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1. Introduction

In this work we study the dynamics around an elliptic periodic orbit of Hamiltonian systems.
To this end we have developped an algorithm to compute a normal form (up to a finite
order) around this orbit, that gives an accurate description of the dynamics close to it. If
the remainder of this normal form can be bounded, it is not difficult to produce explicit
bounds of the diffusion time of trajectories starting near the periodic orbit. In order to
discuss the effectivity of the method, it will be explained at the same time that it is applied
to a concrete example. The one used here has been the Spatial Restricted Three Body

Problem (RTBP).

1.1. DESCRIPTION OF THE MODEL PROBLEM

Let us consider the equilateral equilibrium point Ls. It is a well known fact that the Ly
point is linearly stable for values of the mass parameter p less than the Routh critical value
pr = +(1 — /23/27) = 0.03852... and unstable for > pg. Moreover, for any value of
1, the linearized system around Lg always contains a vertical oscillation with frequency 1.
This oscillation produces, in the complete system, a family of periodic Lyapunov orbits. In
what follows, we will refer to this family as the “vertical” family of periodic orbits, and it
will be parametrized by the vertical amplitude of the orbits (this parametrization is well
defined for moderate values of the amplitude).

If we compute (numerically) this vertical family of periodic orbits we can see that there
are some changes of stability. For instance, for some p > pp one can see that the vertical
family of periodic orbits is unstable if the amplitude A is small enough (as expected), and
that they become linearly stable for sufficiently large values of A. ;From now on, we will
focus on one of these linearly stable orbits. The complete study of the curves (with respect
to A and p) for which there is a stability change is actually in progress ([5]).

Using KAM-like arguments one can find that this orbits are surrounded by invariant
tori, and Nekhoroshev-like arguments can allow to bound the diffussion time near the orbit
to prove the so-called effective stability. This second approach has been the one used in this
work.



1.2. RELATED WORKS

Similar studies have been done to bound the diffusion time around elliptic fixed points (see,
for instance, [3], [8], [1] and [4]). There are also some works about bounding the diffusion
time near maximal dimension invariant tori (see [7] and [6]), but they are much more difficult
to apply to a concrete problems. A similar normal form procedure has already been used
in [4] and [9].

It is also interesting the work [2], where an unified vision of the KAM and Nekhoroshev
techniques is presented.

2. The system of reference

The main difficulty is to obtain a system of coordinates adapted to the periodic orbit.

2.1. FIRST STEP

Let (X,Y, Z, Px, Py, Pz) be a system of reference for the RT'BP, centered in the equilibrium
point Ls. Let us assume that we know a 27-periodic parametrization of an orbit of the
vertical family (/(6),g(6)) of period 27 /w, where [ = (fi, f2, f3), g = (91,2, s) and
f3(0) = 0. We suppose that the system of reference is such that the projection of the orbit
into the coordinates (7, Py) is close to a circle,! that is, we assume that A = (f})% + (¢5)?
is close to constant (the vertical family of periodic orbits satisfies this condition).

Now, we want to introduce a new system of coordinates (8, ¢1, ¢z, I, p1, p2) (with a ca-
nonic change of variables) to describe the periodic orbit as a function of 8 with ¢ = ¢2 =
I = p; = po = 0. We use the change

X = fil®)+aq, Px = g1(0)+ pi,

Y = fo(0)+ q, Py = g2(0) + pa, (1)
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being «(6,0) = 0. It is not dificult to check that this is a canonic transformation in some
(complex) domain for the variables (6, ¢, I, p).

2.2. HAMILTONIAN IN THE NEW VARIABLES

After this transformation the Hamiltonian takes the form:
— Ly q
H(@,q,],p)—h0+w]+§ (q ,p)A(@) ( » ) 4.

where hg is the energy level of the periodic orbit and A(#) is a symmetric 27-periodic matrix
in 8. The next step is to remove the angular dependence of € in A.

'This assumption is only used to simplify the computation of the change of variables and to bound the
region where 1t is well defined. The same methodology can be used when this assumption does not hold,
but the details are more difficult.



