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Abstract

The splitting of separatrices for hyperbolic fixed points of twist
maps with d degrees of freedom is studied through a real-valued func-
tion, called the Melnikov potential. Its non-degenerate critical points
are associated to transverse homoclinic orbits and an asymptotic ex-
pression for the symplectic area between homoclinic orbits is given.
Moreover, Morse theory can be applied to give lower bounds on the
number of transverse homoclinic orbits.

This theory is applied first to elliptic billiards, where non-integra-
bility holds for any non-trivial entire symmetric perturbation. Next,
symmetrically perturbed prolate billiards with d > 1 degrees of free-
dom are considered. Several topics are studied about these billiards:
existence of splitting, explicit computations of Melnikov potentials,
existence of 8 or 8d transverse homoclinic orbits, exponentially small
splitting, etc.

1 Introduction and plan of the paper

The phenomenon of the splitting of separatrices associated to a hyperbolic
fixed point of a map has received a considerable attention, due to its direct
relationship with the existence of chaotic motion nearby, as a consequence of
the Smale-Birkhoff homoclinic theorem [Sma63, Wig90].

The existence of a recently developed computable Melnikov theory [DR96]
for maps makes easier the computation of the Melnikov function. In the par-
ticular case of area preserving maps in the plane, the Melnikov function M is
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a periodic function with zero mean, and thus it is in fact the derivative of an-
other periodic function, called the Melnikov potential L. The non-degenerate
critical points of the Melnikov potential give rise to transverse homoclinic
orbits. For analytic maps, the Melnikov function is doubly periodic, and
complex variable theory can be used to compute the Melnikov potential.

A particular, but very important, example is provided by the billiard
on an analytical convex table. A direct application of the Melnikov theory
to perturbed elliptic tables provides explicit formulas for the lobes between
separatrices, and also non-integrability for non-trivial perturbations.

The aim of this paper is to generalize such results to higher dimensional
billiards. Since the motion inside a billiard can be modeled with the help of
a twist map, we first develop a theory for twist maps on cotangent bundles
with d > 1 degrees of freedom. Twist maps can be considered as the typical
example of exact symplectic maps, for which there are several results due to
the authors [DR97a] that will be applied along the present paper. Related
ideas can be found in [Tre94, Bol95, Tab95b, Lom96b, Lom97].

When there is only one degree of freedom (on the plane), every branch of
a coincident separatrix of the unperturbed twist map gives rise, in general,
to two homoclinic orbits of the perturbed twist map.

When the number d of degrees of freedom is bigger than one, the (partial)
coincidence of the invariant manifolds associated to a fixed hyperbolic point
of the unperturbed twist map can take place in different ways. Thus, we
will deal with doubled, partially doubled and completely doubled invariant
manifolds for the unperturbed case. Different kinds of coincidences between
invariant manifolds give rise to different kinds of separatrices and bifurcation
sets and, consequently, to different results about the number of homoclinic
orbits of the perturbed case. To avoid any kind of misunderstandings, the
introduction of these concepts is carefully performed in section 2.

The main tool of this paper is the Melnikov potential L, a scalar func-
tion defined on the unperturbed separatrix, which is the natural splitting
function for detecting primary homoclinic orbits in twist maps. Its non-
degenerate critical points are associated to transverse homoclinic orbits. So,
once located its non-degenerate critical points, everything is done. Several
analytical results are developed in section 2. Moreover, the Melnikov poten-
tial is invariant under the action of the unperturbed twist map, and Morse
theory is applied to the Melnikov function defined on a reduced separatriz,
which turns out to be compact in the completely doubled case. The lower
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bound provided by the Morse theory on the number of homoclinic orbits is,
in general, increased when there exist extra symmetries or reversors.

There is another interpretation of these results, based on variational meth-
ods, which allows us to introduce the concepts of homoclinic action and ho-
moclinic area, as a generalization of the planar case.

These results about twist maps are readily applied to planar billiards in
Section 3, providing non-integrability for the elliptic billiard under non-trivial
perturbations, and a computable Melnikov potential. Several examples are
reviewed.

For more degrees of freedom, in the present paper we do not consider
an arbitrary ellipsoidal billiard as the unperturbed case, since the explicit
expression of asymptotic motions is still not well-known. Instead, in Section 4
we consider only prolate billiards, that is, ellipsoids with all their axis of equal
length except one, which is larger. For general non-degenerate perturbations,
the Melnikov potential L is defined on S* x S4~! for a billiard with d degrees
of freedom, and the existence of at least 8 homoclinic orbits is provided
by Morse theory. For reversible perturbations, the Melnikov potential L is
defined on S! x P4 !, and this lower bound changes to 8d. The Melnikov
potential is explicitly computed for polynomial and quartic perturbations,
showing that the lower bound about the number of the homoclinic orbits
provided by the Morse theory is effectively attained.

2 (General results for twist maps

For the sake of simplicity, we will assume that the objects here considered
are smooth. For a general background on symplectic geometry we refer
to [Arn76, GS77, AM78]. The basic properties of immersed submanifolds
can be found in [GG73, pages 6-11]. More details about twist maps can be
found in [Gol94a, Gol94b, BG96].

2.1 Introduction to twist maps

A twist map F is a map from a connected subset P of the cotangent bun-
dle T*M of a manifold M (not necessarily compact) into P, which comes
equipped with a twist generating function £ : M x M — R that satisfies

F*(wdz) —wdz =w'dz' —wdz = dL(z,7), (2", w'") = F(z,w), (2.1)
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where (z, w) are any cotangent coordinates on T* M, that is, z are coordinates
on M, extended to coordinates (z,w) in the obvious way. The dimension
d of the manifold M will be called the number of degrees of freedom of the
twist map (2.1).

Condition (2.1) can also be written in a coordinate free manner. Given
L, one can retrieve the map (at least implicitly) from

w=—-0L(z,2"), w' = 0:L(z,7").

This can be done globally (i.e., P = T*M) only when M is diffeomorphic
to a fiber of T* M, for example when M is the covering space of T" or a
manifold of constant negative curvature.

At this point, it is worth mentioning that an open connected subset P
of a cotangent bundle 7*M is the typical example of an ezxact symplectic
manifold, i.e., a 2d-dimensional manifold P endowed with a symplectic form
w which is exact: w = —d¢. Actually, the canonical symplectic forms w, ¢,
on T*M read in cotangent coordinates (z,w) as w = dz A dw, ¢ = wdz.

A twist map is the typical example of an exact symplectic map, i.e., a map
F : P — P defined on an exact symplectic manifold P, characterized by the
equation F*¢ — ¢ = dS for some function S : P — R, called generating
function of F'. For P C T* M, the fact that the generating function S can be
written in terms of old and new coordinates: S(z,w) = L(z, 2'), is the twist
condition that gives the name to the twist maps. Introducing the canonical
projection w : T*M — M, the relation above between generating functions
reads as S(p) = L(m(p),7(F(p))), for p € P. Since the example we have
in mind (the billiard) can be modeled by a twist map, we will not consider
exact symplectic maps anymore, and we refer the reader interested in such
theory to [DR97a].

2.2 The unperturbed system

We are given a smooth twist diffeomorphism Fy : P — P, where P is an open
connected subset of a cotangent bundle 7* M. Let Ly be its twist generating
function. We will assume that:

a) There exists a hyperbolic fized point p°, of Fj.
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b) The d-dimensional unstable and stable invariant manifolds associated
to the hyperbolic fixed point p?_,

u . . : k .0
Wy = {peP.kEglooFo (p)—poo},
Wi = {peP: lim FAp) =1k},

k—+o00

are doubled, that is, they coincide:

W =Wy =W;.

This coincidence of invariant manifolds can take place in many different
ways and has several implications upon the topology of the problem. We
slow down here to introduce with full details the bifurcation set.

We recall that the invariant manifolds Wy"* need not to be submanifolds
of P C T*M, but just connected immersed submanifolds. More precisely,
Wy* = g“*(R?) for some one-to-one immersions g** : R? — P, such that
g“*(0) = ps and dg*“*(0)[R?] is the tangent space to W;"* at p° [PMS82, II
§6].

By a one-to-one immersion g*° : R? — P, we mean that dg(z) has
maximal rank d at any point z € R?, and that g** is one-to-one onto its image
Wy* = g»*(R?). There is a natural way to make W;** a smooth manifold:
the topology on W;"® is the one which makes g** a homeomorphism and the
charts on Wy* = ¢g®*(R?) are the pull-backs via (g**)~" of the charts on RY.

Figure 1 shows an example of the double loop Wy** = g**(R?) that takes
place when both invariant manifolds are doubled (i.e., they coincide) on the
plane (d = 1). At p% , the induced topology on the invariant curves W;"* via
the inclusion Wy"* C R? is not the same as the induced one via g**. Hence,
Wy \ {p%} are submanifolds, but not Wy>*. This situation is a particular
case of the following elementary result [GG73, page 11].

Lemma 2.1 Let g : R — P be a one-to-one immersion and set W = g(R?).
Let ¥ C W be the set of points where the two topologies on W (the one in-
duced by the inclusion W C P and the one that makes g a homeomorphism)
differ. Then, A = W\ X is a submanifold of P. Indeed, W is not a subman-
ifold of P just at the points of X.
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DI

W =Wy =W; Wi ~R W; ~R

Figure 1: The invariant manifolds Wy and W} are different as smooth man-
ifolds, and are not submanifolds of R?. There exist no paths y** in Wy"*
from p to p’ such that v* = ~*.

We now recall that we are assuming that the invariant manifolds Wy"*
are doubled, that is, W := Wy = W.

Then, we can consider three topologies on W: the one induced by the
inclusion W C P, and the two ones induced by the inclusions W C Wy"°.

We define the bifurcation set ¥ of this problem as the subset of WV of points
where the three topologies do not coincide, and we define the separatriz A as
its complementary in W, that is, A := W\ Z.

By Lemma 2.1, A is a submanifold of P. Moreover, the fixed point p2,
is not included in the separatrix A. Indeed, this property follows from the
fact that WY and W; intersect transversely at p% , so their topology at p%
as immersed submanifolds can not coincide and p?, € . Finally, let us note
that both the separatrix and the bifurcation set are Fy-invariant, due to the
fact that Fp is a diffeomorphism. We summarize now these properties:

Lemma 2.2 The bifurcation set ¥ and the separatriz A have the following
properties:

(1) A is a submanifold of P and p°, € X.

