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Abstract

The splitting of separatrices for hyperbolic �xed points of twist

maps with d degrees of freedom is studied through a real�valued func�

tion� called the Melnikov potential� Its non�degenerate critical points

are associated to transverse homoclinic orbits and an asymptotic ex�

pression for the symplectic area between homoclinic orbits is given�

Moreover� Morse theory can be applied to give lower bounds on the

number of transverse homoclinic orbits�

This theory is applied �rst to elliptic billiards� where non�integra�

bility holds for any non�trivial entire symmetric perturbation� Next�

symmetrically perturbed prolate billiards with d � � degrees of free�

dom are considered� Several topics are studied about these billiards�

existence of splitting� explicit computations of Melnikov potentials�

existence of � or �d transverse homoclinic orbits� exponentially small

splitting� etc�

� Introduction and plan of the paper

The phenomenon of the splitting of separatrices associated to a hyperbolic
�xed point of a map has received a considerable attention� due to its direct
relationship with the existence of chaotic motion nearby� as a consequence of
the Smale�Birkho� homoclinic theorem �Sma��� Wig�	
�

The existence of a recently developed computableMelnikov theory �DR��

for maps makes easier the computation of the Melnikov function� In the par�
ticular case of area preserving maps in the plane� the Melnikov functionM is

�
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a periodic function with zero mean� and thus it is in fact the derivative of an�
other periodic function� called the Melnikov potential L� The non�degenerate
critical points of the Melnikov potential give rise to transverse homoclinic
orbits� For analytic maps� the Melnikov function is doubly periodic� and
complex variable theory can be used to compute the Melnikov potential�

A particular� but very important� example is provided by the billiard
on an analytical convex table� A direct application of the Melnikov theory
to perturbed elliptic tables provides explicit formulas for the lobes between
separatrices� and also non�integrability for non�trivial perturbations�

The aim of this paper is to generalize such results to higher dimensional
billiards� Since the motion inside a billiard can be modeled with the help of
a twist map� we �rst develop a theory for twist maps on cotangent bundles
with d � � degrees of freedom� Twist maps can be considered as the typical
example of exact symplectic maps� for which there are several results due to
the authors �DR��a
 that will be applied along the present paper� Related
ideas can be found in �Tre��� Bol��� Tab��b� Lom��b� Lom��
�

When there is only one degree of freedom �on the plane�� every branch of
a coincident separatrix of the unperturbed twist map gives rise� in general�
to two homoclinic orbits of the perturbed twist map�

When the number d of degrees of freedom is bigger than one� the �partial�
coincidence of the invariant manifolds associated to a �xed hyperbolic point
of the unperturbed twist map can take place in di�erent ways� Thus� we
will deal with doubled� partially doubled and completely doubled invariant
manifolds for the unperturbed case� Di�erent kinds of coincidences between
invariant manifolds give rise to di�erent kinds of separatrices and bifurcation
sets and� consequently� to di�erent results about the number of homoclinic
orbits of the perturbed case� To avoid any kind of misunderstandings� the
introduction of these concepts is carefully performed in section 
�

The main tool of this paper is the Melnikov potential L� a scalar func�
tion de�ned on the unperturbed separatrix� which is the natural splitting
function for detecting primary homoclinic orbits in twist maps� Its non�
degenerate critical points are associated to transverse homoclinic orbits� So�
once located its non�degenerate critical points� everything is done� Several
analytical results are developed in section 
� Moreover� the Melnikov poten�
tial is invariant under the action of the unperturbed twist map� and Morse
theory is applied to the Melnikov function de�ned on a reduced separatrix�
which turns out to be compact in the completely doubled case� The lower
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bound provided by the Morse theory on the number of homoclinic orbits is�
in general� increased when there exist extra symmetries or reversors�

There is another interpretation of these results� based on variationalmeth�
ods� which allows us to introduce the concepts of homoclinic action and ho�
moclinic area� as a generalization of the planar case�

These results about twist maps are readily applied to planar billiards in
Section �� providing non�integrability for the elliptic billiard under non�trivial
perturbations� and a computable Melnikov potential� Several examples are
reviewed�

For more degrees of freedom� in the present paper we do not consider
an arbitrary ellipsoidal billiard as the unperturbed case� since the explicit
expression of asymptotic motions is still not well�known� Instead� in Section �
we consider only prolate billiards� that is� ellipsoids with all their axis of equal
length except one� which is larger� For general non�degenerate perturbations�
the Melnikov potential L is de�ned on S��S

d�� for a billiard with d degrees
of freedom� and the existence of at least � homoclinic orbits is provided
by Morse theory� For reversible perturbations� the Melnikov potential L is
de�ned on S

� � P
d��� and this lower bound changes to �d� The Melnikov

potential is explicitly computed for polynomial and quartic perturbations�
showing that the lower bound about the number of the homoclinic orbits
provided by the Morse theory is e�ectively attained�

� General results for twist maps

For the sake of simplicity� we will assume that the objects here considered
are smooth� For a general background on symplectic geometry we refer
to �Arn��� GS��� AM��
� The basic properties of immersed submanifolds
can be found in �GG��� pages ����
� More details about twist maps can be
found in �Gol��a� Gol��b� BG��
�

��� Introduction to twist maps

A twist map F is a map from a connected subset P of the cotangent bun�
dle T �M of a manifold M �not necessarily compact� into P� which comes
equipped with a twist generating function L �M�M� R that satis�es

F ��w dz�� w dz � w� dz� � w dz � dL�z� z��� �z�� w�� � F �z� w�� �
���
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where �z� w� are any cotangent coordinates on T �M� that is� z are coordinates
on M� extended to coordinates �z� w� in the obvious way� The dimension
d of the manifoldM will be called the number of degrees of freedom of the
twist map �
����

Condition �
��� can also be written in a coordinate free manner� Given
L� one can retrieve the map �at least implicitly� from

w � ���L�z� z��� w� � ��L�z� z���

This can be done globally �i�e�� P � T �M� only when M is di�eomorphic
to a �ber of T �M� for example when M is the covering space of Tn or a
manifold of constant negative curvature�

At this point� it is worth mentioning that an open connected subset P
of a cotangent bundle T �M is the typical example of an exact symplectic
manifold� i�e�� a 
d�dimensional manifold P endowed with a symplectic form
� which is exact� � � � d�� Actually� the canonical symplectic forms �� ��
on T �M read in cotangent coordinates �z� w� as � � dz � dw� � � w dz�

A twist map is the typical example of an exact symplectic map� i�e�� a map
F � P � P de�ned on an exact symplectic manifold P� characterized by the
equation F �� � � � dS for some function S � P � R� called generating
function of F � For P � T �M� the fact that the generating function S can be
written in terms of old and new coordinates� S�z� w� � L�z� z��� is the twist
condition that gives the name to the twist maps� Introducing the canonical
projection � � T �M�M� the relation above between generating functions
reads as S�p� � L���p�� ��F �p���� for p � P� Since the example we have
in mind �the billiard� can be modeled by a twist map� we will not consider
exact symplectic maps anymore� and we refer the reader interested in such
theory to �DR��a
�

��� The unperturbed system

We are given a smooth twist di�eomorphism F� � P � P� where P is an open
connected subset of a cotangent bundle T �M� Let L� be its twist generating
function� We will assume that�

a� There exists a hyperbolic �xed point p�� of F��
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b� The d�dimensional unstable and stable invariant manifolds associated
to the hyperbolic �xed point p���

Wu
� ��

�
p � P � lim

k���
F�

k�p� � p��

�
�

Ws
� ��

�
p � P � lim

k���
F�

k�p� � p��

�
�

are doubled� that is� they coincide�

W ��Wu
� �Ws

� �

This coincidence of invariant manifolds can take place in many di�erent
ways and has several implications upon the topology of the problem� We
slow down here to introduce with full details the bifurcation set�

We recall that the invariant manifoldsWu�s
� need not to be submanifolds

of P � T �M� but just connected immersed submanifolds� More precisely�
Wu�s

� � gu�s�Rd� for some one�to�one immersions gu�s � Rd � P� such that
gu�s�	� � p� and dgu�s�	��Rd 
 is the tangent space to Wu�s

� at p�� �PM�
� II
x�
�

By a one�to�one immersion gu�s � Rd � P� we mean that dg�z� has
maximal rank d at any point z � R

d � and that gu�s is one�to�one onto its image
Wu�s

� � gu�s�Rd�� There is a natural way to make Wu�s
� a smooth manifold�

the topology on Wu�s
� is the one which makes gu�s a homeomorphism and the

charts onWu�s
� � gu�s�Rd� are the pull�backs via �gu�s��� of the charts on Rd �

Figure � shows an example of the double loop Wu�s
� � gu�s�Rd� that takes

place when both invariant manifolds are doubled �i�e�� they coincide� on the
plane �d � ��� At p��� the induced topology on the invariant curves Wu�s

� via
the inclusion Wu�s

� � R
� is not the same as the induced one via gu�s� Hence�

Wu�s
� n fp��g are submanifolds� but not Wu�s

� � This situation is a particular
case of the following elementary result �GG��� page ��
�

Lemma ��� Let g � Rd � P be a one�to�one immersion and setW � g�Rd��
Let � � W be the set of points where the two topologies on W �the one in�
duced by the inclusion W � P and the one that makes g a homeomorphism�
di�er� Then� � �W n� is a submanifold of P� Indeed� W is not a subman�
ifold of P just at the points of ��
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�
Figure �� The invariant manifoldsWu