2.3. FLOQUET TRANSFORMATION AND COMPLEXIFICATION

We want to make a canonic change (27-periodic in ) to transfom A to constant coefficients.
To describe the process, let us denote by F(q,p,8,I) the change of variables (1) and let
() be the variational matrix, 1(0) = Id, around the periodic orbit. We have that

o(t) = (DF(0,0,wt,0)) (1) DF(0,0,0,0)

is the variational matrix for the orbit in variables (¢, p, 6, ). Let g(t) be the 4-dimensional
matrix obtained by taking the first 4 rows and colums of ¢(t) (they correspond to the
variational flow in the normal directions of the periodic orbit). Let C' be a symplectic
matrix that transforms %(277/4#) in real normal form, and let M be a matrix such that
M — §(2r/w) (it can be checked that, in this case, M can be taken real). Then, the
(canonic) change of variables

(1)=mo (). 1=t momo (1),

where .J is the canonic form of R*, and B(f) = C~! exp(%M@)%(@/w)_l transforms the
Hamiltonian into

w w
H(0,2,€,y) = ho + @& + 5 (af + ) + 5 (23 + ) + -

2

If we introduce new (complex) variables as z; = (Q; +iP;)/v/2 and y; = (iQ; + P;)/V?2 ,
7 =1,2, we obtain

H(0, P& Q)= ho+wé+1iw QP + iweQa Py + - - -

This is the basic expression of the Hamiltonian that we use to perform the normal form.

2.4. EXPANSION OF THE HAMILTONIAN

Our purpose now is to perform these changes of variables in the initial Hamiltonian. The
Hamiltonian of the RTBP can we written, in suitable coordinates, as

L—p  p

1
~(p2 + P+ P2) + ypo — apy —

H($7y727pl’7py7pz):2( r 7‘27

where r{ = (z — p)? + y? + 2% and r; = (z — p+ 1)* + y* + 2. Ls is located at (-5 +
iy 52§, 0, —52§, —%—i—,u, 0). Let (X,Y, Z, Px, Py, Pz) be the initial coordinates centered in L5
(by means of a translation of origin), and let (f(6), g(6)) be the orbit in this coordinates. We
assume that (f3)%+ (gS) is close to constant, and we introduce new coordinates { = Jw/
and P = %. We rewrite the Hamiltonian in this coordinates but we keep for simplicity
the notation Z, Pz. Then, we expand the Hamiltonian as

X% 5

1
H= §(P§(+P§ +wP2)+YPx — XPy + i gY2 —aXY+

A2 s (S5 (- S (X,

k>3



being a = —#(1 —2u), rd = X2+ Y2+ %2 and Py the Legendre polynomial of degree k.
To expand the Hamiltonian we compute the composition of the changes (1) and (2) and we
use the recurrence of the Legendre polynomials.

3. Computing the normal form

To simplify the notation, let us rename @; as ¢;, F; as p; and £ as I. With this, we have
obtained a Hamiltonian of the form:

H(07q7]7p) =wl + iwlqlpl + iwzf]zpz + H2(07q7]7p) + H3(07q7]7p)+ Ty

where H; j > 3 contains monomials in ¢, p and I of degree j, with periodic coefficients in 6,
and all the monomials of Hy contain the variable I (and are of degree 2). Our objective is to
put the Hamiltonian in normal form up to some finite order by using a canonic change (27
periodic in @) of variables that we obtain as a composition of time unity flows associated
to Hamiltonians (generating functions) ;. They are selected to remove, in recursive form,
the nonintegrable terms of degree j. So, if we have G5, G5, ..., G, that

Ho®F o - 0®F (0, q,1,p) = wl +iwiqips + iwsq2p2 + N +H(7-1|—)1 +H7(17-1I—)2 +y

e
()
(n+1)
that is, we select GG,,11 such that {wI + iwiqipy + iweqap2, Gra1} + Hf:_ll_)l, has only exact
resonant terms, where

where N is in normal form up to degree n. We take G411 to put H in normal form,

_dfdg 9fdyg af dg af dg
93 = 5531 afaoJFZ;(aqjapj apjaqj)

is the Poisson bracket. More details of this process can be found in [4] or [9].

3.1. REMARK

In fact the good order to remove the diferent terms is not the order that give the usual
definition of degree of homogeneous polynomials, but the one defined counting twice the
degree of the I variable. This allows us to remove the non integrable part of Hs.

4. Normal form

Finally we have a Hamiltonian like H (0, q,1,p) = N(I,q1p1, ¢2p2) + R(0,q, 1, p) where H
is in normal form up to degree n. It is easy to see that the construction of the normal form
keeps the real character of the Hamiltonian, and consequently we can introduce new real
variables to describe the real behaviour of the orbit.

5. Some results

We have applied the latter procedure taking ;1 = 0.04 (that is, bigger than the Routh critical
value), and we have used the Lyapunov orbit that has Z = 0.2474290163 when z = 0, in the
initial coordinates. This orbit is linearly stable.

The software used has been specially developed, in C language, for this problem. This
allows to improve, in several orders of magnitude, the efficiency (both in speed and memory)
obtained by using commercial algebraic manipulators.



5.1. INVARIANT TORI

Now it is easy to obtain aproximations of periodic orbits and invariant tori of dimension
2 and 3 of the Hamiltonian in normal form if we ignore the remainder R. If we transform
them for all the changes we can obtain aproximations of periodic orbits and tori of the initial
system.

5.2. EFFECTIVE STABILITY

To obtain estimates for the region where there is long time stability, we need to bound the
remainder K. With this we can estimate the effective stability domain in the normal form
variables. The next step is to obtain information about how is this domain is mapped onto
the initial variables by the succesive changes of variables.

To perform this bounds, we need to obtain estimates of the norms of the remaining
terms that we can not store in a practical implementation of the method. This has been
done numerically, and the results show a (quite small) neighbourhood of practical stability
around the orbit. This is because this orbit is very close to the bifurcation that changes the
stability of the vertical family. Full details can be found in [5].

Acknowledgements

A. Jorba has been partially supported by the grants DGICYT PB94-0215, CIRIT GRQ93—
1135, the EC grant ERBCHRXCT940460 and the UPC fund PR9409. J. Villanueva has
been supported by the UPC fund PR9409.

References

1. Celleti, A. and Giorgilli, A. (1991) On the stability of the Lagrangian points in the spatial restricted
problem of three bodies, Cel. Mech., 50, pp. 31-58.

2. Delshams, A. and Gutiérrez, P. (1995) Effective stability and KAM Theorem, to appear in J. of Diff.
Equations.

3. Giorgilli, A., Delshams, A., Fontich, E., Galgani, L. and Simé, C. (1989) Effective stability for a
Hamiltonian system near an elliptic equilibrium point, with an application to the Restricted Three
Body Problem, J. of Diff. Fquations, 77:1, pp. 167-198.

4. Jorba, A. and Simé, C. (1994) Effective stability for periodically perturbed Hamiltonian systems, in
Hamiltonian Mechanics, Integrability and Chaotic Behavior, J. Seimenis (Ed.), Plenum Press, New
York, pp. 245-252.

5. Jorba, A. and Villanueva, J. (1995) Normal form around periodic orbits of the spatial RTBP, in progress.

6. Morbidelli, A. and Giorgilli A. (1995) Superexponential stability of KAM tori, J. Stat. Phys. 78, no.
5/6.

7. Perry, A. D. and Wiggins, S. (1994) KAM tori are very sticky: rigorous lower bounds on the time to
move away from an invariant Lagrangian torus with linear flow, Physica D, 71, pp. 102-121.

8. Sim¢, C. (1989) Estabilitat de sistemes Hamiltonians, Mem. de la Real Acad. de Ciencias y Artes de
Barcelona, Vol. XLVIII, no. 7, pp. 303-348.

9. Simé¢, C., Gémez, G., Jorba, A. and Masdemont, J. (1995) The bicircular model near the triangular
libration points of the RTBP, in From Newton to Chaos, A. E. Roy and B. A. Steves (Eds.), Plenum
Press, New York, pp. 343-370.