(i) A and T are Fy-invariant.
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For simplicity, and due to the application to billiards, we have restricted
ourselves to the case that both invariant manifolds of Fjy are doubled, and we
have then defined the notion of separatrix. When W,"* are partially doubled:
Wy # W, but there exists a subset A C W§ N W, such that A is a d-
dimensional submanifold of P, invariant by Fj, and the three topologies on
A coincide (the ones induced by the inclusions A C P, A C W{ and A C W),
A can be taken as a separatrix of the problem, and the Melnikov potential is
well defined on it.

2.3 Analytical results for the perturbed system

Consider a perturbed twist map F., and let £. = Ly + £, + O(g?) be the
twist generating function of F:

(2, w') = Fe(z,w) <= w = -0, L.(z,2"), w' =Lz, 7). (2.2)

For 0 < |e] < 1, there exists a hyperbolic fixed point pS of F., close to p%_,

with associated invariant manifolds W°. It is not restrictive to normalize the

twist generating function by imposing L.(z5,,25) = 0, where 25, = 7(pg,).
0

In particular, £;(22,22) = 0, where 22 = 7(p2).

We now introduce the Melnikov potential L : A — R by

L(p) = Li(zk, zk41)s 26 = 7(pr), px = Fo*(p), p € A. (2.3)
kez

The series above is absolutely convergent since any Fy-orbit (Fok(p))kEZ
0

in the manifold A tends to p%, = (22, w% ) at an exponential rate as |k| — oo
and £(2%,22) = 0. We list now some of the main properties of the Melnikov
potential.

Theorem 2.1 Under the above notations and hypotheses:

a) L : A — R is well-defined, smooth and invariant under the action of
the unperturbed map: LFy = L.

b) The differential of the Melnikov potential M = dL (called the Mel-
nikov function ), measures, in first order in €, the distance between the
perturbed invariant manifolds WH°.
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c¢) If L is not locally constant, the manifolds W** split for 0 < |e] < 1,
i.€., they do not coincide.

d) If p € A is a non-degenerate critical point of L, the manifolds W** are
transverse along a primary homoclinic orbit O, of F; for 0 < || < 1,

with Oy = (Fok(p))kez. Moreover, when all the critical points of L are

non-degenerate, all the primary homoclinic orbits arising from A are
found in this way.

The proof of this theorem can be found in [DR97a]. We will restrict
ourselves to point out some comments about it.

An essential (and hidden along the present paper) ingredient for the proof
of Theorem 2.1 is the fact that the invariant manifolds W* are exact La-
grangian immersed submanifolds of P. Actually, for any cotangent coordi-
nates (z,y) adapted to Wy*—that is, in these coordinates the unperturbed
invariant manifold W;"* is given locally by {y = 0} and the symplectic form
w reads as x dy—, the perturbed invariant manifold W* can be expressed
locally in the form y = £0L{"*(z)/dz + O(£?), for some well-defined smooth
function L;"* : Wy"® — R called infinitesimal generating function of the
perturbed family {W**}. Restricting the base points of the unperturbed in-
variant manifolds to the separatrix A where their smooth structures coincide,
we can define a smooth function L = L} — L] : A — R, whose expression
is given in (2.3). From the above discussion, it is obvious that the Melnikov
potential is a geometrical object associated to the perturbation, whose dif-
ferential M = dL gives the first order distance, along the coordinate y in
any cotangent coordinates (z,y) adapted to the separatrix A, between the
perturbed invariant manifolds. The Fy-invariance of the Melnikov potential
L is a trivial result from its expression, since a shift in the index of the sum
does not change its value.

The rest of the properties of Theorem 2.1 follow readily from the proper-
ties stated above. By a primary homoclinic orbit of our perturbed problem
we mean a perturbed homoclinic orbit O, C W*NW?) \ {pS.} of F., de-
fined for |¢| small enough and depending in a smooth way on . These are
the kind of orbits that a perturbative theory based on the Melnikov potential
can detect.
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2.4 Topological results for the perturbed system

Since the transverse homoclinic orbits detected by the Melnikov method are
in fact associated to non-degenerate critical points of the Melnikov potential
L : A — R, Morse theory can be applied to L to provide lower bounds on the
number of transverse primary homoclinic orbits.
We recall again that we are assuming that the invariant manifolds Wy"*
are doubled, that is,
W =Wy =W;,

and that the separatrix is defined by A := W\X, where the bifurcation set ¥ is
the subset of W of points where there is a coincidence of the topology induced
by the inclusion W C T*M and the two ones induced by the inclusions
W C Wy

The separatrix A is not a compact submanifold of P. However, by the
invariance of L under the action of the unperturbed map Fy, it turns out that
the Melnikov potential can de defined on the quotient manifold A* := A/ Fy,
consisting of unperturbed homoclinic orbits of A. The quotient manifold
A* := A/Fy will be called the reduced separatriz (of the unperturbed map).

In general, A* needs not to be compact. One way to ensure that A* is
a compact manifold, is by assuming that the bifurcation set is minimal, i.e.,
Y = {px}. (Remember that the hyperbolic fixed point p., is always con-
tained in the bifurcation set X, see Lemma 2.2.) This hypothesis is equivalent
to require that the separatrix is A = Wy \ {p}. We will say that the in-
variant manifolds are completely doubled in this case.

It is worth remarking that in the planar case with a double loop (o0),
the bifurcation set is just the hyperbolic fixed point, i.e., if the invariant
manifolds are doubled, then they are completely doubled. But, in general,
for more dimensions the situation is not so simple.

For example, let Fy : R — R4 d > 1, be the product of d planar
maps f; : R* — R?, each one with a double loop T'; = {p/ .} U A; where
pl, € R? stands for the fixed point of f; and A; are the two components
of [; \ {pl.}, for j = 1,...,d. Then, A = A; x --- x Ay has 2% connected
components and ¥ = (I'; x --- x I'y) \ A contains strictly the hyperbolic
fixed point p% = (pl,,...,p%) € R%?. In particular, A # W;"* \ {ps}, and
each connected component of the reduced separatrix A* is homeomorphic
to S! x R4~!. In this example, the invariant manifolds are doubled but not
completely doubled, and the reduced separatrix is not compact.
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For completely doubled invariant manifolds, we now state a result about
the number of primary homoclinic orbits that persist under a general per-
turbation.

Theorem 2.2 If the invariant manifolds are completely doubled, A* is a
compact manifold without boundary. Assume that L : A* — R is a Morse
function. Then, the number of primary homoclinic orbits is at least 4.

We recall that a real-valued smooth function over a compact manifold
without boundary is called a Morse function when all its critical points are
non-degenerate. It is very well-known that the set of Morse functions is open
and dense in the set of real-valued smooth functions [Hir76, page 147|. Thus,
to be a Morse function is a condition of generic position.

The proof of the theorem above can be found, again, in [DR97al, along
with the exact topological characterization of the manifold A*.

It is very important to notice that additional symmetries [ : P — P of the
map F.—that is, involutions [ such that F.I = I'F, and I*¢ = ¢—can give
rise to new invariances for the Melnikov potential: LI = L. In particular, L
can be considered as a function over the quotient manifold A} := A/{Fy, '},
and the number of homoclinic orbits provided by the Morse theory may be
increased. Instead of describing here a general theory, we will apply directly
this idea to our examples.

2.5 Variational results for the perturbed system

We finish this account of general results by introducing very briefly some
variational results.

There exists a variational principle, due to MacKay, Meiss and Perci-
val [MMP84, Eas91], which establishes that the homoclinic orbits of the
perturbed twist map (2.2) are the extremals of the homoclinic action

W[O] = Z ‘Cé(zkv zk-l-l)v 0= (Zk)kEZa

kEL

and a homoclinic area can be defined for every pair of homoclinic orbits O,
O’ and is given by the difference of homoclinic actions

AW[0, 0] = W[O] — W[O].
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For a motivation of these names, we again refer the reader to [DR97a].
There, one can see that given p € O, p’ € O, and paths y** from p to p’ in
W* such that there exists an oriented 2-chain D with 0D = 7y := % — 7%,
then

AW[0,0' = y{ wdz = — //D dz A dw. (2.4)
ol

In this formula, by a path v*® in the immersed submanifold W* we mean
that y** is contained in WX** and it is continuous in the topology of W°.
For example, if v is any of the loops of figure 1, it is a closed path in R? but
not in W.

The formula above shows clearly that the homoclinic area is a symplectic
wmvariant, i.e., it neither depends on the symplectic coordinates used, nor on
the choice of the symplectic potential wdz. The homoclinic action can be
considered as the homoclinic area between the homoclinic orbit at hand and
the “orbit” of the fixed point pZ . Thus, it is a symplectic invariant, too.

In particular, if P = R? = T*R with the standard area as the symplectic
structure, and p € O, p' € O are consecutive intersections of the invariant
manifolds, then the homoclinic area AW[O, O] is simply the (algebraic) area
of the associated lobe.

We end this section noting that in terms of the Melnikov potential, there
is also a nice expression for the homoclinic action and the homoclinic area.
The proof, again, can be found in [DR97a).

Theorem 2.3 Let O, be a primary homoclinic orbit with Oy = (Fok(p))kEZ
for some p € A. Then, the homoclinic action admits the asymptotic expres-
sion W[O.] = W[Oo] + ¢L(p) + O(¢?). Given another orbit O. such that
Oy = (Fok(p’))kEZ for some p' in the same connected component of A as p,
the homoclinic area is given by

AWIO,, O] = e[L(p) — L(p')] + O(€?).

3 Planar billiards

3.1 Convex billiards

Let us consider the problem of the “convex billiard table” [Bir27a, Bir27b]:
let C' be a smooth closed convex curve of the plane R?, parameterized by
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Figure 2: T(p,v) = (®,V), where v = |¥(¢)|cos¥ and V = |¥(®)| cos O.

v : T — C, where T := R/27Z, in such a way that C is traveled coun-
terclockwise. Suppose that a material point moves inside C and collides
elastically with C' according to the law “the angle of incidence is equal to
the angle of reflection”. Such discrete dynamical systems can be modeled
by a smooth twist map (called billiard map) T defined on a subset P of the
cotangent bundle of T, that is, the annulus A :=T*T = T x R.. This subset
is defined as

Pi={lpv) € A: | <70},
where the coordinate ¢ is the parameter on C, and v = |§(¢)|cos ¥, where
¥ € (0,7) is the angle of incidence-reflection of the material point. In this
way, we obtain the map T : P — P given by (¢,v) — (®, V') that models
the billiard (see Figure 2).
This map 7' is a twist map with one degree of freedom, with

G:{p,@)eTxT: p# 2} — R, G(p,®):=|7(p) — (D)
as its twist generating function, since

T(p,v) =(®,V) <= v=—-0G(p, D), V = 0,G(p, @).
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Indeed, the left-to-right implication is simply a computation:

(7(p) = 7(®),¥(v))

81G(§07 (I)) = |7(§0) _ ’Y(‘I))| = _|7(90)| cost = -,
0:G(p, @) = <’Y(i)(;)7_(%i7y)(,;)(|@)> = |9(®)|cos @ =V,

whereas the right-to-left one follows from the convexity hypothesis on C'.

It is geometrically clear that if C” is another closed convex curve obtained
from C by a translation plus a homothety plus an orthogonal linear map (that
is, a similarity) then its associated billiard map 7" is conjugated to T', and so
they are equivalent from a dynamical point of view. We will take advantage
of this property, working in the space of smooth closed convex curves modulo
similarities.

The billiard map 7" has no fixed points but it has two-periodic orbits,
corresponding to opposite points with the “maximum” and “minimum” dis-
tance between them. In these orbits the angle of incidence-reflection is 7/2
and thus v = 0.

Instead of studying them as fixed points of T2, we introduce the following
simplification, as is usual in the literature [LT93, Tab94, DR96, Lom96a]. We
will assume that C'is symmetric with regard to a point. Modulo a similarity,
we can assume that this point is the origin:

C=-C.

Consequently, we can choose a parameterization vy of C such that satisfies
Y(p+7) = —y(p), in such a way that the two-periodic orbits are of the form
{(¢0,0), (o + m,0)}, that is, two opposite points over C. Then, the billiard
map 71" and the involution

S:P—=P, S(p,v) = (p+m,v),
commute. This allows us to introduce the symmetric billiard map
F:P—=7P, F := ST,

so that those two-periodic points for 7" are fixed points for F'. Moreover, the
dynamics of F' and T are equivalent, since F? = T2,
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The map F' is also a twist map, with
L:A(p,@)eTxT: p#+rt =R L(p,®):=|7(p) +7(2)] (3.1)

as its twist generating function, since y(® + 7) = —y(®).
Thus, given a sequence (p,)nez such that p, = (¢, v,) € P, we have that
(Pn)nez is an orbit of F' if and only if

Up = _015(30n) 90n+1) = 82‘6(9071,71; Son)a Vn € Z. (32)

This leads us to the following wvariational principle: the orbits of the
symmetric billiard map F' are in one-to-one correspondence with the critical
configurations of the functional (called the action)

W T — R, W[(Sf?n)nez] = Z E(Sona §0n+1)’

nes

that is, with the configurations (¢, )nez C T such that

W [(n)nez] = O L(0k, Pr+1) + 02 L(Pr—1, 0x) = 0, VEk € Z.

(Note that although the series for W is in general not convergent, 0yW
involves only two terms of the series, and therefore VIV is well defined.) The
orbit (pp)nez of F can be found from the critical configuration (¢, ),z of W
by using relation (3.2).

Thus, having a twist generating function allows us to work with only half
of the coordinates (the base coordinates, i.e., the ¢’s). The fiber coordinates
(i.e., the v’s) are superfluous. We can also work with the coordinate ¢ = ()
of the impact points on the curve C'. We will use indistinctly the p-notation
(p = (p,v) € P), the p-notation (¢ € T), or the g-notation (¢ € C).

To end the discussion about convex billiards, let us introduce the involu-
tion

R:P—P, R(p,v) := (¢, —v),
which is a reversor of the symmetric billiard map F, that is, F~! = RFR.

The reversor R and the symmetry S can be interpreted as follows: given
an orbit (g, )nez of the symmetric billiard map F' (respectively, the billiard
map 7T'), (¢_n)nez, (—n)nez, and (—qg_p)nez are also orbits of F' (respectively,
T'), see Table 3.1. These four orbits are all different, except in the trivial cases
of fixed points or two-periodic orbits. Besides, the image of a homoclinic
orbit by R, S or RS is another homoclinic orbit. As is usual, we will use this
property to save work in looking for the set of primary homoclinic orbits.
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Id R S RS
P (pn)nEZ (an)neZ (Spn)nEZ (RSpn)nEZ
T (Son)neZ (@—n)nEZ (Qon + W)nEZ (Qo—n + ﬂ-)nEZ
C (qn)nEZ (Q—n)nEZ (_Qn)nEZ (_Q—n)neZ

Table 1: The effect of the reversor R and the symmetry S on an orbit (py,)nez
of F. Here p, = (¢n,vn) € P CT x R and ¢, = v(p,) € C.

3.2 Elliptic billiards

The simplest example of closed convex curves are the ellipses. Among them,
the circumferences are very degenerate for a billiard, since they have a one-
parametric family of two-periodic orbits. So, let us consider now a non-
circular ellipse:

2 2
Coi={ %+ % =1} = (0(0) = (acosp,fsing) : 9 < T),

with a? # (3%2. Modulo a similarity, we can assume that a?> — 32 = 1. Thus
a > 1, B > 0, the foci of the ellipse are (£1,0), and the eccentricity is
e =1/a. Let us denote Ty : P — P the twist map associated to the ellipse
Cy, and Fy = S oTy. The billiard map Ty is called elliptic billiard.

The points p7, = (0,0) and p., = (w,0) form a two-periodic orbit for
Ty that corresponds to the (right and left) vertexes (£a,0) of the ellipse,
and hence they are fixed points for Fy. We will check that these two fixed
points are hyperbolic with four separatrices connecting them. Thus, we are
really dealing with heteroclinic connections. Nevertheless, all the results
about the homoclinic case in the previous section can be applied to the
symmetric billiard problem. This is due to the fact that we can consider
the variable ¢ defined modulo 7 in the symmetric case, using the symmetry
S(¢,v) = (p + m,v). Then, the fixed points p7, and p'  become the same
fixed point, so that the previous connections can be considered homoclinic
ones.

Let us recall that a caustic is a smooth curve with the following property:
if at least one of the segments (or its prolongation) of the polygonal trajectory
of the point is tangent to the curve, then all the other segments (or their
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Figure 3: Phase portrait of Fy. A, R(A), S(A) and RS(A) are the four
separatrices.

prolongations) are tangent to the curve. It is a very well-known fact that
all the orbits of an elliptic billiard have a caustic, and actually the caustics
are just the family of confocal conics to Cy (little Poncelet’s theorem [KT91,
Tab95a)).

This property indicates the integrability of elliptic billiards since the ex-
istence of caustics reflects some stability in the system. In fact, it is not
difficult to obtain an explicit expression for a first integral of the elliptic bil-
liard in (¢,v) coordinates [Lom96a]. Under the assumption a? — 5% = 1,
a first integral is I(p,v) = v? — sin® p. As a consequence, the level sets
{I = K} _1<x<pe are invariant for Ty and Fy. Thus, the phase portrait of the
symmetric billiard map Fj can be easily obtained, see figure 3.

The main properties of Fy are listed in the following lemma.

Lemma 3.1 Let h > 0 be determined by the equations
a = coth(h/2), [ = cosech(h/2), e =tanh(h/2). (3.3)

a) The points p7, = (0,0) and pL, = (m,0) are hyperbolic fized points of



Homoclinic orbits of twist maps and billiards 17

the symmetric billiard map Fy, with h as their characteristic exponent,
that is, Spec[dFy(pLr)] = {eh, e*h}.

b) Let Wy"*(pLr) be the unperturbed unstable and stable invariant curves
of Fy at pir. Then, W5(p5) = W¢(p%). Thus, Fy has ezactly four
separatrices (heteroclinic connections):

A = {(p,sinp): 9 e (0,m)},
R(A) = {(p,—sinp):p e (0,7)},
S(A) = {(p,—singp): ¢ € (r,2m)},
RS(A) = {(p,sinyp): ¢ € (m,2m)}.

c¢) Let po = (o, v0) : R — A be the diffeomorphism defined by
@o(t) = arccos(tanht), vo(t) = sin pg(t) = secht.

Then, po(t) is a natural parameterization of A: Fy(po(t)) = po(t + h).
Moreover, the natural parameterizations of R(A), S(A), and RS(A) are

R(po(—t)), S(po(t)), and RS(po(—1)).
d) Let ®y(t) = po(t + h). Then,

sin g (t) + sin Py(t)
[7o(o(t)) + 70(Po ()]

= sech(t + h/2). (3.4)

Proof. Tt is only sketched here. More details can be found in [DR96].
a) We know that p’_ and pl_ are fixed points for Fy. Let

Lo(p,®) = |70(p) +7(®)]
(@® = 1)p® — (a® +1)(p* + %)/2
2c

= 2a+ + 03(307 (I))

be the twist generating function of Fy(p,v) = (®,V), where we have used
that o — 32 = 1. From the implicit equations of Fjy generated by L, we get

trace[dFy(pl,)] = 019(0,0)+ 9,V (0,0)
—[811£0(0, 0) + 822£0(0, 0)]/812£0(0, 0),
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and a straightforward calculus yields trace[ dFy(ph.)] = 2(a® +1)/(a® — 1).
Moreover, det[dFy] = 1. Thus A = (o +1)/(a — 1) > 1 is an eigenvalue of
dFy(p~.), and (3.3) implies A = e”. The proof for p!_ is analogous.
b) This is a direct consequence of the conservation of the first integral I.
c) A tedious (but elementary) computation shows that

01 Lo(po(t), wo(t + 1)) + BaLo(o(t — R, o(t)) = 0.

Thus, the configurations (p,)nez C T, @n = @o(t + hn), are critical points
of the action Wy[(vn)] = Snez Lo(@n, ©ni1), and therefore, by the above-
mentioned variational principle, the sequences (pn)nez, Pn = p(t + hn), are
orbits of Fy. This proves that p(t) is a natural parameterization of A.

