
	��

�
�� S� Lojasiewicz� Ensembles semi�analytiques� I�E�E�S� notes �
�����

�
�� F�J� Mancebo� J�M� Vega� A Model of Porous Catalyst Accounting for Incipiently Non�isothermal

E�ects� preprint �
�����

��



�
�� F�J� Mancebo� Efectos T�ermicos Incipientes en Catalizadores Porosos� Ph� D� Thesis� Universidad

Polit�ecnica de Madrid �
�����

�
	� P� Massatt� Limiting Behavior for Strongly Damped Nonlinear Wave Equations� Jour� of Di��

Eq� �� �
�	��� ��������

�
�� H� Matano� Asymptotic Behavior and Stability of Solutions of Semilinear Di�usion Equations�

Publ� RIMS� Kyoto University �� �
����� ��
���
�

�
�� S�M� Oliva� A�L� Pereira� Attractors for Parabolic Problems with Nonlinear Boundary Conditions

in Fractional Power Spaces� Proceedings of Equadi�����

�

� S�M� Oliva� A�L� Pereira� Attractors for Parabolic Problems with Nonlinear Boundary Conditions

in Fractional Power Spaces� preprint �
�����

�

� J� Palis jr�� W� de Melo� �Introducao aos Sistemas Dinamicos�� IMPA� Rio de Janeiro� 
��	�

�
�� A� Pazy� �Semigroups of Linear Operators and Applications to Partial Di�erential Equations��

Springer Verlag� New York� 
�	�� Applied Mathematics Sciences � ���

�
�� I� Segal� Non�linear Semi�groups� Annals of Math� �� N	 � �
����� ��������

�
�� L� Simon� Asymptotics for a class of non�linear evolution equations� with application to geometric

problems� Ann of Math ��� �
�	��� �
����
�

�
�� G� Simonett� Center Manifolds and Integral Equations� Di�� and Int� Eq� �� Volume 	 �
�����

��������

�
�� G�F� Webb� Existence and Asymptotic Behavior for Strongly Damped Nonlinear Wave Equation�

Canad� J� Math ��� no� � �
�	��� ��
�����

�
	� E� Yanagida� Existence of stable stationary solutions of scalar reaction�di�usion equations in thin

tubular domains� Appl� Anal� ��� �
����� no� ���� 
�
�
		�

��


