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0 Introduction

Let m : S — B be a fibration, i.e. a surjective morphism with connected fibres, from
a smooth surface S onto a smooth curve B. A fibration is said to be relatively minimal
when it has no vertical (—1)-curve. Let g denote the genus of a general fibre and b the
genus of B.

Let wg/p = ws@m*(wp') be the relative canonical bundle and let A(7) := deg T (ws/B)-
It is known that A(7) > 0 and that A(7) = 0 if and only if 7 is locally trivial. Assume
7 is not locally trivial. Then we define the slope of 7 as

A(m) = wg/B/A(W)

(see [19]). There are several results on the lower slope of relatively minimal fibrations of
genus g > 2. First of all we have A > 4 — ;i] (see [8], [12], [13], [18] for the hyperelliptic
case and [19] for the general case) and equality holds only in the hyperelliptic case ([9]).
There are improvements in the non-hyperelliptic case for g <5 (see [4], [7], [9], [11], [14])
but the presently known techniques seem to have some limitations to extend these results
to higher genus.

Recently Konno is trying to find good bounds depending on some extra numerical
invariants of the general fibre, such as the Clifford index. In [10], Konno finds better
bounds for trigonal and plane quintic fibrations (so Clifford index 1), although they do
not seem to be sharp. Also in [11] he gets general bounds depending on the Clifford index
in some cases.

!Partially supported by CICYT PS93-0790 and HCM project n. ERBCHRXCT-940557
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In this paper we deal with the case of bielliptic fibrations (i.e., when the general fibre
has a 2-to-1 map onto an elliptic curve). In the study of general fibrations it turns out
to be relevant the properties of the canonical embeding of the general fibre with respect
to quadrics. A first example is the trigonal case where Konno uses the fact that such a
curve lies in a rational normal scroll which is the intersection of the quadrics containing
it. In our case the role of the quadrics through the canonical bielliptic curve can not be
used directly. A different approach using relative Brill-Noether loci shows

Theorem 2.4 Let m : S — B be a bielliptic fibration of genus g > 6. Then S is,
birationally, a double cover of an elliptic smooth surface V over B.

In chapter 3 we prove that the conclusions of the above theorem hold for genus 5
bielliptic fibrations after a base change and we give an example where a nontrivial base
change is needed.

As a by-product we obtain that every smooth bielliptic fibration of genus ¢ > 5 is
isotrivial (see proposition 2.6 and corollary 3.3).

Finally, using theorem 2.4 and canonical resolution of singularities for double covers
we get the following sharp bound for the slope of bielliptic fibrations

Theorem 4.1 Let 7w :.5 — B be a relatively minimal bielliptic fibration of genus g > 6.
Let V' be the relative minimal model of the elliptic fibration obtained in theorem 2.4. Then

2(g —5)X Oy >4
A(r)  —

(b) MN(m) = 4 if and only if S is the minimal desingularization of a double cover
So — V' of a smooth elliptic surface such that

- All the fibres of the elliptic fibration 7 : V. — B are smooth and isomor-
phic.

(a) A(m) = 1+

- The branch divisor of the double cover has only negligeable singularities.

In particular, the bound is sharp.

The author want to thank, among others, professor Juan Carlos Naranjo for his en-
couragement and interesting comments; chapter 3 grew from fruitful conversations with
him.

During the final revision of this paper the advisor of the author, professor Fernando
Serrano, passed away. [ would like to thank him heartfully for his support and continuous
help, not only during the preparation of this work but also during the last years when I
enjoyed his teachings and friendship.

Notations and conventions

All throughout this paper we work over the field of complex numbers C.
If X is a scheme and G is a sheaf of graded algebras and & is a locally free coherent
sheaf on X we define Proj G and P(€) as in [5],11.7.
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1 Some generalities on fibred surfaces

We recall some basic facts about fibred surfaces (see [9]). The following are some easy
but useful results.

Lemma 1.1 Let X be a smooth variety and ¢ : X — B a morphism onto a curve. Let
X be the fibre of p overt € B.
For any coherent sheaf F on X and for any a € Pic (B) let F(a) = F @ ¢*(a).
Suppose that a is ample enough and that F satisfies the following technical condition:
for general t € B the sequence

0 — F(-t) — F — Fix, — 0

s exact.
Then, the natural morphism

H(X, F(a)) — H(X:, Fix,)
is surjective for general t € B.
Proof. Consider the exact sequence
0 — Fla—t) — F(a) — Fix, — 0
for general t € B. Taking cohomology we get
0 — H°(X,F(a—1t)) — H(X,F(a)) =5 H(X,, Fix,)

If a is ample enough then h'(B,(p.F) @ (a — 1)) = 0 and then h°(X,F(a —t)) =
R (B, (p.F) @ (a —t)) does not depend on ¢ by the Hirzebruch-Riemann-Roch theorem
for coherent sheaves on B.

Furthermore

dimIm (m;) = hO(X, Fla)) — hO(Xa Fla—1)) =
= (B, (¢ F) @ a) = (B, (p.F) @ (a = 1))
= d+r(a+1=b)—(d+r(a=14+1-0))=r

where
d = deg p.F
a = dega
r = rank (¢.F) = h°(X,, Fx,) fort € B general O

Lemma 1.2 Let 7 : S — B be a fibration. Let L € Pic S. If a € Pic B s ample
enough, then the natural map

h:n*mL(a) — L(a)

is an epimorphism just except at the base points of the linear system |L(a)|. Moreover, if
for a general fibre F' of w, the linear system |Lip| is base-point free, then such base points
are concentrated on a finite number of fibres.
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Proof. From the sequence of maps S —— B —+ Spec C we can consider the following
natural commutative diagram

mp"pamL(a) = (p o m)(p o m).Lla) = HY(S, £(a)) @0 Os —= L(a)

. L(a)

Since k is surjective for a ample enough, it follows that surjectivity of & is equivalent
to surjectivity of e. This fails to be an epimorphism precisely at the base points of [L(a)].

Finally, using lemma 1.1 one has that |£(a)| has no base points on a general fibre F' of 7.
O

Then we can construct the relative canonical morphism of 5. Consider £ = wg/p =
ws @ m*wz'; then Lir = wr which has no base points for smooth I if g > 2. L(a) has
only base points on singular fibres of 7, for a ample enough by lemma 1.2 and the natural
map

h:n*mL(a) — L(a) (1)

is an epimorphism away from such a base points.
In fact we have

h:(m*mL(a)) @ L(—a) — Og (2)
with Im A = Z7 = Os(—R) @ Ir being the ideal sheaf of such base points, endowed with

some scheme strcture, where Og(—R) is the ideal sheaf of its divisorial part and Zr is the
ideal sheaf of its discrete part (see [14]).

Consider a sequence of blow-ups o : § —+ S such that the base locus of lo*L(a)| is of
pure codimension 1. Then, in particular we have an epimorphism

o' Ir — U_lzr . Og = Og(—E)

where E is a divisor on S exceptional with respect to o.

Thus from m*m.L(a) — L(a) @ Os(—R) @ Ir (epimorphism) we get
o'n(mL(a)) — 0" L(a) R 0" Os(=R) @ 0"Ir — 0"L(a) @ 0" Os(—R) @ Oz(—=F) (3)

which is also an epimorphism.

We shall call

Og(M(a)) =o0"L(a) 20 "O0s(—R) @ Og(—E) the moving part of o*L(a)
Og(Z(a)) =0"0s(R) ® (’)g(E) the fixed part of o*L(a)

(as one can easily see (7 0 0)*(m 0 0).Oz(M(a)) — Oz(M(a)) is an epimorphism so, in

view of lemma 1.2, |M(a)| has no base points).
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Then (3) leads to

where
P = Pp(m.L(a))
P = Pg(n.L)
« is the natural isomorphism
such that ¢*Op(1) = Oz(M(a)). If we call p = a0 Y we get
P7(0:(1) @ ¢7(a)) = Og(M(a)).

We shall call ¥ the image of S by ¢. In fact ¥ is the closure in P of the image of the
birational map induced on S by A in (1), so ¥ doesn’t depend on a. Then we can change
a € Pic B if needed. We shall call ¥ the relative canonical image of S and 1) the relative
canonical map.

We remark that for /' C S a smooth fibre of m, F' = o*(F) = ¢(c*(F)), so we denote
it always by F' if no confusion arises.

For t € B we call P, = o7 1(¢) 2 P91

We shall call Op(T') the tautological line bundle on P.

Remark 1.3 Consider the sheaf F = Ty p @ Op(2T') @ ¢*(2a), where Zy, p is the ideal sheaf
of ¥ in P. For t € B we have Fp, = Ir, p,(2). We claim that F verifies the hypothesis of
lemma 1.1 and so that for a ample enough we have an epimorphism

H(P,Isr @ Op(2T) @ ¢*(2a)) — H (P~ 5, r,(2)) .

Indeed, just consider

0 — Ir p, — Op, — Op, — 0
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with the three rows and the two right columns trivially exact. Then the snake lemma
makes the left hand side column exact. Now just tensor with Op(27'), which is locally
free.

2 Bielliptic fibrations of genus g > 6

From now on we consider bielliptic fibrations only, i.e. fibrations such that the general
fibre admits a 2-to-1 morphism onto an elliptic curve. It seems reasonable to think that
all those maps can be glued together to yield a global 2-to-1 map from S onto an elliptic
surface over B.

A similar case, very much studied (see [8], [12], [13], [18]) is that of hyperelliptic fibra-
tions, i.e. when fibres are hyperelliptic. Here the hyperelliptic involutions glue together to
yield a birational double cover of a ruled surface in an easy way: just consider the relative
canonical morphism of 7 : S — B. The case where the general fibres are trigonal also
globalizes to a 3-to-1 map from S onto a ruled surface over B (this fact is implicit in [10]).

We prove in this chapter that such a double cover actually exists for any bielliptic
fibration of genus at least 6.

To see this we need, first of all, a canonical way of constructing the double cover of an
elliptic curve from F. Recall ([1] Ch.IV) that for any smooth curve F' we have a variety
W} (F) inside Pic (I") parametrizing the complete linear series on I of degree d and
dimension at least r.

Given a bielliptic involution ¢ : F' — FE there is a natural way of embedding F in
W,(F). This map is given by the composition of ¢ with the hyperelliptic involutions
coming from F.

On the other hand W?(F'), which has dimension four, is singular precisely along W/ (F')
if g > 5 (see [1] p.160). Take L € W} (F'); we denote Ty, = PT,W?(F) the projectivized
tangent cone to WP (F') at L, which fits canonically in P(HY(F,wp)*) X P91 If g > 5
we have by the Kempf’s Singularity Theorem ([1] p.241) that T, is a threefold of degree
(g9 — 3) in P9~! containing F'.

For any effective divisor D on F we denote by <D> the linear subspace of P(H°(F,wp)*)
spanned by D, in the sense of [1] p.12.

Lemma 2.1 Let 0 : ' — F be a bielliptic cover. Then

(a) For g > 4 the union of the lines < o*(p) >, with p € E, is an elliptic normal
cone R of degree (g — 1), containing F.

(b) For g > 6 the bielliptic involution o : F — E is unique, W} (F) = E and if
Ly, Ly € WHF) are two distinct points, we have R =Ty, NTy,.

Proof. If ¢1,...,q € FE are distinct general points, Riemann-Roch on £ and F' shows
that
dim<o™(q)+...+0%(q) >=1 for 14+1<g. (4)
Then, for 1 = 3 and g > 4, it follows that all the lines < o*(p) >, for p € E, meet at the
same point ¢ € P71, So projection from ¢ gives the elliptic curve F as an elliptic normal
curve of P92 which proves (a).
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Let oy : F©' — FE be a bielliptic involution. Assume there exists a 4-to-1 map
oy : F' — P! distinct from those produced by ;. Then the map o : F' — E x P!
given by a(p) = (o1(p), o2(p)) is birational. If we denote a = E x {p2}, b = {p1} x P*
for p; € E, py € P! we have ¢(F') = 2a + 4b and hence, by adjuntion in F x P!, we get
g(F) < p.(a(F)) =5. Soif g > 6 the bielliptic involution is unique and W} (F) = F.
For ¢ > 6 we have from (4) that if

Li=lo"(@+ @)l geb, j=1.2
are two different points in W, (F') then
dim (< o (¢t +q3) >N < (g + &) >) =0 or 1 (5)

depending on whether {¢i,q3} N {q}, 45} is empty or has one point, respectively.
Then, again by Kempf’s Singularity Theorem, we have the set-theoretic equality

T, = U <D >

7

Del;
and thus
To,NT,= U (<D>n<D'>=U <d*(p)>=R
s rel
using (5), if Ly # L. O

Theorem 2.2 Let 7 : S — B be a bielliptic fibration of genus g > 6. Let ¥ C P =
P(mws/p) be the relative canonical image of S as in section 1. Then there exists a threefold

W such that

(a) SC W CP.
(b) Fort € B such that the fibre Fy is smooth we have W NPy = R, (the elliptic

normal cone containing F).

Proof. We prove the theorem in several steps.
Step 1. We can assume that the fibration has enough sections.
Indeed, consider a very ample line bundle £ on S and let B be a global smooth section

of L. Consider the diagramm
n

S<§—>T
B—~B

where § = m 5, 7 is given by flat base change and 7 : S —» S is a minimal desingulariza-
tion of 5.

In this situation we remark that 7, and hence 7, has a section. Indeed, this section is
given by {(b,b) € B X BCS X B = §} which is a component of B X B. We can repeat

this construction in order to get as many sections as we need.
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Then we have

Te("(ws)) = 6" (mu(ws)) by flat base change
0 — v*(n*(ws)) — ws by ramification formula
T(Y" (0" (ws))) = Tu(vY N (ws)) = Tu(n™(ws) @ 7.Og) by projection formula
00— Og — 7.Og ~ dominant

and then

0 — 0" (muws) — Tu(ws) .

Being both locally free sheaves of the same rank we get a birational map given by a
sequence of elementary transformation on certain fibres

PB((S*W*MS) S Pg(ﬁ*wg)

which is an isomorphism for a general fibre.
So finally we get a generically finite rational map

[CR Pg(ﬁ*wg/g) - —— — PB(W*WS/B)
given as the composite

Pp(Tws/p) = Pp(mws) — — — = Pp(d"mws) — Pp(mws) = Pp(mws/p)
which is linear on fibres and restricts to the natural map from the relative canonical image
Y of 7 : S — B onto the relative canonical image ¥ of 7 : S — B.
Then suppose there exists W as in the theorem for the bielliptic fibration 7 : S — B.
We had that for smooth Fi, W NP, = R;. Now just consider W = B(W) which verifies
the desired conditions. Indeed, for ¢ € B such that F; is smooth we have

Wﬂ]Pt: U ﬁ(WQPt/): U ﬁ(Rt/) :Rt
5(7,"):7,‘ 5(7,"):7,‘

because 3( Ry ) is an elliptic normal cone containing Fy = B(Fy), which is unique by lemma
2.1.

Step 2. We can assume that 7 is smooth and has enough disjoint sections.

Once we have enough sections we can restrict the fibration to the nonempty Zariski
open set where 7 is smooth and the sections do not meet (we only have to avoid a finite
number of fibres). If there exists Wiy C Py(i*(mwws/p)), where ¢ : U — B is the natural
inclusion, verifying the theorem, then as W it is enough to take the closure of Wy inside

P= PB(T['*ws/B).

Step 3. Existence of W.

From the previous steps we have 7 : § — B a smooth fibration over a, possibly non
complete, curve with enough disjoint sections. Under these assumptions (see 16) there
exist schemes W (r), Pic %(w) over B such that

(i) For every t € B, (Wj(m)): = Wj(F;), (Pic d(w))t = Pic d(Ft).
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(ii) (Base change property) If § : B — B is a base change and 7 : § — B satisfies
the same good properties as 7, then W (7) = W7 () and Pic “(7) = Pic %(n) (where, as
always, X denotes the base change of X — B).

Then we can consider Wl(mx) € W(x) C Pic *(w). Moreover we remark that
W}(m) — B is an elliptic fibration which, up to base change, we can assume has at
least two sections (by the base change property this would correspond to a base change
for 7 that, as proven at step 1, can always be done).

We also remark that, if we set J = Pic *(7) BEIN B, then the sheaf of relative differen-
tials of f is just Q}]/B = [*(mwsB) (see [17] p.2).

Then we can proceed as follows. Consider

Wi(m) ¢ Wo(m)EPic i(x) = J

B

where s is a section of fjw(n (we are assuming that such an s exists). Let B be the image

of s. If we call Z;, Z, the ideal sheaves of B in WP (w) and J respectively, the natural
epimorphism Z, —» ¢.Z; induces the epimorphisms

$(73) =8 () ) =5 () = 5%z

1

(where § denotes the symmetric algebra) and then also the inclusions

: T 1 1L
Zy =P ( LRy )f—>Z—_IP~<1 )f—>Z—_IP~<2 )
1 roj @ /I1+1 2 B /I12 3 B /122

Since W2(rr) is singular along W}(7), hence along B, we have that Z; is the relative
projectivized tangent cone of WJ(r) along B which fits canonically into Z, and Zs, the
relative projectivized Zariski tangent spaces to W{(r) and J, respectively, along B.

On the other hand, since B C J is smooth, we have an exact sequence

L
B/B

I
0

0_>I2/I§—>Q},/B®O§—>Q —0

that leads to 12/122 — Q}]/B ® OE' Then

Z = P(" /1) = B(s 0 05) 2 By (s ly) =

= Ppg (S*f* (7'['*(4)5/3)) =Pp (W*WS/B)
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and so we have a variety T, := Im (7, C Pp(m.wg/g)) that by functoriality of the con-
structions verifies that, for ¢t € B general

T.NP, = Pﬁ(t)Wf(Ft) =: Ty in the sense of lemma 2.1.

Consider two such sections sy, sy and set W the horizontal part of Ts, N T,. This is the
variety we are seeking; for general t € B

WnP =T, NTse =R by lemma2.1.
O

Remark 2.3 Once we know the existence of W we can look at it from a different point
of view. Consider a smooth fibre F; of S (and X) and its respective cone R; and elliptic
base curve F;. Since F; C P72 and hence R; C P91, are projectively normal we have

—1)(g—4
hOIEt7[E>g—2(2) — hOIthg—l(Q) = %
— N g —
hOIFhIPg_l(Q) — W — hOIRtJPg—l(Q) _I_ 1

Then we have a hyperplane
P - HOIRh[Pg—l(Q) g HOIFth—l(Q) .

We also know that F;, and hence R;, is an intersection of quadrics and then, that the
quadrics containing R; are all singular at the vertex ¢; of the cone.
So aplying remark 1.3 we have that if a is ample enough we get an epimorphism

H(P, Is ¢(2T') @ ¢"(2a)) == H"(ZF, po-1(2))

and then P = w™(P) is a hyperplane. Now we know that W is just the horizontal part
of the base locus of relative hyperquadrics Q@ € P.

Moreover, if we call B’ the curve of vertices of the cones R;, we have that the relative
hyperquadrics in P are just those that are singular at B’.

Then we are ready to prove the main result of the section.

Theorem 2.4 Let 7 : S — B be a bielliptic fibration of genus g > 6. Then S is,
birationally, a double cover of an elliptic smooth surface V over B.

Proof. First of all we remark that the variety W is singular at least at points on B’
(see remark 2.3). Nevertheless, since for general ¢ € B, R, is a cone over a projectively
normal curve, hence a normal variety, we have that W is a normal variety at a general
fibre by a result of Hironaka (see [5] III, lemma 9.12).

Now consider N

WEW, W p= 0 ps

where p; is just the blow-up of W along B’, and p; is a desingularization of W;. Since
blow-up is functorial we have that for general ¢ € B, uy'(R;) = R; is the blow-up of R;
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at its vertex ¢; and, hence, an elliptic ruled surface over F; (see [5] V, ex. 2.11.1). Then
o only modifies certain bad fibres of Wj.
Consider then

SCW———WCP

B

where ¥ is the strict transform of ¥. Since B’ Z Y. we have that, for general ¢t € B, fibres
of ¥ and ¥ are isomorphic. We remark that W is fibred over B with general fibre an
elliptic scroll.

With notation as in section 1, consider O (H) = p*(Op(T') @ ¢*(a)) with a € Pic B
ample enough. Then |H| has no base points and, since W is smooth, Bertini’s theorem
allows us to take a smooth section V' € |H|. For general t € B, and by construction of p,
the fibre of V' over ¢ corresponds to a hyperplane section of R; and hence it is a smooth
elliptic curve. Therefore we get an elliptic fibration 7: V — B.

We only have to prove that S is, birationally, a double cover of V. Since for general
fibre E’t of W we have that F} is a double cover of E; and the morphism is given by the
ruling, we only have to prove that such morphisms R, —s E, can be glued to a global
rational map W———>V.

The argument is standard and it is esentially the same as in [2] p.160. We reproduce
the main points.

Fix B = R, a smooth fibre of W -5 B and let [' & P! be a fixed fibre of the map

R —» E := E,. From the exact sequence of normal bundles

0—>NF,E—>NF,W —>Nﬁﬁl®0r—>0

and NF,E = OF(F) = Or, NE,VT/ = OE(R) = OE we get

WON. =) =2; BN

F,I7V) =0

and then we can conclude that Hilb(T, W) (the Hilbert scheme of 1-cycles of W alge-
braically equivalents to I') is a surface, smooth at the point mg representing I'. Let M
be the irreducible component of Hilb(T', W) containing mg, and let M be the universal
family of curves of W parametrized by M. Then we have

’ WXM
PN

M w

M

where 6 is a flat morphism by definition. Then for m € M, §='(m) = ([',,,m); [, € W,
szﬁéF. If I',, is smooth, since # is flat we have that I',, is a rational curve. Moreover,
since 'R = 0 we have that T',, E’y(pm) = 0 and, hence, that I',,, C E)y(pm). Then for general
smooth I';,, I',, is a fibre of the scroll E)y(pm).
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In order to finish the proof we need the following
Claim.

(i) moj: M — W is a birational map.

. (miog)” !
(ii) V — W- -2 M —> M is birational.

Once the claim is proved, it is immediate that the composite

S — 3 C W~ M i> M~V
is the desired 2-to-1 map.

Proof of claim. 1f Uy, U, are open sets on B and M where the fibres of v and 8,
respectively, are smooth, we define

Mo = 1) % Uy)

and so we have that for (I';,, m) € My, ', is a smooth fibre of the smooth scroll E)y(pm).
Then, if (21, mq), (29, m2) € Mg and m1(x1,m1) = 21 = 2 = T (22, my) we have that
r=x1=a2€l',, NI, C E’y(l,) and therefore I',, =T, and so my = my. Then 709
is one-to-one on the open set My C M and hence m; 0 j is a birational map.
Finally if we consider

(Wloj)l
0: Vf—>W————>M—>M

for any « € Vg := (m05)(Mo)NV C V we have d(x) = 6(x,m) = m where x € [';,. Then
for @y, 29 € Vo, m = (1) = d(x3) and so x1,22 € I'yy N V. In view of I',,V =TH =1 it
follows that xy = x3. Then again 0 is one-to-one on an open set, hence it is birational. O

Remark 2.5 If 7 : S — B is a smooth bielliptic fibration (i.e., all the fibres are smooth
bielliptic) of genus g > 6 then we can even conclude from the proofs of theorems 2.2 and
2.4 that S is a double cover (everywhere defined) of a smooth minimal elliptic fibration
7:V — B (i.e., all fibres of 7 are smooth).

Indeed, from section 1 we get that in this case S=9 (because wg/p @ m*(a) has no
base point) and that S = X. Moreover, since all fibres are smooth we have W = W, and
D= Y in the proof of theorem 2.4. Fmally we claim that M is a smooth elliptic fibration
and W —s M is everywhere defined, so that 5 = Y CW —s M is the double cover we
are seeking. This follows 1mmed1ately from the proof of the claim in theorem 2.4. In fact
we have that V' — M is the relative minimalization of V. (V is not minimal precisely

at fibres E such that p(E)N B" # 0 as one can easily see). We take M as elliptic base
surface.
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Then we can conclude the following

Proposition 2.6 Let 7 : S — B be a fibration of genus g > 6 such that all fibres are
smooth and bielliptic. Then 7 is isotrivial, i.e. all fibres are isomorphic.

Proof. In the last remark we have proven that there is a finite 2-to-1 morphism
f:5S — V such that 7: V — B is an smooth elliptic fibration and that 7 =70 f.

Denote E; = 771(¢t) for t € B and let Z be the branch locus of f. Then for any ¢t € B
we have that Z N FE; is the branch divisor of the 2-to-1 map F; — FE; between smooth
curves. This implies that 77 : Z — B is an étale morphism of degree 2g —2 by Hurwitz
formula.

On the other hand, V' is isomorphic to a quotient (D x E)/G where D and F are
smooth curves, (¢ is a finite group acting on both D and F, and so it is acting diagonally
on D x E. The map 7 corresponds to the natural projection (D x E)/G — (D/G) = B.
In particular, all fibres of 7 are isomorphic to £ and the map D — (D/G) is unramified.
Base change yields

S S
b
DxEX—vy
D B

Note that p is étale. The branch locus Z’ = p~'(Z) of f’ maps onto D without
ramification, so all its connected components are smooth. Let D’ be one such component.
Base change again yields

S// = S/

]

DxE—2>DxE

D' D

The branch locus of f”is Z” = ¢~*(Z’), which maps onto D’ without ramification and
has a connected component which is a fibre of the projection v : D' x E — FE. It follows
that Z” is completely contained in fibres of v, and thus Z” is a finite union of such fibres.
Therefore, all fibres of 7”7 = 7”0 f" : 8" — D’ admit a 2-to-1 map onto F with the same
branch locus. This implies that 7" : " — D’ is isotrivial, and so = is isotrivial, too. O

Remark 2.7 A similar result holds for hyperelliptic fibrations of genus g > 2, as shown
by Xiao in [17].

13
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3 Bielliptic fibrations of genus 5

A bielliptic curve of genus ¢ < 5 can have more than one bielliptic involution. We give
an example which proves that these involutions do not glue independently for a general
fibration.

Example 3.1 Recall ([1] p.272) that a bielliptic curve F' of genus 5 can have between
one and five bielliptic structures. Such bielliptic involutions are in correspondence with
the elliptic components of W, (F).

Take a genus five curve F' with ezactly two bielliptic involutions o; : ' — F; such
that Fy 2 F,, with E; having no exceptional automorphisms (a count of constants shows
that such an F' can be chosen). Then we have that oy X 03 : F' — E; x F3 embeds F
as a smooth curve, F' € |(5(2p1) @ (3(2p2)|, being ¢; : £y x Ey — F; the projections and
(p1,p2) € F1 x Ey. Since Aut (Ey x E) acts transitively on E; x E, we have that for
every (qi,qz2) € F1 x Fj there exists Fe 105 (2q1) @ 05(2¢2)|, FxF.

Let B be any smooth curve having an involution ¢ and let ¢ : B — B = B
Consider a morphism x : B — P! with no factorization through B. Take a fixed ¢ € B
such that if ¢g7*(¢) = {t1,¢2} then k(¢;) # (t2). After an automorphism of P! we can
suppose that x(¢;) is the modular invariant of F; in C C P

Then, by [3] p.160, there exists an elliptic fibration 7 : V — B with a section, such
that 77(¢;) & E;. Let B’ be the image in V of the section of 7. Consider the following
pull-back

7=V xpV2

v

&1 T

v

LoT

Then, for t € B we have Z; = {7'(t) = E,u) X Ey, where E,, = 77"(m). The natural

involution on V' x¢ V induces a commutative diagramm

4

L—=1U

and then

Note that Z is a threefold fibred over B and the fibre over g(t) € B general is I,y X F.
We can assume Z is already smooth.

Let B" = g(&;'(B')) and £ = Oz(2B"). We have that Lz, = 17(2q1) @ £3(2q;) for
some (q1,q2) € F1 x E,. Hence, by lemma 1.1, if a € Pic B is ample enough we have an
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epimorphism

HO(Z,,C @ 5*(Cl)) — HO(El X E2,£|Zf) .

~ Since by hypothesis there exists I € |£,z | we get SelLat(a)la surface fibred over
B, smooth at a general fibre and such that S; = F. Again, we can suppose 5 is already
smooth. Let 7 : S — B and F, = #7!(m). For m € B general we have that F}, is an
smooth curve of genus 5 having at least two bielliptic involutions given by the inclusion
Fr C By x Ey (if g(m) = m) as a (2,2)-divisor. We claim that for general m € B,
F has exactly two bielliptic involutions. Since this is the case for F' = Fy we only have
to prove that having at most two of them is an open condition. Consider W}(7) — B
(after a base change if necessary). The number of bielliptic involutions of Fj is given by
the number of elliptic components of W} (Fy) = W (7)s. Then, having at most two of
such components is obviously an open condition.

We claim that S is not a (birational) double cover of any elliptic fibration 7 : V — B.
Indeed, assume we have a double cover f : S — V (we can suppose f everywhere defined
after some blow-ups). Consider the base change diagram

-
bl

B——DB
For S we have three double covers of elliptic fibrations over B:

f:8—V
fir§—V fi=&s 1=1,2

Set U={m e B|E, % E,(my; Em, E,(ny and E,, are smooth and F,, has exactly two
bielliptic involutions} (where B, = 771(m)). We have that U is a non-empty open set of
B. Since fi|k,,, f2|Fn JFIFm are double covers of E,,), E, and E,, respectively we have
that for every m € U, Em = By(m) or Em ~F.

g =goyq:U—PLgp=gv:U— P and §g: U — P! are the modular
morphisms induced by ¢ o 7, 7 and T over U respectively we have that g = ¢, or g = ¢5.
Assume g = ¢,.

As we have 1,13 € U and (1) = t5 we get

By =77't) =7"t) =7 (ty) = 77 (t2) = Eyy

1

since 7 is induced by 7 : V — B and then 771(m) = 7=1(«(m)) for all m € B. But this
is imposible since by hypothesis £, = Ey 2 Ey = Ey,. a
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Although this example shows that theorem 2.4 is not true for genus 5 bielliptic fibra-
tions we have

Proposition 3.2 Let 7 : .S — B be a bielliptic fibration of genus 5. Then, there exisls
a base change 7 : 8 — B of m such that S is, birationally, a double cover of an elliptic
fibration 7 : V — B.

If the general fibre of ™ has only one bielliptic involution, then we can take ™ = m.

Proof. As in step 3 of theorem 2.2 we have after a base change W} (7) — B (at
least over a non-empty open subset of E) Let L be an irreducible component of Wj(7)
such that for general ¢ € E; L, has only elliptic components. Let L be a desingularization
of L. After a base change we can get

Th=—t
Oy =—

such that I — B has irreducible general fibres and at least two sections. If 7 : S— B
is the induced fibration we have that L is an irreducible component of Wir) — B.
Then step 3 in theorem 2.2 works and we get S—— >3 CW C Ps ( The

existence of T is all what we need to use the same proof of theorem 2.4.
If the general fibre of 7 has only one bielliptic involution (hence there exists only one

S/B)‘

elliptic cone containing F' C P*) then from the existence of ¥ C W we can deduce the
existence of ¥ C W in the same way as step 1 in theorem 2.2 (uniqueness of elliptic cones
containing the general fibre is all what we need). O

This result is enough to extend proposition 2.6 to the genus 5 case.

Corollary 3.3 Let m: S — B be a genus 5 fibration such that all fibres are smooth and
bielliptic. Then m is isotrivial.

Proof. We can check isotriviallity after a base change. The result follows then from
proposition 3.2 and the proof of proposition 2.6. O

4 Double covers and the slope of bielliptic fibrations

We recall some basic facts about double covers (see [6], [3]).

By a double cover we mean a finite, degree two map between surfaces, fo : S — V4.
This map is determined by a divisor Zy on Vg (the branch divisor) and a line bundle £,
such that £§% = Oy, (Zo). If Vp is smooth, Sy is normal (respectively smooth) if and only
if Zy is reduced (respectively smooth).

Consider a double cover as above with Sy normal and V5 smooth. Then there exists a
canonical resolution of singularities for Sy which consists on a finite sequence of maps
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Ok 01
Sy — Sy s 9 s Sp

i Jr—1 o h Jo

Vo

~

~

Vi ———— Vi Vi
ag aq

satisfying:

1) a; 1s the blow-up of V;_; at a singular point p;_; of Z._; (the branching divisor of

J p J g p b J g

fi-1)-

(ii) f; is the double cover of V; defined by ,C;@z = O(Z;), with Z; = o3(Z; 1) —2m; 1 Ej,
L; = ai(Lij—1) @ Oy,(—m;_1E;), where I is the exceptional divisor of a; and p;_; is a
singular point of Z;_; of multiplicity 2m;_y or 2m;_y + 1.

(iii) o; is a birational morphism induced by the cartesian diagram of «; and f;_;.

(iv) Zi is smooth and, hence, Si is a smooth surface.

Now we can use this as follows. Recall from section 2 that we have obtained f : S—vV
a generically 2-to-1 morphism (we can suppose that f is everywhere defined up to blow-
ups) from a blow-up of S onto an elliptic fibration V over B which we can suppose
relatively minimal after some blow-downs. Suppose that 7 is relatively minimal.

Now consider

S

- §=0g, So
/
S I fo

n V=V Vo=V
B

where:

o [ = foouis the Stein factorization of f, with u birational, f; finite (so it is a double
cover) and Sy normal.

o fr: Sy — Vj is the canonical resolution of singularities of fy : S — V4.

e 0 : 5, — S is the birational morphism defined by the relative minimality of 7.

Theorem 4.1 Let m: S — B be a relatively minimal bielliptic fibration of genus g > 6.
Let V' be the relative minimal model of the elliptic fibration obtained in theorem 2.4. Then
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(a) wg/B —4A(7) > 2(g — 5)XOv. In particular, if © is not locally trivial
2(g —5)X Oy
A >4 4 —— >4
WS E 2

(b) MN(m) = 4 if and only if S is the minimal desingularization of a double cover
So — V' of a smooth elliptic surface such that

- All the fibres of the elliptic fibration 7 : V. — B are smooth and isomor-
phic.

- The branch divisor of the double cover has only negligeable singularities
(i.e., all the multiplicities m; in the above process are 2 or 3 (see [13],

[17])).

In particular, the bound is sharp.

Proof.
(a) First of all we have

w?g/B —4A(7m) = (K2 —4X0s) —4(b—1)(g — 1) > (K2 —4X0O5) —4(b—1)(g —1). (6)

For smooth double covers f; : S — V we have (see [3] p.183):

1 1
XOg = Q.XOV + §£k[\]f/ + §£k£k
[X’% = 2[&’7‘2/ + 4£k[(f/ + 2L L

so we have
K% —4X05 =2[K{ —4X0y,] + 2L, Ky, . (7)

Moreover, in each blow-up «; : V; — V;_; we get
XOy, =X0y,_; Ky, = oz;KVJ_l +E; L= oz;/:j_l —m;_1 L.
Then
Z[K‘Q/] —4X 0y, + 2L, Ky, = 2[[&"‘2/]_1 —4X0y,_| ] +
2L, 1 Ky, +2(mj_y — 1) > 2[[&"2/]_1 —4XO0vy,_ ]+ 2L;1Ky,_, . (8)

Finally as 7 : V — B is an elliptic minimal fibration, numerically we have
Ky = {Z(b— 1)+ X0y + 3, ﬁn;—_ll} E ([3] p.162) where E denotes a smooth fibre of
T and {n;} are the multiplicities of singular fibres of 7. In particular K7 = 0.

As L§? = Oy, (Zo) and Zy is the branch divisor of fy we get LoF = (g — 1) by Hurwitz

formula. So
2[[&7‘2/0 — 4XOVO] + 2/;0[(‘/0 — _SXOVO + (9)

i—1
+2L0F [Q(b — 1)+ X0y, + > (i —1)

>4(b—1)(g—1)+2(g —5)XOv .

K3
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Then (a) follows from (6), (7), (8) and (9) and from the fact that YOy > 0 for elliptic
fibrations.

(b) Looking at the proof of (a) we see that A = 4 iff YOy = 0 and equality holds in
(6), (7), (8) and (9). So we have A = 4 iff S is the minimal desingularization of a double

cover of an elliptic, relatively minimal, fibration 7 : V' — B such that:

- 7 has no multiple fibres (Vi n; = 1).
- XOy = 0.

- The branch divisor Z, of the double cover has only negligeable singularities (see
[13], [17]), i.e. all the multiplicites of the singularities of the branch divisors in
the process of canonical resolution are 2 or 3.

But the first two conditions are equivalent to the fact that 7 is smooth and isotrivial
(see 15 thms. 6,7 Ch.IV). This allows us to construct examples with A(7) = 4 which are
esentially the same as in [19] example 4.3. So the bound is sharp. O

Remark 4.2 Although we cannot use double covers for the case of bielliptic fibrations of
genus 5 we already know that A > 4 also holds for such fibrations (see [9] thm.5.1, [11]).
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