The final part of (c) follows from the equalities FR = RF~! and F'S =
SF.

d) It is another cumbersome computation. a

3.3 Non-integrability of billiards close to ellipses

Birkhoff conjectured that the elliptic billiard is the only integrable smooth
convex billiard. Our goal is to see that this is locally true for symmetric entire
perturbations. Concretely, we shall prove that any non-trivial symmetric
entire perturbation of an ellipse is non-integrable. (Roughly speaking, a
perturbation of an ellipse will be called trivial when it is again an ellipse.)

To begin with, let us consider an arbitrary symmetric smooth perturba-
tion C. = —C; of the ellipse Cy. Modulo O(g?) terms (which do not play
any role in our first order analysis) and a similarity, C. can be put in the
following parameterized (normal) form

Ce ={1e(p) = (acosp,[1 +en(p)|Bsing) : ¢ € T}, (3.5)

for some smooth m-periodic function n(¢p), or in the following implicit form

2 2
C. = {(x, y) eR?: % + % =1+ 26P(a_1:c,ﬂ_1y)} : (3.6)

for some even smooth function P(u,w) such that P(1,0) = 0.P(1,0) = 0.
The parameterized form can be considered a normal form for C,, whereas
the implicit form cannot, since n(y) is completely determined by the pertur-
bation, whereas different functions P(u,w) can give rise to the same pertur-
bation C.. Because of it, we have preferred to deal with the parameterized
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form, instead of the implicit one. This does not imply loss of generality, since
it is easy to check that the connection between them is simply

P(cos g, sin p) = n(¢p) sin? p. (3.7)

The parameterized normal form (3.5) shows that C. is an ellipse (up
to O(e?) terms, of course) if and only if the function n(y) is constant. As a
consequence, we will say that C; is a non-trivial (at order 1) symmetric entire
perturbation of the ellipse Cy if and only if n(¢p) is a non-constant m-periodic
entire function.

Let T, : P — P be the billiard map associated to the curve C;, and
F, = ST, the symmetric billiard map. We note that the hyperbolic fixed
points pL are preserved by the perturbations (3.5) and (3.6): F.(pL") = plr,
since (+a, 0) are still the more distant points on the perturbed ellipse C..

For |¢| < 1, C. is a convex closed curve, and thus F; is a twist map, with

L9, ®) = [7e(9) + 7:(®)] = Lo(i0, ®) + L1, @) + O(€?)

as its twist generating function, where

Lo(p, @) = |70(<€)+70(‘?)|,
Lle®) = B AT () +sind @) (3)

Using the natural parameterization provided by Lemma 3.1, the formula
of L1(p,®) given in equation (3.8), and the formula (3.4), the Melnikov
potential of our perturbed billiard problem (on the separatrix A) is L(t) =
>onez 9(t + hn), where

g(t) = Li(po(t), po(t +R))
= [sech(t+ h/2)[sech(t)n(po(t)) + sech(t + h)n(eo(t + h))].

We have taken t as the coordinate over the separatrix A.

Before proceeding to study the Melnikov potential, it is very convenient
to arrange the sum Y ,c7 g(t + hn), and express the Melnikov potential in
the following way:

L(t) = > f(t+hn), (3.9)

neL

f@) = Blop(t) +v-(8)]6(2) = 2avy (B)v-()n(eo(t)),
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where

vo(t) :=singpo(t) = secht, vi(t) :=vo(tFh/2), 6(t):=vo(t)n(po(t)).

Now, assume we are given a non-trivial (at order 1) symmetric entire
perturbation C. of the ellipse. Our aim is to prove the non-integrability of
the billiard map 7., which is analytic since C, so is. For this purpose we
only have to prove that the Melnikov potential (3.9) is non-constant. The
argument is heavily based in the fact that n(y) is a non-constant 7-periodic
entire function.

Under this hypothesis, 7y = 74 /2 is a singularity of (@ (t)). It suffices to
note that sin pg(t) = sech(t) and cos py(t) = tanh(¢) have simple poles at 7y
and no more singularities on &t = 7/2. Then, 79 is also a singularity of the
function f(t) defined in (3.9), since v, (t)v_(t) is analytic and non-zero on .
Finally, using that L(¢) — f(¢) is clearly analytic on 79, 79 is a singularity of
L(t). In particular, the Melnikov potential L(#) is non-constant and we have
proved the following result.

Theorem 3.1 Let C. be a non-trivial (at order 1) symmetric entire pertur-
bation of a non-circular ellipse. Then the billiard in C. is non-integrable for
0<|e| < 1.

Given an integer ¢ > 1, a perturbation C. of an ellipse () is called trivial
up to order { if there exists a family of ellipses E, such that C, = E.+0(s*™!).
The discussion above fails for perturbations trivial up to order 1, but the
result of non-integrability can be generalized to non-trivial perturbations,
that is, except for perturbations that are trivial up to any order ¢ > 1.

Theorem 3.2 Let C. be a non-trivial symmetric entire perturbation of a
non-circular ellipse. Then the billiard in C. is non-integrable for 0 < || < 1.

We describe briefly how this theorem can be proved and the interested
reader should fill in the gaps without difficulty.

First, the curve C. can be written, modulo a similarity, as (compare
with (3.5)):

C. = {(a(e) cos o, 7(p,€)B(e) sing) : p € T},
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where (¢, €) = 1+e‘n(p) +0(e41), n(p) is a non-constant 7-periodic entire
function, a(e), B(e) are smooth functions such that &(¢)? — 8(¢)? = 1, and
¢ > 1 is the smallest integer such that C. is non-trivial at order /.

Next, we consider the family of ellipses

E. = {(a(e)cosp, B(e)sing) : ¢ € T},

and the biparametric family of curves

G.s = {(ale) cosp,M(p,e,8)B()sing) : ¢ € T},

where 7(¢p, €,0) = 1+0n(p)+0(€d) is defined in such a way that C. = G, 5 =
E. + 0(9), for § = .

Finally, since elliptic billiards are integrable systems with separatrices,
we can take E, as the unperturbed curve and G. ; as the perturbation, being
§ = ¢* the perturbation strength. In this setting, Theorem 3.2 follows just
along the same lines as Theorem 3.1. The crux of the argument is again that
n(p) is a non-constant m-periodic entire function.

3.4 Symmetric reversible perturbations

Along this subsection we shall study several topics concerning a special kind
of symmetric perturbations, called reversible. By definition, these are per-
turbations preserving the original axial symmetries of the ellipse, that is,
perturbations (3.6) such that P(u,w) = P(—u,w) = P(u,—w), or equiv-
alently, P(u,w) = Q(u? w?) for some smooth function @ : R*> — R such
that @Q(1,0) = 0. Let k(s) be the smooth function defined as k(s) :=
Q(1 — s2,s%)s 2. Then, relation (3.7) implies that n(p) = x(sin? p).

The lobe area

Our goal now is to introduce the lobe area as a quantity measuring the split-
ting size.

To such end, we first look for the reversors of the system. We will find
two of them, a property that will allow us to state the existence of at least a
couple of symmetric heteroclinic orbits OF. The area of the region enclosed
by these orbits will be then defined as the lobe area.
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The involution
R0+ :P_>P7 RSF(SO,U) = (W—QO,U),

is a reversor for the elliptic billiard Tg, and also for Fy = STp. The separatrix
A is Rj-symmetric, i.e., Rf A = A, and intersects transversely the fixed set
of Ry

Cy ={peP:R'p=p}={(p,v) EP:p=1/2}
in one point p§ = (7/2,1). The natural parameterization py(t) of A given in
Lemma 3.1 has been chosen to satisfy py(0) = pg .

Moreover, the involution Ry = FyR™' is another reversor of Fy. The
separatrix A is also Rjy-symmetric and intersects transversely the fixed set
Cy of Ry in one point py, and it turns out that po(h/2) = py . The associated
unperturbed heteroclinic orbits

Of = {po(hn) : n € Z}, Oy = {po(h/2 + hn) : n € Z} (3.10)

are called symmetric heteroclinic orbits, since RfOF = OF.

For ¢ # 0, since we have restricted the study to reversible perturbations,
R* := R is also areversor of F;, as well as the involution R~ := F.R*. Their
fixed sets C* = {p € P : R*p = p} are important because REW*(p ) =
W:(ph,), where W**(p7.) and W¥*(p!,) stand for the perturbed invariant
curves at the hyperbolic fixed points pl, and p' . Consequently, any point
in the intersection C* N W?#(pl.) is a heteroclinic one, and gives rise to a
symmetric heteroclinic orbit.

Since the separatrix A intersects transversely the unperturbed curve C;
at the point pg, there exists a point p* = pi + O() € C* N W?(pL,) and,
therefore, there exist at least two symmetric heteroclinic orbits, denoted OF,
on the region

{(p,v) eP:0<p<m0<uv},

for |e| small enough. They are called primary since they exist for arbitrary
small |e].

Of course, using the reversor R and the symmetry S, we get that there
exist at least eight symmetric primary heteroclinic orbits: OF ROE SO,
and RSOZ.

On the other hand, from vy(t) = sin py(t) = secht and n(p) = k(sin® p),
it follows that f(t) = 2awv,(t)v_(t)n(po(t)) is even, so that the Melnikov
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potential L(t) = Y ,cz f(t + hn) is even and h-periodic. Its derivative,
M(t) := L'(t) is odd and h-periodic; hence M (nh/2) =0, n € Z. Therefore,
hZ/2 is a set of critical points for L(t), that generically, are non-degenerate.

We shall prove in Proposition 3.2 that for any given non-zero polynomial
perturbation and h small enough, the critical points of L(t) are just hZ /2, all
of them being non-degenerate. As a consequence, the perturbed billiard map
has just eight primary heteroclinic orbits: the symmetric ones OF, ROZ,
SO%, and RSOE. Moreover, the pieces of the perturbed invariant curves
between the points p¥ € OF enclose a region called lobe. Our measure of
the splitting size for the planar billiard problem will be the area A = A(e, h)
of this lobe, which is nothing else but the homoclinic area between O and
O . By Theorem 2.3, it is given by

A=AW[OF, 071 =eQ(h) +0(e?),  Q(h) = L(0) — L(h/2).

Polynomial perturbations

In order to perform an explicit computation of the Melnikov potential (3.9),
we restrict ourselves to symmetric reversible polynomzial perturbations, that
is, perturbations such that the function P(u,w) in the implicit form (3.6)
is a polynomial in the variables u* and w* P(u,w) = ' pjju*w?, with
> pij = 0. Here X' stands for a finite sum over a range of non-negative
integers 7 and j, whereas Y. denotes the same sum without the terms with
j # 0. (The additional condition is due to the normalization modulo a
similarity, which allows us to assume that P(1,0) = 9,P(1,0) =0.)

In the parameterized normal form (3.5), by relation (3.7), these symmetric
reversible polynomial perturbations are equivalent to suppose that

N
n(p) = masin®™ g,  ny #£0,
n=0

for some integer N > 0 (called the order of the perturbation).

We now address the explicit computation of the Melnikov potential (3.9).
Since vg(t) = sin o(t) = secht, then n(po(t)) = SN ;1. sech®™ t, and the
function f(t) = 2av,(t)v_(t)n(poe(t)) is mi-periodic and meromorphic, so
that the Melnikov potential L(t) = 3 ,,c5 f(t+hn) is an elliptic function with
periods h and m4. This crucial observation goes back to [LT93, DR96, Lev97].
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We now review some properties of the elliptic functions (for a general
background, we refer to [AS72, WW27]).

Let us recall that a cell of an elliptic function of periods w; and ws is
any parallelogram P, of vertexes 7, T 4+ wi, T + we, and 7 + wy + wa, such
that its boundary does not contain poles. Then, the set of poles in any
given cell is called an irreducible set of poles. A direct consequence of the
Liouville’s Theorem is that two elliptic functions with the same periods,
poles, and principal parts, must be the same modulo an additive constant.
(By periodicity, in practice it suffices to consider an irreducible set of poles.)
This additive constant is not relevant for our purposes, since the intrinsic
geometrical object associated to the problem is L'(t) rather than L(¢) itself.

Therefore, we are naturally led to the location of an irreducible set of
poles for the Melnikov potential L(t¢), and next to the computation of the
associated principal parts.

First, consider 7y = /2 and 75" = 79 + h/2. By the comments before
Theorem 3.1, the poles of f(t) are 79 + miZ, which are of order 2N, and
75" + miZ, which are simple ones.

Now we focus on their principal parts. We denote by a,(f, 7) the coeffi-
cient of the term (¢t — 7)¢ in the Laurent expansion of f(¢) around t = .

From the relations

azé(%r, 7'0) = azé(v—, 7'0),

the formula f(t) = Blvs(t)+v_(t)]6(t), and the symmetry of f(¢) with regard
to its “central” pole 1o = (15" + 75)/2, we get

a,l(f,TJ)—FCL,l(f,T(;) = 0)
a_e2)(f,0) = 2Ba_(2e42)(v40,70),
a_@er)(f,0) = 0.

This shows that {7i/2} is an irreducible set of poles of the Melnikov
potential L(t) = > ,cz f(t + hn). The pole wi/2 has order 2N and

a_(ae41)(L,mi/2) =0, a_(2e42)(L, 73 /2) = 2Ba_(2042)(v46, 73 /2),

forall £ =0,..., N — 1. Therefore, modulo an additive constant, we can ex-
press the Melnikov potential L(¢) as a linear combination of even derivatives
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of the Weierstrass p-function associated to the periods h and 7i evaluated
at the point t — 7 /2:

N-1 B . 2
L(t) = constant +28 3" ~ (2”2)(”*‘5’?2/ )p(%)(t—ﬁi/Z). (3.11)
pard (20+1)!

It suffices to check that both sides of the equality have the same periods,
poles, and principal parts. To see this, let us remember that the Weierstrass
p-function associated to the periods w; = h and ws = w¢ is defined by the

series
p(t) = t72 + Z {(t - wn)72 - wn72}a
nez?
where wp, n, = niwi + naws and Z2 = Z*\ {(0,0)}. From its definition, it is
obvious that p(t) is elliptic with periods h and 74, and {0} is an irreducible
set of poles for p(t), with ¢t2 as the principal part of p(t) around ¢ = 0.
Then, formula (3.11) follows.

For purposes of numerical computations the function p(t) is useless on
account of the slowness of its convergence. (The general term in the series
above is only of order |n|™®.) Accordingly, we will introduce another function
¥(t), best suited for pencil-and-paper and/or numerical computations, based
in the use of Jacobian elliptic functions, such that

Y(t) = constant —p(t —mi/2). (3.12)

Then, we will rewrite formula (3.11) as

la (vi0,m1/2)
L(t) = constant —20 QAT @0 (4). 3.13
(t) = constan Zz:%) 20+ 1) P () ( )

This simple formula allows us to compute the Melnikov function in a finite
number of steps, for any symmetric reversible polynomial perturbation, that
is, for any n(p) = SN, 7, sin® ¢. We need only to compute the numbers

a_(2e42)(v46,73/2), £ =0,...,N — 1, in each concrete case, where
N
vy (t) = sech(t — h/2), 5(t) =" m, sech®™ ' ¢. (3.14)
n=0

For instance, it is easy to compute a_sy(v4d, 7i/2) = (—1)Nnyas.
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The definition of (t) requires the introduction of some additional nota-
tions, which we borrow again from [AS72, WW27]. Given the parameter m €
[0,1], K = K(m) := fow/z(l — msin¥)"Y2d¥ is the complete elliptic integral
of the first kind, K' = K'(m) := K(1 —m) and ¢ = g¢(m) := exp(—nK'/K)
is the nome. If any of the numbers m, K, K', K'/K or q is given, all the
rest are determined. From our purposes, it is convenient to determine the
value of the quotient K'/K by imposing K'/K = 7 /h. From now on, we can
consider the quantities m, ¢ and K as functions of h. For instance, the nome
is exponentially small in h,

g=q(h) ="

Under these notations and assumptions it turns out that the elliptic function

P(t) = (%>2dn2 (%Kt m) : (3.15)

where dn(u) = dn(u|m) is one of Jacobian elliptic functions, verifies (3.12).
Indeed, it suffices to observe that dn®(u|m) is an elliptic function of periods
2K and 2K'i, which has {K'i} as an irreducible set of poles, —(u — K'7) 2
being the principal part of dn®(u|m) around u = K'i. Then, the change of
scale u = 2Kt/h makes 1(t) elliptic with periods h and 7¢ (this is the reason
for the choice K'/K = m/h), and the pre-factor (2K /h)* prevents a change
of its principal part.

In order to convince the reader on the adequacy of ¥(t) for numerical
work, we note that its Fourier expansion, valid for |3t| < /2, is given by

97\2 kg
—”) M s L

(t) = constant + Z Yy cos(2mkt/h), Yk = ( h/) 1—qg?

k>1

(3.16)
(The value of ¥y = [ 1(t) dt /b is not needed, since we are working modulo
additive constants.) Clearly, this series is rapidly convergent for real ¢ (the
values we are interested in). This Fourier expansion can be obtained from the
relation dn’(u|m) = 1 — m sn?(u|m) and the Fourier expansion of sn?(u|m)
given in [WW27, page 520].

Quartic perturbations

Let us assume now that C. is a symmetric reversible quartic perturbation,
that is, the function P(u, w) in the implicit normal form (3.6) is a polynomial
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of degree four:

P(u,w) = pog+p10u2+p01w2+p20u4+p11u2w2+p02w4, Poo = —(P10+P20)-

From relation (3.7), these symmetric reversible quartic perturbations are
equivalent to suppose that

n(p) = mo + m sin® ¢

in the parameterized normal form (3.5), where

T = D20 — P11 + Po2-

(The value of g makes no importance in the following discussion.)
Taking P(u,w) = w* we get an example of this kind of perturbations,
namely
22 P y
Csz{(:c,y) cR?: §+@:1+26@ :
which gives 9 = 0 and 7, = 1, that is,

C. = {(a cos g, [1 + esin® p|Bsing) : ¢ € T} . (3.17)

Quartic perturbations are interesting because everything (Melnikov po-
tential, homoclinic orbits, and lobe areas) can be easily computed. For in-
stance, formula (3.13) takes the simple form

L(t) = constant+2na3%*(t)

2K\° 2Kt
= constant +2m a3 (T) dn? (T m) : (3.18)

From the properties of the function dn(u|m), the set of real critical points of
L(t) is hZ/2, all of them being non-degenerate. According to Theorem 2.1,
this gives two homoclinic orbits OF close to the unperturbed ones OF given
in (3.10).

Taking into account the symmetries and reversors, the perturbed symmet-
ric billiard map has just eight (transverse) symmetric primary heteroclinic
orbits: OF, RO%, SO%, and RSOZ.

Moreover, since dn(0|m) = 1 and dn(K|m) = /1 —m, the area A =
A(e, h) of the lobe enclosed by the heteroclinic orbits OF is given by

A=eQ(h)+0(E?), Q)= L) — L(h/2) = 2maB*m(2K/h)*.

We summarize all these results in the following proposition.
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Proposition 3.1 For 0 < |¢| < 1, the symmetric billiard map associated to
the convex curve (3.17) has exactly 8 primary homoclinic orbits OF, ROZ,
SO%, and RSOZ, and all of them are transverse.

The Melnikov potential has the expression (3.18), and the area of the lobe

enclosed by the homoclinic orbits OF is given by

A = 2emaBPm(2K/h)? + O0(?).

From the formula /2KmY/2/m = 23,0 ¢*+/2° [WW27, page 479] and

the expression of the nome g = e™™ /" we get another expression for (h):

Q(h) = 32n°n a2k 2e ™ /" {Z exp[—m2k(k + 1)/h]} :

k>0

This series can be numerically computed in a very fast way, due to the speed
of its convergence, even for relatively big values of h.

Clearly, Q(h) is exponentially small in h, and we are led naturally to the
following duality. For regular perturbations (h > 0 remains fixed whereas
e — 0), the Melnikov term £Q(h) is the dominant term for the formula of
the lobe area A. On the contrary, in singular perturbations (h — 0 and
e — 0), one is confronted with the difficult problem of justifying the following
exponentially small asymptotic expression provided by the Melnikov method:

A= A(e, h) ~ eQ(h) ~ 256m%meh e ™™ (e —0,h — 0F),  (3.19)

where we have used that a = coth(h/2) ~ 2/h, and 3 = cosech(h/2) ~ 2/h.

We recall that h is the characteristic exponent of the hyperbolic fixed
points pL” for the symmetric billiard map Fy, see Lemma 3.1. Therefore,
singular perturbations correspond to weakly hyperbolic cases. For a justi-

fication of an exponentially small asymptotic expression like (3.19), but for
other kind of twist maps, we refer the reader to [DR97b, DR97c].

Singular polynomial perturbations

Coming back to a general N, we give a generalization of the exponentially
small Melnikov prediction (3.19). Along the following discussion we will



Homoclinic orbits of twist maps and billiards 29

assume that h is small enough and that the coefficients n,, n =10,..., N, of
the perturbation

N
= musin® o, gy #0,
n=0

are fixed. The convex curve is now
N
C, = { <a Ccos ¢, ll +&Y nnsin® go] B sin go) Cp € T} . (3.20)
n=0

By the definition of 4(¢) given in (3.14), the Melnikov potential (3.13)
reads as

N n-—1
L — 2 (20) 21
(t) = constant — B;;} 2€+1| Mt () (3.21)
where
Bug = a (ey2)(vy - sech™ ' mi/2), vE<n. (3.22)

(We note that B, , = 0, for £ > n.) To get the dominant terms of (3.21), we
must study the order in & of the functions ¥(?9(¢) and the coefficients B, ,,
for0<{<n-1,1<n<N.

Let us begin with the derivatives of ¢(¢). From the Fourier expansion of
Y(t) given in (3.16), we obtain the exponentially small asymptotic expressions

2O (t) = constant +(—1)'2(2r/h)* 2= /P cos(2nt/h) [1 + O(e‘”z/h)] ,
(3.23)
for integers ¢ > 0, real ¢, and small enough h > 0.

Next, we focus on the coefficients By, ;. We split the function v, defined
in (3.14) in its principal % and regular v’ (= vy — v}) part around its
singularity 75" = (74 + h)/2. A simple computation gives

—1
E(t) = —.
U-I—( ) (t _ 7_6}-)
From the Cauchy inequalities, the coefficients in the Taylor expansion of

v’ around 7i/2 are O(1), since v" is uniformly bounded, for h small, in a
ball of fixed radius centered at w4 /2. Thus,

ag(vy,mi/2) = ag(v],7i/2) + a,(v, wi/2) = (2/R)i + O(1), V> 1.
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Besides, the principal part of sech®™*! around its pole 7i/2 is O(1) and, in

particular, a_(gn41)(sech® ™, 7i/2) = (—1)"*14. The discussion above shows
that

n—~
B,y = Z agjt1(vy,mi/2) - a,(25+2j+1)(sech2”+1, Ti/2)
=0
— (_1)”22”72(}12(72” |:1 + O(h2):| ) (324)

From (3.14) and (3.24) we get

B, (t) = constant +
(_1)n+l22n+4ﬂ_2l+2h—(2n+2)e—7r2/h cos(2rt/h) [1 + O(hz)] :

so that the dominant terms of (3.21) are attained at n = N.

Finally, using the relation 8 = cosech(h/2) = 2/h + O(h), we get the
following exponentially small asymptotic expression for the Melnikov poten-
tial (3.21):

L(t) = constant +2'Qynyh CN e ™ M cos(2mt/h) [L+ O(h?)], (3.25)

where 2y is a constant which depends only on the order of the perturbation
N, namely

Qy = (—1)”221"“5?: E_l)%% (3.26)

— (20— 1)1’

As 7 is a transcendental number, Qy # 0 for all N > 1 (but Qy — 0 for

N — 00). Thus, the set of real critical points of the Melnikov potential L(t)
is hZ/2, all of them being non-degenerate, provided that h is small enough.
As in the quartic perturbation, it follows that for 0 < h < 1, the billiard
has just eight (transversal) symmetric primary homoclinic orbits: OF, ROF,
SO%, and RSOE. Moreover, the area A = A(g, h) of the lobe enclosed by

[

O is given by
A=eQh)+0(?),  Qh) = Quanh PNPe ™M 14 0(h?)].

We summarize now these results.
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Proposition 3.2 For h > 0 small enough, there exists ¢g = e9(h) > 0 such
that for 0 < |e| < eg, the symmetric billiard map associated to the convex
curve (3.20) has ezactly 8 primary homoclinic orbits OF, RO, SOF, and
RSO, and all of them are transverse.

The Melnikov potential has the expression (3.25), and the area of the lobe
enclosed by the homoclinic orbits OF is given by

A= Q=N M 14 0(R?)] + 0(%),
with Qn # 0 given in (3.26).

For regular perturbations the Melnikov term £Q(h) dominates, but for
singular perturbations there is a lack of results about the validity of the
exponentially small Melnikov prediction

A= A(e,h) ~ Quyneh GV ™/h (2 50,k — 0F),

as in the case before of quartic perturbations.

A geometric interpretation

All the previous results could be expressed in terms of the eccentricity of
the unperturbed ellipse e = tanh(h/2), which is a natural parameter for the
billiard due to its clear geometric meaning. We have preferred the charac-
teristic exponent h, since it can be considered as the intrinsic parameter for
the problem.

In that setting, singular perturbations (h,e — 0), can be thought as
perturbations of the billiard in a circumference, since the eccentricity of a
circumference is e = 0, which corresponds to the value h = 0.

4 High-dimensional billiards

4.1 Convex billiards

We consider the problem of the “convex billiard motion” in more dimensions.
Let Q be a smooth closed convex hypersurface of R¢*!, for d > 2, parame-
terized by v : S? — Q, where S? is the d-dimensional unit sphere. Suppose
that a material point moves inside @ and collides elastically with Q. Such
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discrete dynamical systems can be modeled by a smooth twist map (called
billiard map) T with d degrees of freedom, defined on a suitable open P of
the cotangent bundle of S¢.

In order to describe this twist map, let us introduce the discrete version
of the Legendre transformation B of S¢ x S¢ onto the cotangent bundle of S¢
defined by

B(z,7') := (z,w), wdz = —01G(z,7')dz (4.1)

where w is the fiber coordinate, w dz is the standard 1-form on the cotangent
bundle of S¢, and the function

G:{(z,2)eS*x8": 242} =R, G(z,7):=|1(2) —(z')|

is the Lagrangian of the billiard [Ves91, MV91].

Although generically the Legendre transformation B has only a local
inverse, using the convexity condition on Q, it can be easily checked that
the billiard Legendre transformation (4.1) is a diffeomorphism from the open
set V = {(2,2') € S¥x S%: z # 2'} onto its image P = B(V). (This is a
consequence of the fact that for convex billiards the orbits can be determined
either by giving two consecutive different impact points determined by their
(base) coordinates z and 2, or by giving the (base) coordinate z of an impact
point together with the direction of incidence, which is determined by the
fiber coordinate w.)

Then, the billiard map is defined by

T:P—P, (z',w') = T(z,w) = BTB™}(z,w)

where the diffeomorphism T:V =V maps a couple of consecutive impact
points (z,2') € V to another couple of consecutive impact points (z/, z"), 2"
being the impact point following z and 2. The Lagrangian G(z, 2') is a twist
generating function for the billiard map 7', that is,

T(z,w) = (o) <= w'd —wdz =T*(wdz) —wdz = dG(z,2").

As in the planar case, we shall work in the space of convex hypersurfaces
modulo similarities, since billiard maps associated to hypersurfaces related
by a similarity are conjugated, and so equal from a dynamical point of view.

The billiard map T has no fixed points, but it has two-periodic orbits.
For instance, the two more distant points (on the Euclidean metric in R?*!)
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give rise to a two-periodic orbit, which is generically unstable in the linear
approximation. In these orbits the fiber coordinate w vanishes.

To study the dynamics of these two-periodic orbits for 7', it is better to
consider them as fixed points of the square map 72, and study 72%. But
since it is not easy to find the twist generating function for T2, we instead
introduce the same simplification as in the planar case. We will assume that
Q is symmetric with regard to the origin:

Q=-09.

Consequently, it is possible to choose an odd parameterization v : S¢ — Q in
such a way that the two-periodic orbits are of the form {(z, 0), (—zo, 0) }, that
is, two opposite points over Q. Then, the billiard map 7" and the involution

S:P—=P, S(z,w) == (—z, —w),

commute.
This allows us to introduce the symmetric billiard map

F:P—=7P, F := ST,

so that the two-periodic orbits for T are fixed points for F. Since F? = T2,
the dynamics of F' and T are equivalent. The map F' is also a twist map,
with

L:{(z7)eSx8" 2+ #£0} =R, L(2,2) = |y(2) + ()]

as its twist generating function, since y(—z') = —v(2').
Finally, let us consider the involution

R:P—TP, R(z,w) == (z, —w),

which is a reversor for /. We will use the symmetry S and the reversor R to
save work in the computation of homoclinic orbits (like in the planar case).

4.2 Prolate ellipsoidal billiards

The simplest examples of smooth convex hypersurfaces are the ellipsoids.
Among them, the spheres are too degenerate for a billiard system, since
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there are plenty of (parabolic) two-periodic orbits, formed by all the pairs of
opposed points. However, the study of a generic ellipsoid (that is, an ellipsoid
without axis of equal length) is much more complicated than the study of
the non-circular elliptic billiard before, because the explicit expression of the
biasymptotic motions in the first case requires the use of analytical tools
much more sophisticated than in the second one [Fed97]. Therefore, in order
to gain insight into the problem, it is interesting to consider a setting to
which the arguments of the planar case can be easily adapted.

This setting is provided by prolate ellipsoids (that is, ellipsoids with all
its axis of equal length except one, which is larger).

In order to put the involved objects in a compact form, let us introduce
the following notation. Given a point ¢ = (qo, .. ., q4) € R¥*!, we denote

q:qUGR, q:(ql,...,qd)GRd.

The same notation is used for points z = (zq,...,24) € S% Now, we can
write a prolate ellipsoid as

— =(q.d Rd“-q—z @:1 4.2
QU q (qa(.I)e ‘O{2+ /82 ()

= {n0e) = (a7.89) 2 = (5,9) € 8%,

with o > 3 > 0. Modulo a similarity, we can assume that o — 5% = 1.
Let us denote T : P — P the twist map associated to the prolate ellipsoid
Qo, and Fy = STy. The billiard map T is called (prolate) ellipsoidal billiard.
The points

pg:(zlongég)v Zéo:(—l,O), 2202(1,0), ’wé’g:O,

form a two-periodic orbit for T, that correspond to the (left and right) ver-
texes (Fa,0) of the prolate ellipsoid on its “horizontal” axis {¢ = 0}, and
hence, they are fixed points for Fy. It turns out that these fixed points are
hyperbolic ones, and their invariant manifolds are completely doubled giving
rise to two separatrices, in the sense explained in section 2.

Using the symmetry S, we could identify the points p = (2, w) and S(p) =
(—z,—w). Then, the fixed points p." become the same point, so that the
previous connections could be considered homoclinic ones.
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Now, we are confronted to the computation of the heteroclinic orbits for
Fy. The rotational symmetry of the prolate ellipsoid Qg with regard to its
“horizontal” axis {§ = 0} is the essential point to accomplish it. Given a
direction a € S9!, let II, be the plane in R¥*! generated by the directions
(1,0) and (0,a), and let Cy(a) be the section of the prolate ellipsoid Qp by
the plane II,, that is,

I, := [(1,0),(0,a)] = {g = (¢,4) = (z,ya) : z,y € R},

and
d+1 oy
Gl = Nt = {a= (i) = (e e B 54 2 1)
= {n(2) = (az,82) : 2 =cosp, 2 = [sinpla,p € T}.

All the sections Cy(a) are ellipses with the same foci: (£1,0), and the same
eccentricity: e = 1/a. The key observation is that if two consecutive impact
points are on the same section, the same happens to all the other impact
points. From Lemma 3.1 and this geometric property—which does not hold

for a generic ellipsoid—, we get the heteroclinic orbits for Fy. The result is
summarized in the following lemma.

Lemma 4.1 Let h > 0 be determined by the equations
a = coth(h/2), [ =cosech(h/2), e =tanh(h/2).

Let qo = (o, o) = (aZy, B2) : R x S471 — Q9 \ {(£a,0)} be the diffeomor-
phism defined by

Zo(t,a) = cospp(t) =tanht, Z(t,a) = [sin py(t)]a = [sech t]a,
where @y : R — (0, 7) stands for the map ¢o(t) = arccos(tanht).
a) Given any (t,a) € R x S1 the sequences of impact points
05 = (¢ )nez C Qo, 7€ {4+, =}

where g, = qo(t + hn,a), and g = q_,, are heteroclinic orbits for Fy.
The superscript T indicates the direction of the orbit: the orbit goes to
the left (that is, from the right vertez of the ellipsoid to the left one)
for T =<, whereas it goes to the right for T =—. Finally, there are
not more heteroclinic orbits for Fy than the ones obtained in this way.
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b) Let zj(t,a) = zo(t + h,a). Then,

Zo(t, a) + 2y(t,a)
170(20(t, @) + 70(20(2, a))]

= [sech(t + h/2)]a. (4.3)

The main properties of Fy are listed in the following lemma, which is a
straightforward consequence of the previous one.

Lemma 4.2 a) The points p'y are hyperbolic fized points of the symmetric
billiard map Fy. Actually, Spec[dFy(p2)] = {el, e "}.

b) Let W;*(p~!) be the unperturbed unstable and stable invariant curves
of Fy at p%. Then, W5(p%l) = W (pL), and Fy has two separatrices:

A7 = We(rh) N Wi (o) = {p5*(t,a) : (t,a) € R x 8971,
AT = Wi (k) N WE (L) = {p§ (t,0) : (t,0) e R x ST},

where

p?(t,a) = B(zﬂ(t7a))26(t’a))7 p?(t)a) = B(Z(J(t’a)azﬂ(t’a))a

are natural parameterizations, that is, Fo(p§ (t,a)) = p§ (t+h,a), and
Fo(py' (t,a)) = py’ (t+ h,a).

The separatrices A~ and A“ are invariant by the symmetry S, whereas
they are interchanged by the reversor R, since R changes the sense of the
(discrete) time. In the planar case (d = 1) we had four separatrices: A,
R(A), S(A), and RS(A). In the high-dimensional case we have just two:
A7 and A*. A natural questions arises: Why? The answer is easy. If one
tries to rewrite the above lemma in the planar case, the variable a moves on
S471 = §% = {+1}, which has two different connected components. Then, for
d =1, the set A7 U A" is formed by four different connected components,
each one being a separatrix.

4.3 Splitting in billiards close to prolate ellipsoids

Any ellipsoidal billiard, including the non-prolate ones, is completely in-
tegrable [Ves91, MV91]|. Thus, it is natural to conjecture that ellipsoidal
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billiards are the only completely integrable smooth convex billiards, as a
generalization of Birkhoft’s conjecture in the plane. Nevertheless, we are not
ready to tackle this conjecture, not even a local version of it around prolate
ellipsoids. The tools at our disposal only allow us to establish the splitting
of separatrices under very general perturbations of a prolate ellipsoid.

To begin with, let us consider an arbitrary symmetric smooth perturba-
tion Q, = —Q, of the prolate ellipsoid Qy. Up to second order terms in
the perturbative parameter ¢ (which do not play any role in our first or-
der perturbative analysis) and a similarity, Q. can be put in the following
parameterized (normal) form

Q. = {7:(2) = (a7, [1 + ev(2)]B2) : 2 = (5, 2) € 8}, (4.4)

for some even smooth function v : S¢ — R, or in the following implicit form

_9 ~12
o.~{i=@aoer: L+l —tierearia), s
for some even smooth function P(Zz,2) such that P(1,0) = d»P(1,0) = 0.
The connection between the two formulations is very simple, namely

P(z,2) = |3°v(z), Vz=(z2) eS% (4.6)

In order to make easier the translation of results directly from the planar
setting, it is convenient to consider the smooth function n : T x S ! — R
defined by

n(p,a) =v(z), z=(%,2%), Z = cos @, Z = [sin ¢]a. (4.7)

Now, our aim is to translate neatly the results for ellipses to results for
(prolate) ellipsoids. As in the planar case the key point is to elucidate for
which “degenerate” perturbations the Melnikov potential is identically con-
stant. The results in the planar case were optimal, since the only “degen-
erate” perturbations were the trivial ones giving rise to ellipses, which are
integrable.

Unfortunately, this is no longer the case in more dimensions. We shall
prove that Q. is a “degenerate” perturbation for the prolate ellipsoid Q
when all its sections

C:(a) = Q. NI, = {(acosp,[1+en(p,a)[fsinyla) : p € T}
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are ellipses (up to second order terms, of course). Obviously, the ellipsoids
are a particular case of such perturbations, but there are other ones, as the
following lemma shows. We skip its proof, which is a mere computation.

Lemma 4.3 Under the above notations and assumptions:

a) Q. is an ellipsoid (up to order 1) if and only if n(p,a) = (a, Da), for
some symmetric d X d matriz D.

b) C.(a) is an ellipse (up to order 1) if and only if n(-,a) is constant.

Let T, : P — P be the billiard map associated to hypersurface Q,., and
F. = ST.. For |¢e| < 1, Q. is a convex closed hypersurface, and thus F, is a
twist map, with

Le(2,7") = [e(2) +7:(2)| = Lo(2,7) + eLa(2,2) + O(e?)
as its twist generating function, where

Lo(z,2") = |’Yo(f) +A%(Z,)|A )
L) = @ (2+2,v(z)2+v(2)E)

10(2) + 7002 48)

Using the natural parameterization provided by Lemma 4.1, the formula
of £1(z,2") given in equation (4.8), and the formula (4.3), the Melnikov
potential of our perturbed billiard problem (on the separatrix A7) is

L:R xS R, L(t,a) =Y g(t+hn,a) =>_ f(t+hn,a), (4.9)

where
g(t,a) = Buv_()[6(t,a) + 6(t + h,a)],  f(t,a) = 2avi(t)o_(t)n(po(t), a),
with

vo(t) = secht, wvi(t) =vo(t F h/2), §(t,a) = vo(t)n(po(t), a).

(We have taken (t,a) as the coordinates over the separatrix A~. Compare
with the results in the planar case.)
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Now, assume we are given a symmetric perturbation Q. of the prolate
ellipsoid Qp such that its section C.(ag) is a non-trivial (up to order 1)
symmetric entire perturbation of the ellipse Cy(ag), for some ay € S~ 1. By
definition, ¢ — n(y, ap) is a non-constant w-periodic entire function. Then,
t — L(t,ap) is a non-constant function (it suffices to copy the proof for the
planar case) and we have proved the following result.

Theorem 4.1 Let Q. be symmetric perturbation of the prolate ellipsoid Q,
such that some of its sections C.(a) is a non-trivial (up to order 1) symmetric
entire perturbation of the ellipse Cy(a). Then, the separatrices A~ and A
split, for 0 < |g| < 1.

In fact, we have proved only that A~ splits, but it is clear that A< also
splits. Indeed, it is enough to observe that the heteroclinic orbits that go to
the right are in a one-to-one correspondence with the heteroclinic orbits that
go to the left, by means of the reversor R. Therefore, the destruction of a
separatrix automatically implies the destruction of the other one.

4.4 Lower bounds

Let us recall that in the planar case d = 1, there were at least 8 symmet-
ric primary heteroclinic orbits (OF, ROF, SOF, and RSOZ), for reversible
symmetric perturbations of an ellipse. Our goal now is to present similar
results for perturbations of a prolate ellipsoid. Obviously, the first step is to
define the term reversible for d > 2.

Following the planar case, a perturbation of the prolate ellipsoid (4.2)
will be called reversible when it preserves the original symmetries of the
ellipsoid with regard to the hyperplane {g = 0} and the axis {¢ = 0}, that is,
perturbations (4.5) such that P(Zz, Z) is even in Z and 2. Then, equations (4.6)
and (4.7) imply that

(e, a) = nlp, —a). (4.10)

On the one hand, Morse theory provides lower bounds on the number
of critical points for functions defined on compact manifolds. On the other
hand, the critical points of the Melnikov potential L : R x S4! — R are
strongly related to primary heteroclinic orbits. Therefore, it is rather natural
to apply Morse theory in order to gain information on the number of primary
heteroclinic orbits that persist after perturbation. At a first glance, there
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exists a technical problem (L is defined on a non-compact manifold), but
there is an obvious way to overcome this difficulty: L can be considered as
a function defined over the reduced separatriz S' x S4=!, using that L(t, a) is
h-periodic in ¢, and the identification S' = R/{t =t + h}.

Under the condition that the Melnikov potential is a Morse function (a
condition of generic position), we now state a result about the number of
primary heteroclinic orbits that persist under a general perturbation. We
will verify the optimality of this result for specific examples.

Theorem 4.2 Let Q. be a symmetric smooth perturbation of a prolate ellip-
soid Qqy of dimension d, such that its Melnikov potential L : S' x S¢! = R
1s a Morse function. Then, the number of primary heteroclinic orbits after
perturbation is at least 8. If, in addition, the perturbation Q. is reversible,
there exist at least 8d primary heteroclinic orbits after perturbation.

Proof. Since the Melnikov potential L : S* x S — R is a Morse function,
its critical points are in one-to-one correspondence with the primary hete-
roclinic orbits that emanate from A, which in their turn are in one-to-one
correspondence with the primary heteroclinic orbits that emanate from A% .

For reversible perturbations, the Melnikov potential can be considered as
a (Morse) function defined over S'xP?~! where P*~! = §4-1/{q = —a} is the
projective space, since equations (4.9) and (4.10) imply that L(¢,a) is even
in a. Moreover, each critical point (¢,+a) € S'x P4t of L:S!x P41 - R
corresponds to two different critical points of L : St x S — R.

From the celebrated Morse’s inequalities [Hir76, pages 160-164], a Morse
function over a d-dimensional compact manifold without boundary X has
at least SB(X; F) := Y0 3,(X; F) critical points, where ,(X; F) are the
F-Betti numbers of X and F is any field, that is, §,(X; F') is the dimension
of the ¢g-th singular homology F'-vector space of X, noted H, (X, F).

Consequently, it suffices to check that

SB(S' x S*4:7Zy) =4,  SB(S'x P 7Zy) = 2d, (4.11)

for all d > 2.
From the well-known Z,-homologies

Lo ifq=0,m
0 otherwise

Zo if0<qg<m

Ho(8™, Z») :{ 0 otherwise

Hy(P™; Zs) = {
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and the Kiinneth’s Formula Hy(X xY'; Zy) = @} _o Hy(X; Z) @ Hy_p(Y'; Zs),
we get

Z2 if q = 0, 2
Hq(Sl X Sl, Zg) = Z2 D Zg if q= 1 R
0 otherwise
Zo ifq=0,1,d—1,d
1 d—1, ~ 2 q ) Ly )

Hy(S"x 8% Zy) = { 0 otherwise , Vd>2,
Z2 if q = 0, d

Hy(S'x P4 Zy) =2 { Zy®Zy ifg=1,...,d—1 , Vd>2.
0 otherwise

And (4.11) follows adding dimensions. 0

4.5 Polynomial perturbations

We shall study now polynomial perturbations of the prolate ellipsoid, that
is, perturbations such that the function P(Z, Z) in the implicit form (4.5) is
a polynomial. Our goals are the following:

e To compute explicitly the Melnikov potential (and its critical points)
for some concrete perturbations.

e To check that the lower bounds given in Theorem (4.2) are optimal.

e To prove that the Melnikov method gives exponentially small (in h)
predictions of the splitting size for singular perturbations, as in the
planar case.

We shall omit many details in the computations below, since they are a
transcription of the same ones in the planar case. The only difference is the
additional variable a € S9!, which can be considered as a parameter.

Polynomial reversible perturbations

Suppose we are given a polynomial reversible perturbation Q.. Thus, the
function P(Z, 2) in the implicit form (4.5) is an even polynomial in the vari-
ables zZ and 2. For the sake of simplicity we will assume that

N
P(z,2) = |27 Y Pan(2),
n=0
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where P, : R — R denotes a homogeneous polynomial of degree 2n; in
particular, this implies that P(Z, 2) does not depend on the variable Zz.
Then, using (4.6) and (4.7), we get that

Z 77n SIH 307 nn(a) = P2n(a)7

and the Melnikov potential is

N n-1

L(t,a) = constant —2(3 Z Z

anO

24 T, @12)

where the coefficients B,, ¢ are given in (3.22) and the elliptic function (t)
is defined in (3.15). Furthermore, the dominant terms in h in the singular
limit A — 0" turns out to be

L(t,a) = constant +27 ' Qnh~ N3 e~k cog(2rt /) [nN(a) + O(h2)] :

where Qy is the non-zero constant defined in (3.26).

This shows how to compute explicitly the Melnikov potential L(t,a) for
any polynomial perturbation, and makes evident its exponentially small de-
pendence on h.

A quartic reversible perturbation

Let us consider now the simplest non-trivial case of the previous polynomial
perturbations, that is, the case of quartic perturbations: N = 1. Concretely,
given any symmetric d X d matrix M, we introduce the perturbation

ng{qz(ci,d)GRd“' il 1+26ﬁ‘4|é|2<d,Mci>}, (4.13)

32
which gives 79(a) = 0 and 7,(a) = (a, Ma). As in the planar case, everything
can be computed for quartic perturbations. Using that B,y = —af3, we get

the Melnikov potential:
L(t,a) = constant —26B;om(a)y(t)

2K \? 2Kt
= constant +2a3* (T) {a, Ma) dn® (T m) )
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Proposition 4.1 Let \; be the eigenvalues of M and u; their respective
(normalized) eigenvectors: Mu; = Mju; and u; € S, for 1 < j < d.
Suppose that

Then, the symmetric billiard map associated to the hypersurface (4.13) has
exactly 8d primary heteroclinic orbits:

O;—,a,:tj _ (q;,a,ij(g))nez C Q&_’ T E {(—,—)}, o€ {0, 1}, j € {17 .. .,d})

all of them being transverse, for 0 < |¢| < 1. The superscript T indicates the
direction of the orbit, as in Lemma 4.1. The functions ¢0%*7(¢) are smooth
m e =0, and

a,7"*(0) = go(oh/2 + nh, +u;), g7 (&) = 20 (e),
where gy = (qo,Go) : R x S4 1 — Qp \ {(£a,0)} is the diffeomorphism
do(t,a) = atanht, §o(t,a) = [B secht]a.

Proof. Let ) be the orthogonal matrix whose columns are the eigenvalues
uj. Then, S > a — Qa € S% ! is a diffeomorphism, such that 7,(Qa) =
Z‘j:l Aja;?. Thus, hypotheses (4.14) imply that 7; : S*~! — R has exactly
2d critical points: {£u; : 1 < ¢ < d}, all of them being non-degenerate.
Moreover, we recall that hZ/2 is the set of real critical points of ¥ (¢), and
that these critical points are non-degenerate.

Consequently, L(t,a) is a Morse function over R/hZ x S¢~1 which has
exactly 4d critical points: (oh/2, £u;), for 0 € {0,1}, 1 < j < d. They are
non-degenerate, too.

Finally, the proposition follows from Theorem 2.1, and Lemma 4.1. O

A quartic non-reversible perturbation

We shall describe similar results obtained for the simplest non-trivial non-
reversible perturbation, which is also a quartic one. We shall omit the details
since they do not involve any new idea, but only some tedious computations
with elliptic functions.

Given a non-zero vector u € R?, we consider the perturbation

N q q 41122/
o.~{i—@oers: Ll _rpapifganf, @)

_9 |A|2
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Then, using the same arguments than in the proof of the preceding proposi-
tion, we get the following result.

Proposition 4.2 The symmetric billiard map associated to the hypersur-
face (4.15) has exactly 8 primary heteroclinic orbits:

OZ—-’U’i - (q;’U’i(E))nEZ C Qs, T E {<_7 _>}7 oc {0’ 1}’
all of them being transverse, for 0 < |g| < 1. Moreover,
g, (0) = qolte + nh, +u), g7 (e) = ¢ (o),

where ty € (0,h/2) and t, € (3h/4,h) are the only critical points in the
interval [0, h] of the elliptic function (with periods h and 27i):
sinh(t + hn)
t— —_— .
2 cosh?(t + hn)

nes

Some last comments

The previous examples show that the lower bounds on the number of hete-
roclinic orbits provided by Theorem 4.2 are optimal. The conditions (4.14),
for the reversible perturbations, and u # 0, for the non-reversible ones, are
the conditions of generic position for L(t,a) to be a Morse function. The
condition A\; # A; for j # s, is equivalent to the complete breakdown of
the symmetry of revolution with regard to the axis {§ = 0} of the prolate
ellipsoid.

Following the planar case, singular perturbations correspond to pertur-
bations of a spheric billiard, and the Melnikov prediction of the heteroclinic
area between some distinguished pairs of heteroclinic orbits is again expo-
nentially small in h. As an example we simply note that, for the reversible
quartic perturbation (4.13),

AW[(’)ET’l’ij, Q_T’O’ij] = eAj(h) + 0(62), Te{—, =} j€{l,...,d},
where

Aj(h) = L(h/2,u;) = L(0, uy)

= 32n%\;af%h 2e ™/ {Z exp[—m2k(k + 1)/h]}

k>0
~ 256m2\h %™/ (b — 0%).
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