Numerical Bounds of Canonical Varieties
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¢ 0. Introduction

Let X be a minimal, complex, projective, Gorenstein variety of dimension
n. We say that X is canonical if for some (any) desingularization o : Y —
X, the map associated to the canonical linear series |K'y| is birational.

We note Kx for the canonical divisor of X and wx = Ox(Kx) the canon-
ical sheaf. Let p, = h°(X,wx), ¢ = h'(X,Ox). There are several known
bounds for K% depending on p,, the most general one being the bound
K% > (n+ 1)p, + d, (d, constant) given by Harris ([9]). Bounds including
other invariants are known for canonical surfaces, K% > 3p, + ¢ — 7 ([10],
[7]), and for surfaces and threefolds fibred over curves ([17], [22]).

In this paper we prove some results for canonical surfaces and threefolds.
In the case of canonical surfaces there are some known results which show
that under some additional hypotheses, the bound K2 > 3p, + g — 7 can be
considerably improved (see Remark 2.2). We give here some other special
cases (Remark 2.2) for which is not sharp and prove (Theorem 2.1) that, in
fact, K2 = 3p, + ¢ — 7 only if ¢ = 0 whenever p,(S) > 8, or p,(5) = 6.

Canonical surfaces with K2 = 3p, — 7 are known to exist and classified
([1]).Then we can hope that a good bound for canonical surfaces including
the irregularity should be of type K2 > 3p, + ag— 7, a > 1. Since for ¢ =1
it is known ([14]) that K2 > 3p,, a should be 7, although unfortunately

examples of low K2 (with ¢ > 2) are not known.
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In the case of canonical threefolds we prove that K% > 4p, + 6 — 32. In
particular, we prove that the results of Ohno for canonical fibred threefolds
are not sharp.

We use basically a result on quadrics containing irreducible varieties due
to Reid ([18]) and several techniques originated in [21] and developed by
Konno ([14], [15], [16]) for the study of the slope of fibred surfaces. In
particular we include in an Appendix the dimension 3 version of the relative
hyperquadrics method used by Konno in [16].

After this manuscript was written, the author was informed that theorem
2.1 was known yet to K. Konno (unpublished).

The author wants to thank his advisor, professor Juan C. Naranjo, for

fruitful conversations and continuous support.

§ 1. A general inequality

We need the following result due to Reid ([18], p. 195).

Lemma 1.1. Let & C PV be an irreducible variety spanning PN of dimen-

sion w. Then

N—w+2

5 ) — min{deg¥, 2(N — w) + 1}.

hOTgp(2) < (

Then we have an immediate consequence.

Proposition 1.2. Let X be a normal projective variety of general type and
dimension n. Let L € Div(X), L = Ox(L) € PicX and ¢ the rational map
associated to L. Assume @ is birational; then
(a) RO(X,0x(2L)) > (n + 2)[R%(X, Ox (L)) — 2]
(b) If equality holds in (a) then
(i) X := p(X) is contained in a minimal degree variety of P (X 0)-1
of dimension n + 1 obtained as the intersection of quadrics containing X.
(ii) ¥ C PP XA G linearly and quadratically normal.
(iii) Bs|L| = Bs|2L|.



(iv) If Bs|L| =0 and p,q € X then |L| separates p and q if and only
if so does |21|.
PRrROOF:

We can always consider

X
(I
X---NCP

2
where r = h°(L) — 1, X is smooth, o is birational and ¢ is defined by the
moving part M of the linear system |o*(L)|, which has no base point.

By construction we have ¢*Opr(1) = Ox(M) and 2M < moving part of
|o*(2L)|. Then, since X is normal and o has connected fibres

X 0.0*0x(2L)) =

,0*Ox(2L)) > hO(X,OX(ZM)) =
X , @ Opr(2)) =
¥, 00" Opr(2)) = h°(2, Ox(2))

RO(X, Ox(2L))

R°
R°
R°
R°

AA/_\/_\

Now if we consider
0 — H°Typr(2) — H°Opr(2) -5 HO5(2)
Lemma 1.1 gives

(2, 05(2)) > dim Imf > ("F2) = ("27") + min{deg®, 2(- — n) + 1} )
= (n+2)[r — 7] = (n + 2)[A%(Ox(L)) — "]
if deg¥ > 2(r—n)+1. If H; (1 =1,...,n) are general hyperplanes in P" and

Ye=XNHN...0NH,_;is a general section of ¥ of dimension £ we have
that Y5 is an irreducible surface of general type and then ([2], p. 115):

deg¥ =deg¥y >2(r—n+2)—1>2(r—n)+ 1.

This proves (a).
Assume from now on that equality holds in (a). In particular equality
must hold at every step of (1) and (2). Then f is an epimorphism and
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h'Jspr(2) = 0. Since h' Ty pr(1) is always zero we have (ii). Moreover we
have
SZHOOpr(1) — S?HYOx(1) =  S?HO(X,07L) = SPHO(X, L)
3 Lo
HOp(2) L5 H°Og(2)=  HYX,00x(2L)) 2 H(X,Ox(2L))

and hence « is an epimorphism and (iii) follows immediately.
In order to prove (iv), consider local trivializations of £ at p and ¢. For
a, 3 € H°(L) we confuse a, 3 with their local expressions at these trivializa-

tions.

We need

Claim. If Bs|L| = ) then |L| does not separate p and ¢ if and only if for all

0 Oz(p) ﬁ(p) _
o € H(L), a(q) Blq) ‘_ o

PROOF of the Claim:
Let 3 € H°(L) be such that 3(p) = 0. Since p is not a base point of ||

there exists a € Ho(ﬁ) such that a(p) # 0. Then, from ZE};; ﬁ?q)

=0

we get 3(¢) = 0 and then 3 does not separate p and g.

Assume there exist a, 8 € H(L) such that a(p) = a, a(q) = b, 3(p) = a,
B(q) = band ab—ba # 0. Let 0 = af} — aa € H°(L). Then clearly o
separates p and ¢. O

If |2L| does not separate p and ¢ then trivially so does not |L].

Assume || does not separate p and q. Since S*H°(L) — H®(L%?)
is surjective for every a,3 € H(2L), a = Y a;s:5;, 3 = Y. bijsisj, si €
H°(L®?). Since |L| has no base point and does not separate p and ¢ we
can take 5 € H°(L) such that 5(p) = a # 0, 5(¢) = b # 0. Since by the
silp) a ‘ = 0 for every s; we can define \; = silp) _ sila)
si(q) b " ’
Then a(p) = S a; ; iNd?, a(q) = X a ;i\b?, B(p) = b ihd?, Blq) =
Zbij)\i)\jbz, and then

claim we have

SoaiiAA; Yo bi A |

Soaii N Yo bAoA =0

a(p) B(p) ‘: a2b?
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and hence, by the claim, |2L| does not separate p and q.

For the proof of (i) we refer again to [18] p. 195. If we call ¥ = XN H; N
...N H, we have that ¥, is a set of d = deg® > 2(r — n) 4 3 points in P"".
Proof of Lemma 1.1 (cf. [18] p.195) shows that if we consider

00 (2) L5 1005 (2)

H°Oprn(2) 2 HOOs,(2)

then dim Imf > (7;2) — (H_g_n) + dim Im fo > (HZ'Z) — (H'g_n) + min {d, 2(r—
n) + 1}. Under our hypothesis equality holds and then we have that X is a
set of d points in P"™" imposing exactly 2(r —n) 4 1 conditions on quadrics.
Then g is contained in a rational normal curve I' intersection of the quadrics

containing Yo. Let T} be the intersection of quadrics of P"~"** containing

Y. We have Ty, C Tiy1 N H,_ and hence ' =T, C T, N HiN...N H,.
Then T), has an irreducible component W containing ¥ of dimension at least

n + 1. But then

1 () = 1072 = (15"

since ¥ C W C T,. Again applying Lemma 1.1 to W, if w = dimW > n+ 2:

BTy (2) < (r ; ") — 1

So dimW =n+1 and, since WN Hy N...NH, =1, W is a variety of
minimal degree in P". Since such varieties are always intersection of quadrics

we have in particular W =7T,. O

¢ 2. Canonical surfaces

As a consequence of Proposition 1.1 we get the following result for mini-

mal canonical surfaces. The first part is a well known fact (cf. [D], [J]).

Theorem 2.1. Let S be a minimal canonical surface. Then
(a) K§=>3py+q—T.



(b) Assume p,(S) > 8 or p,(S)=6. If K2 =3p, +q— 7 then ¢ = 0.

PROOF:

(a) Inequality K2 > 3p, + g — 7 is a well known fact (see [7], [10]) and
follows immediately from Proposition 1.1.

(b) In order to prove the statement we need first some properties of
surfaces lying on the border line; let ¥ = ¢(S) C PPs !,

Claim 1. If K2 =3p, + ¢ — 7 then

(i) X lies in a threefold Z of minimal degree.

(ii) |Ks| is base point free.

(iii) |Ks| does not separate p,q € S (possibly infinitely near) if and only
if so does not |2K].

(iv) ¢ > 3.

(v) If dim Sing® = 1 and K2 > 10 then the one dimensional components
of Sing¥. are double lines.

PrOOF of Claim 1:

(i), (ii) and (iii) are direct consequence of Proposition 1.1 and the fact
that |2Ks| has no base points if p, >4 ([5]).

(iv) If ¢ # 0 and ¢ < 2, Ks = 3p, + ¢ — 7, then K2 < 3xOg and the
canonical map of S can not be birational (cf. [D]).

(v) Assume dim Sing¥ = 1. Let D be a one dimensional component of
SingX. The canonical map ¢ is not an embedding over D. Since K% > 10
and since, by (iii) points which are not separated by |Kg| are those which
are not separated by |2Kg| we can apply Reider’s Theorem (see [20]). Let
g € D be a general point of D and let p;,py € S (possibly infinitely near)
such that ¢(p1) = ¢(p2) = gq. By Reider’s Theorem we have that there exists

an effective divisor F passing through py, p, and verifying
0< Ksk <2 —2<E*<0

Since irreducible curves with trivial intersection with K¢ are contracted

by ¢ we can consider that irreducible components of £ have positive inter-
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section with Ks. Then only two possibilities can occur:

o [/ irreducible Kq¢F =2 E?*=0
e E=FE+F, KskEi=KskEy,=1 E*=0, B} =F2=-3, F1E,=3

Note that moving ¢ € D the curve F can not move because then we would
have the surface S covered by curves of genus at most two and this is im-
possible since S is canonical. So we must have o(F) = D (set-theoretically)
and degy |z = 2 since ¢ contracts at least two points over the general point
of D. Then we have that, in both cases, D is a line in PPs~,

Assume that for ¢ € D general we have three points py, ps, ps contracted
by ¢ over ¢q. For any pair {p;,p;} we must have E;; passing through them
verifying the above conditions. If we consider the irreducible curves that lie
over D by ¢ it is clear that three curves Fy, Fy, Fs3, E? = =3, E;F; = 3
(i # 7) must exist. Consider a hyperplane in PP~" containing D (it is possible
since D is a line) and consider the section C' € |Kg| that it produces. We
have

C=E +E+E+C.

But
3= Ks(E1+Fx+FE;) = (E1+E2+E3)2+C(E1+E2+E3) = 9+C(E1+E2+E3)

which contradicts the connectness of the canonical divisor. O

It is a well known fact that the only possibilities for a threefold Z of
minimal degree in PP¢~! are

(A) Z = P* (p, =4).

(B) Z is a cone over the Veronese surface (p, = 7).

(C) Z is a smooth quadric in P* (p, = 5).

(D) Z is a scroll of type Pype, 0<a<b<c¢,2<a+b+c=p,—3.

Claim 2. If K2 = 3p, + ¢ — 7 and ¢ > 0 then if Case (D) happens, p, < 5.

PRrROOF of Claim 2:



Assume Z is a scroll. Consider

NI
=

i

Q
n=——-"=UU
IN=——IN
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where Z is the desingularization of Z. Let a : S — P' be the induced
fibration and G be a general fibre. Note that, by construction (i o o)G
G — PP~ induces on (i a base point free sublinear system of |K¢| and
that (¢ 0 0)(G) C P> 2 T, where T is a general ruling of Z.

Note that the singularities of (¢ o o)(G), for G general, lie on SingZ
(produced by the base points of |a(G)] on S) or on SingXNT. If a+b+c > 2
(we only exclude the case Z = P which is Case (A)) then p, > 5 and
K% >8+¢q>11if ¢ # 0. Then, if Sing¥ has one dimensional components,
they must be lines by Claim 1. Moreover we can assume that they are
transversal to the general ruling. Since any such line in Z corresponds to an
epimorphism Opi(a) @ Op1(b) & Opr(¢) — Opai (1), under the assumption
a+b+4c>4(p, > 7) we have that the lines transversal to the ruling cut a
general plane T' in points which are on a line / C T'. Then we can proceed
as follows.

Assume first Z is smooth, i.e. 1 < a < b < ¢. We have then that S = S,
o(G) = G and (@) is a plane curve of degree d = 2g(G) — 2 with only
double points as singularities, lying all of them on a line if p, > 7. A simple
computation shows that d < 5 and hence g(G') < 3. Again by Xiao’s result
g < 2 and hence ¢ = 0. If p, = 6 we can apply the argument of the case dim
SingZ = 0.

Assume dim SingZ =1, 1.e. 0 = a = b < ¢. Take a general section I of ¥
containing SingZ. I' corresponds to a section |Kg| 3 C = ¢G + L where L is
the component of the sublinear system containing SingZ (possibly L = 0).

We have then, since p, > 2¢ — 3

7
50 +5>3p,+q—T7= K:=cKG+ KL > cKG.
Then, using ¢ > 3, ¢G? < KsG and evenness of KsG + G? we get that,
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in any case 2p,(G) —2 = KsG + G* < 6. Then g(G) < p.(G) < 4. Again by
Xiao’s result ¢ < 2 and hence ¢ = 0.

Finally assume dim SingZ = 0,1. e. 0 = a < b < ¢. Take a general hy-
perplane section of ¥ and Z. We get an irreducible curve C' lying on a smooth
ruled surface V of minimal degree in P?*72. Let h, f be the hyperplane divi-
sor class and the fibre divisor class in V. We have that h* = degV = p, — 3
and that C = ah + Bf with a > 1, 3 > 0. Let ¢’ € |Ks| be the smooth
curve lying over C'. Using that Ky = —2h + (p, — 5)f we get

2KZ = 29(C) =2 <2p(C) =2 =ala —1)(p, —3) + B(a—2) + a(f —2)
K3 =deg(C) = Ch =a(p, —3) + 8
K3 =3p;+q—T

Using that ¢ > 3 and that p, > 2¢ — 3 one gets that, if p, > 6 and o > 5
then ¢ = 0. Then we have a < 4. But a = Cf is the degree of (p 0 0)(G) in
T = P? so p,(G) < (o —1)(a —2) < 3 and hence ¢ < 2, s0 ¢ = 0. We get
then that the only possibilities for S with ¢ # 0 occur when p, <5. O

REMARK 2.2. Part (b) of Theorem 2.1 shows that inequality K2 > 3p,+q—7
is not sharp if p, >> 0. Since surfaces with K% = 3p, — 7 are known to exist
(and are completely understood, see [1]), it seems that a sharp bound should
look like K2 > 3p, 4+ ag — 7, with @ > 1. There are several partial results in
this direction:

(i) Let alb : S — alb(S) be the Albanese map of S. As a direct conse-
quence of the study of the slope of fibrations, Konno ([14]) shows that, if
dim alb(S) =1 then K2 > 3p, + 7q — 7.

(ii) In the same paper Konno proves that if the cotangent sheaf of S is nef
then KZ > 6yOs = 6p, — 6¢ + 6 which is better than K2 > 3p, + ¢ — 7 if
Py >> 4.

(iii) Note that even if dim alb(S) = 2 but there exists a fibration 7 : S — B
with b = g(B) > 2 we have K2 > 3p, +2q— 7. Indeed, for a general fibration
we have K2 > AxOs+ (8= A)(b—1)(g—1) (g = g(F), F smooth fibre of ).
Note that if S is canonical ¢ > 3. Under our hypothesis 7 # alb and then
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Xjao ([21]) proves that A > 4. Finally note that since b+ ¢ > ¢ ([4]) we have
b-1@-1) >0b-1)+(g—-1)>qg—2 ifb>3
and (b—1)(g—1) >(b—-1)+(g—-1)—1>¢-3 ifb=2
Butifb=2and (b—1)(g — 1) = ¢ — 3 we have ¢ = b+ ¢g. Again by [4]
we can say that S = B x F with b = g(B) = 2. This is not possible if S is

canonical. Finally we can apply that for a surface of general type p, > 2¢ —4
and p, > 2¢ — 3 if it is canonical ([4]) and we get the desired bound.

(iv) Let C € |Kg|; then we have
0— HO(Os) — Ho(ws) — HO(C,w5|0) — Hl(os) g Hl(ws) — ...

Note that the above sequence is self-dual and then we can consider pe €
Sym C?. The correspondence H°(\S,ws) 2, Sym C? is clearly linear since it
is induced by the natural map H°(S,ws) @ H'(Os) — H'(S,ws). Then, if
Py > (q-|2-1) there must exist C' € |Kg| such that pc = 0. For such C' we have
ho(C wsic) = pg +q— 1.

Assume C' to be irreducible. Since the linear system |Ks||¢ is birational
we can apply “Clifford plus” ([18] p. 195) and get

1
pg+q—1="hC,ws)c) < g(Kg +4)

and hence K% > 3p, + 3¢ — 7.

¢ 3. Canonical threefolds
Theorem 3.1. Let T' be a canonical threefold. Then
K3 > 4p, + 6q — 32

PROOF:

Since T is canonical (in particular, T is minimal), K7 is nef and big and
hence by the general Kawamata-Viehweg Theorem ([12] Thm. 2.17) and

Proposition 1.2 we get

1
5[&”% —3xyOr = XT(w%z) = hO(T, w%z) > 5(hO(T, wr) —2) (1)
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and hence

K3 > 4p, + 6(h*(O7) — h'(O7)) — 14
Assume h*(Or) > 2h' (Or) — 3; then we get

K3 > 4p, + 6q — 32 (2)

and then the Theorem is proved under this hypothesis.

From now on we assume h*(Or) < 2h'(O7r) — 4; then by [2] Lemma X.7
and [3] Proposition 1 we obtain the existence of a fibration 7 : T" — B
where B is a smooth curve of genus b > 2.

Let I' be a general fibre of 7. Since Kt + Fjp = Kr we have that the
general fibre is a smooth canonical minimal surface (note that Kr is nef so
in particular it is 7-nef).

Then we can apply the results of Ohno ([17]) and state that (Main The-

orem 2):
]X]% — 6(b — 1)[&’7% = [(%/B > 4(XOBXOF — XOT) (3)
except for a finite number of exceptions. We have

Ki >2(b—1)[3K% —2xOr] + 4p, — 4(R*(Or) — I (Or)) — 4 >
> 2(b— 1)[BK2 — 2xOp] + 4p, — 4q + 12

since we are assuming h?*Or < 2h'(Or) — 4. Note that since F' is canonical
3K — 2xOp > Tpy(F) +5q(F) — 23 > 5(¢(F) — 1)
and
2b— D[BKZ — 2yOr] > 10(b — 1)(q(F) + 1) > 10(q(F) + b) — 10

since b > 2, g(F) > 0.
Note also that from the Albanese maps associated to F' — T — B we
get q(F) +b > ¢(T) = q and so

K% > 4py 4 6+ 2
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which is stronger than we wanted.

Finally we must deal with the exceptions of Main Theorem 2 in [17].
Notice that since I is a canonical surface we must have, by Section 2, K7 >
3ps(F) 4+ q(F) — 7. From this, only a few exceptional cases hold. We divide
them in three cases (following [13] a canonical surface verifying p,(F') = 6,
q(F) = 0, K} = 3p,(F) — 6 = 12 is classified in two types according its
canonical image is contained in a threefold of A-genus 0 or 1). In all of them
we will prove K%/B > 4(xOpxOp—xOr). Then the same argument as above
works.

Case 1.- p,(F) =4,5.
We use the results of the relative hyperquadrics method of the Appendix.

If & = m.wr/p and we consider the relative canonical image of 7"
Y
T--=YCPr(&)=27
B
Then formula (A.2) gives
K%/B > (2py(F) — 1) (xOpxOp — xOr) — 2deg K — 2((2)

where K = ¢.Jy,z(2). Note that since T is Gorenstein, £(2) = 0 ([F]).
If p,(F)=4, K =0 and

[(%/B > 4(XOBXOF — XOT)
which produces, as in (3)
K3 > 4p, +6q + 2 (4)

If p,(F') =5 then rkK =1 and deghk” = x for some relative hyperquadric
Q) = 2Ls — 2 F containing YV (see proof of Lemma A.4). Lemma A.5 of the
Appendix gives that degh’ = x < %degé’ since k() > 3. Then from the proof
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of Corollary A.2 we get

K75 2 2(py(F) + 1)deg€ — 6(xOpxOF — xOr) — 2degk’ >
Zdeg€ — 6(xOpx0Or — xOr) >
H(xOpxOr — xO1) >

>
>
>
> 4(xOpxOr — xOr)

which gives again (4).

Case 2.- p,(F) = 6,7, ¢(F) =0 and K} = 3p, — 7 or p,(F) =6, ¢(F) =0,
K% = 3p, — 6 and the canonical image of F' is contained in a threefold of

A-genus 0, intersection of the quadrics containing it.

Consider again the relative canonical image of T

7-Y-Y CPy(E) = Z

B

If A € PieB is ample enough we have an epimorphism
H*(Jy.z2(2Le @ ¢™(A)) — H (T pro-1(2))

Let W be the horizontal irreducible component of the base locus of the
linear system given by the sections of H°(Jy,z(2Le @ ¢*(A))). Since under
our hypothesis intersections of quadrics containing F'is a threefold of minimal
degree (see [1] and [13]) W is a fourfold fibred over B by threefolds of minimal
degree. Let W be a desingularization of W.

We want to relate the invariants of 7 : T — B with those of ® : W —
B. In [15], Konno gives a general method for this. We refer there for details.

Let H be the pull-back of the tautological divisor of Z to W,

Lemma 3.2.
(a) .05 (H) = muwr/B.
(b) deg®,.04(2H) = H* 4 4degm.wr)p.
(c) K%/B > 2H* + 2(xOpxOr — xOr).
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PROOF:

(a) Follows directly from the construction of W and H.

(b) Note that the formula we want to prove is invariant under the change
of H by H+ ®*(A), A € PicB. So we can assume |H| is base point free
and hence get a smooth ladder W = Wy 2D W3 D Wy O W, 2 Wy (ie., W,
is smooth and W; € |Hyw,,,|). Notice that W5 is a ruled surface over B. By

induction one easily proves that
Vi>0Vm>1Vn>0 R"®.Ow,(nHw,) =0
and hence that
deg®.Ow, (2Hw,) = deg®.Op(H) + deg®.Ow,_, (2H;_y).

Finally note that deg®.Ow, (2H) = H*.
(¢) The natural map 0 — CI)*OVT,(ZH) — mw%zB has a torsion cok-
ernel since it is an isomorphism at a general fibre. Then the result follows

calculating degmw%zB as in proof of Corollary A.2 and applying (b). O

In order to finish Case 2 note that, since part (c¢) of Lemma holds, it is
enough to prove that H* > degq)*ov?/(H).

Claim: Let X be a smooth variety and f : X — B a filtration onto a
smooth curve. Let D € Div(X) be a nef divisor and let £ = f.Ox (D). Then
D™ > degf.Ox(D).

PROOF of the Claim: It follows easily by induction from [15] Lemma 2.1.
O

Case 3.- p,(F) = 6, ¢(F) = 0, K% = 12 and the canonical image of F is
contained in a threefold of A-genus 1, intersection of quadrics containing it.

In this case (see [13]) the canonical image of F' is a complete intersection
of two quadrics and a cubic. We follow the notations of Case 2. Denote
H; = Hpy,. Now W = W, is fibred over B by threefolds of degree four in P°,
complete intersections of two quadrics, and Wy — B is an elliptic surface
over B.

Then we have
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Lemma 3.3.
(a) .05 (H) = muwr/B.
(b) degq)*OVT/(QH) > %H4 + 5degq)*OVT/(H).
(c) K7/p = H'+4(xOpxOF — xOr).

Proor:
(a) Follows as in Case 2.

(b) Note that, as in Case 2, formula (b) is invariant under changing H
by H + ®*(A) so we can construct a smooth ladder of (W, H). For i > 2

and t € B general (W,); C Pi*! is a complete intersection so it is projectively
normal. On the other side R'®.Oyy, is locally free for 1 > 1 (see [12]) and
in fact R'®,.Ow, = 0 except for i = 2, for which it is a line bundle of degree
—xOw,. Let E = (W3), any fibre of ® : Wy — B. Since Hy + E is nef
and big on Wy we have from Kawamata-Viehweg vanishing and the exact

sequence

0 — H(Wy, —E—Hy) — H°(Wy, —Hy) — H(E,Op(—1)) — H'(Wy, —E—H,)

that A'(E,Og(1)) = R°(E,Og(—1)) = 0 (recall that Kz = O since W, is
elliptic) and hence that R'®.Oy,(H) = 0. Then again by induction we have

Vi>0 VYn>1 R'®.0w(nH)=0

Vi # 2 R'$.Ow. =0
Therefore we have exact sequences

00— q)*OWi+1

41

(2H) — .0w,(2H) — 0 for: >0

00— (I)*OW i1

41

(H) — .0, (H) — 0 for: #1
0 — 9.0, — 9.0w,(H) — &.0w,(H) — R'®.Ow, — 0
Denote d = deg®,0(H) = degm.wr/c. Then we have

d = deg(I)*OW4(H) = degq)*OWS(H) = deg(I)*OW,Z(H) =
= deg®.Ow, (H) — degR' . Oy,
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and then
degCI)*OVT,(ZH) —4d + H* + dlegRlCI)*(’)W2 = 4d + H* — XOw, .

Note that, since @ : Wy — B is an elliptic fibration, we have that Ky, =
O*(L)+ M, where M > 0 and contained in fibres and degl. = xOyw, +2(b—1).

So, Riemann-Roch on W5 and Leray spectral sequence yields
d—4b—1) =xP.0w,(H) = xOw,(H) = xOw, + 311} — 3 H:Kw, <
< —XOw, —4(b—1) + ;1"

since H; = H*, Hy is nef and H®'(t) = 4 for ¢ € B. Then —xOw, >
d— %H‘l and hence degCI)*OVT,(ZH) > 5d + %H‘l.

(¢) The same argument as in Case 2 works. O

Now we only have to use H* > 0 and get K%/B > 4(xOpxOFr — xOr)
as needed. Note that using good lower bounds for H* as in Case 2 we can

obtain stronger bounds for K%/B in this case. O

REMARK 3.4. The bounds obtained in Theorem 3.1 for fibred canonical
threefolds hold when simply | K'z| induces a birational map (it is not necessary
that T be canonical).

Appendix. The relative hyperquadrics method for three-
folds

The method of counting relative hyperquadrics, originated in [19] and
[6] was successfully applied by Konno in [16] to study the slope of fibred
surfaces with small fibre genus. Here we construct the fundamental sequence
and prove the first elementary conclusions which are needed in the previous
Section.

Let 7" be a normal, Q-factorial, projective threefold with only terminal
singularities, and let 7 : T' — B be a relatively minimal fibration onto a

smooth curve of genus b. Following Ohno ([17]), if D is a Weil divisor on T

16



and € = m,.Op(D) we have

=~

e~
-~
/

Sy Py(E) = Z

~

Kis

B

N

where (1) 1 is induced by m*7.O7(D) — Op(D) and Y = Imz).

(2) p : T — T is a desingularization of T such that A = ¢ o p is
everywhere defined.

(3) (M oi*)Le ~Q w* (D — Dy) — E, being Lg the tautological divisor on
7, Dy the codimension one base Weil divisor of Or(D) and FE is an effective

Q-divisor p-exceptional.
Proposition A-1. Under the above hypothesis we have an exact sequence
0 — 99,“7)/72(2[/5) — SQW*OT(D) — W*OT(D)[Q]

(the generalized Max-Noether sequence associated to 7).

PROOF:

From the exact sequence
0 — Jyz(2Le) — Oz(2Le) — 1.0y @ Oz(2Lg) — 0
we have
0 — 0Ty z(2Le) — S*m.07(D) — ¢.(1.0y @ Oz(2L¢))

Now the natural map 7*7.O7(D) — Or(D) induces a map 7°(5*7.Or(D)) =
S2r*m,Op(D) — (O7(D)YR@Or (D)™ = (’)T(D)[z] and hence § : S*7,Or(D) —
W*OT(D)[Q]. Let K = kerd. For general t € B, K; = (¢.Jyv,z(2L¢))s, and
hence K = . Jy,z(2L¢) since W*OT(D)[Q] is locally free. O

Corollary A-2. Under the same hypothesis we have

K75 = (2p,(F) = 1) (xOpxOr — xOr) — 2degK’ — 2((2) (1)

17



where K = . Jyz(2Le) F = 77 1(t) for t € B, and [(2) is the second order
correction term of Reid-Fletcher to the plurigenera of T' (cf. [10]).

PROOF:
Let D = Kg/p (which is in general a Weil divisor) and take degrees in

the generalized Max-Noether sequence. Use

d = degm.wr/p > (xOpxOF — xOr) ([17] p. 656)

1
degmw[Tz}B = 5]&”%/3 +3(xOxOr — xOr) + {(2) ([17] Lemma 2.8)

degSzmwT/B = (py,(F)+ 1)d

py(F) + 1)

rkSzmwT/B = ( 5

and that if C zcoker(SzmwT/B — W*w[TZ}B), degC > 0 since W*w[TZ}B is semi-
positive ([17]). O

REMARK A.3. For small values of the invariants p,(F'), ¢(F'), K# it could
be interesting to consider D = m Ky p for m > 1. We obtain then bounds
for K%/B which are better than (1).

In general deghk’ is difficult to be computed or bounded. There are some
special cases where this is easier. Notice that rk K = h°(Iy; pr(2)) where ¥ is

the canonical image of F' and r = p,(F') — 1. Then following Lemma 1.1 we

have
(T p7(2)) < M%ﬂ if 3 is a non ruled surface
RO (Ts pr(2)) < % —q(¥) if 3 is a ruled surface
h(Tspr(2) < 7’(7’2—1) if ¥ is a curve
Lemma A .4.
(a) If pg(F') > 2 and € = mwwr/p is semistable then degK < 2;§gd.

18



(b)) If K =Ly & ... L, (s=rkK) then
deg K < (rk[()%d

(in particular this happens if s <1 orb=0).

PRrROOF:

(a) If € is semistable then so it is S*E€. Then we use the natural inclusion
K — S*¢.

(b) If z; = degL; then there exists a section s € H°(K @ L]') =
H(Jyz(2Le) @ Oz(p*(L7Y) — H(Z,0(2Le) @ p* (L)) so there exists
a relative hyperquadric Q; = 2Ls — ;07 (1) (numerical equivalence). The
result follows then from the following Lemma which is a slight refinement of
[16] Remark 1.7, and the fact that for every 7, rk@); > 3. O

Lemma A-5. Let QQ = 2Ls — 2o~ (t) be a relative hyperquadric. Let vy >
vy > ... > v the virtual slopes of the Harder-Narashiman filtration of £
(k =1kE). Let p=rkQ); then

2
r < mingicp{vi +vp_i} < —deg€
T P

Corollary A.6. With the same notations as above, assume py(F') > 2.
(a) If € = muwrp is semistable then

Kip 2 (10 pg(F)) (xOBXOFr — xOr) — 2((2) if ¥ is a non-ruled surface
K}p > (6 pgl(zF)) (xOxOFr — xOr) — 2((2) if 3 is a ruled surface
AT/B > (2 ( )) (xOxOFr — xOr) — 2((2) if ¥ is a curve

(b) If ho(jg p(2)) =0 then
AT/B (2py(F) —4)(xOrxOp — xOr) — 2((2)
(c) If ho(jmpr)@) =1 then

4
ng

K3y > (20,(F) ~ S)(xOr O —1O) — 21(2)

19



PROOF:

Take degrees at the generalized Max-Noether sequence and use Remark

A3 and Lemma A.4. O

References
[1] T. Ashikaga, K. Konno. Algebraic surfaces of general type with ¢; =
3py — 7. Tohoku Math. J. 42 (1990), 517-536.

[2] A. Beauville. Surfaces algébriques complexes. Société Mathématique de
France. Astérisque 54 (1978).

[3] A. Beauville. Annullation du H' et systémes paracanoniques sur les sur-

faces. J. reine angew. Math. 388 (1988), 149-157.

[4] A. Beauville. L’inégalité p, > 2q — 4 pour les surfaces de type général.
Bull. Soc. Math. France 110 (1982), 343-346.

[5] E. Bombieri. Canonical models of surfaces of general type. Publ. Math.
THES 42 (1973), 171-219.

[6] F. Catanese, C. Ciliberto. Surfaces with p, = ¢ = 1. Problems in the
Theory of Surfaces and their Classification. Symposia Mathematica vol.

XXXII, ed. Catanese et al., Academic Press (1991), 49-79.

[7] O. Debarre. Inégalités numériques pur les surfaces de type général. Bull.

Soc. Math. France 110 (1982), 319-342.
[8] A.R. Fletcher. Contributions to Riemann-Roch on Projective threefolds

with only canonical singularities and Applications. Proc. Symp. in Pure

Math. 46 (1987), 221-231.

[9] J. Harris. A bound on the geometric genus of projective varieties. Ann.

Sc. Norm. Sup. Pisa Ser. IV 8 (1981), 35-68.

[10] F. Jongmans. Contributions a Uétude des variétés algébriques. Mém.

Soc. R. Sc. Liege 7 (1947), 367-468.

[11] J. Kollar. Higher direct images of dualizing sheaves I. Ann. of Math.
123 (1986), 11-42.

[12] J. Kollar. Singularities of pairs. Preprint.

20



[13] K. Konno. Algebraic surfaces of general type with ¢; = 3p, — 6. Math.
Ann. 290 (1991), 77-107.

[14] K. Konno. A note on surfaces with pencils of non-hyperelliptic curves of
genus 3. Osaka J. Math. 28 (1991), 737-745.

[15] K. Konno. A lower bound of the slope of trigonal fibrations. Internat. J.
Math. 7 no. 1 (1996), 19-27.

[16] K. Konno. Non-hyperelliptic fibrations of small genus and certain irreg-
ular canonical surfaces. Ann. Sc. Norm. Sup. Pisa ser. IV 20 (1993),
575-595.

[17] K. Ohno. Some inequalities for minimal fibrations of surfaces of general
type over curves. J. Math. Soc. Japan 44 (1992), 643-666.

[18] M. Reid. Quadrics through a canonical surface. Algebraic geometry (L’Aquila
1988). Lecture Notes in Math. 1417, 191-213.

[19] M. Reid. Problems on pencils of small genus. Preprint (1990).

[20] 1. Reider. Vector bundles of rank 2 and linear systems on algebraic
surfaces. Ann. of Math. 127 (1988), 309-316.

[21] G. Xiao. Fibred algebraic surfaces with low slope. Math. Ann. 276
(1987), 449-466.

[22] G. Xiao. [rregularity of surfaces with a linear pencil. Duke Math. J. vol.
55, no. 3 (1987), 597-602.

Departament de Matematica Aplicada I

ETSEIB. UNIVERSITAT POLITECNICA DE CATALUNYA
Avda. Diagonal 647

08190-BARCELONA

SPAIN

e-mail: barja@mal.upc.es

21