� and Ws
� are di�erent as smooth man�

ifolds� and are not submanifolds of R� � There exist no paths �u�s in Wu�s
�

from p to p� such that �u � �s�

We now recall that we are assuming that the invariant manifolds Wu�s
�

are doubled� that is� W ��Wu
� �Ws

� �
Then� we can consider three topologies on W� the one induced by the

inclusion W � P� and the two ones induced by the inclusions W � Wu�s
� �

We de�ne the bifurcation set � of this problem as the subset ofW of points
where the three topologies do not coincide� and we de�ne the separatrix � as
its complementary in W� that is� � ��W n ��

By Lemma 
��� � is a submanifold of P� Moreover� the �xed point p��
is not included in the separatrix �� Indeed� this property follows from the
fact that Wu

� and Ws
� intersect transversely at p

�
�� so their topology at p

�
�

as immersed submanifolds can not coincide and p�� � �� Finally� let us note
that both the separatrix and the bifurcation set are F��invariant� due to the
fact that F� is a di�eomorphism� We summarize now these properties�

Lemma ��� The bifurcation set � and the separatrix � have the following
properties�

�i� � is a submanifold of P and p�� � ��
�ii� � and � are F��invariant�
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For simplicity� and due to the application to billiards� we have restricted
ourselves to the case that both invariant manifolds of F� are doubled� and we
have then de�ned the notion of separatrix� When Wu�s

� are partially doubled�
Wu

� �� Ws
� � but there exists a subset � � Wu

�

TWs
� such that � is a d�

dimensional submanifold of P� invariant by F�� and the three topologies on
� coincide �the ones induced by the inclusions � � P� � � Wu

� and � � Ws
���

� can be taken as a separatrix of the problem� and the Melnikov potential is
well de�ned on it�

��� Analytical results for the perturbed system

Consider a perturbed twist map F�� and let L� � L� � �L� � O���� be the
twist generating function of F��

�z�� w�� � F��z� w�	
 w � ���L��z� z
��� w� � ��L��z� z

��� �
�
�

For 	 	 j�j � �� there exists a hyperbolic �xed point p�� of F�� close to p
�
��

with associated invariant manifoldsWu�s
� � It is not restrictive to normalize the

twist generating function by imposing L��z
�
�� z

�
�� � 	� where z�� � ��p����

In particular� L��z
�
�� z

�
�� � 	� where z

�
� � ��p����

We now introduce the Melnikov potential L � � �� R by

L�p� �
X
k�Z

L��zk� zk���� zk � ��pk�� pk � F�
k�p�� p � �� �
���

The series above is absolutely convergent since any F��orbit
�
F�

k�p�
�
k�Z

in the manifold � tends to p�� � �z��� w
�
�� at an exponential rate as jkj � �

and L��z
�
�� z

�
�� � 	� We list now some of the main properties of the Melnikov

potential�

Theorem ��� Under the above notations and hypotheses�

a� L � � � R is well�de�ned� smooth and invariant under the action of
the unperturbed map� LF� � L�

b� The di�erential of the Melnikov potential M � dL �called the Mel�
nikov function�� measures� in �rst order in �� the distance between the
perturbed invariant manifolds Wu�s

� �
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c� If L is not locally constant� the manifolds Wu�s
� split for 	 	 j�j � ��

i�e�� they do not coincide�

d� If p � � is a non�degenerate critical point of L� the manifolds Wu�s
� are

transverse along a primary homoclinic orbit O� of F� for 	 	 j�j � ��

with O� �
�
F�

k�p�
�
k�Z

� Moreover� when all the critical points of L are

non�degenerate� all the primary homoclinic orbits arising from � are
found in this way�

The proof of this theorem can be found in �DR��a
� We will restrict
ourselves to point out some comments about it�

An essential �and hidden along the present paper� ingredient for the proof
of Theorem 
�� is the fact that the invariant manifolds Wu�s

� are exact La�
grangian immersed submanifolds of P� Actually� for any cotangent coordi�
nates �x� y� adapted to Wu�s

� �that is� in these coordinates the unperturbed
invariant manifoldWu�s

� is given locally by fy � 	g and the symplectic form
� reads as x dy�� the perturbed invariant manifold Wu�s

� can be expressed
locally in the form y � ��Lu�s

� �x�
�x � O����� for some well�de�ned smooth
function Lu�s

� � Wu�s
� � R called in�nitesimal generating function of the

perturbed family fWu�s
� g� Restricting the base points of the unperturbed in�

variant manifolds to the separatrix � where their smooth structures coincide�
we can de�ne a smooth function L � Lu

� � Ls
� � � � R� whose expression

is given in �
���� From the above discussion� it is obvious that the Melnikov
potential is a geometrical object associated to the perturbation� whose dif�
ferential M � dL gives the �rst order distance� along the coordinate y in
any cotangent coordinates �x� y� adapted to the separatrix �� between the
perturbed invariant manifolds� The F��invariance of the Melnikov potential
L is a trivial result from its expression� since a shift in the index of the sum
does not change its value�

The rest of the properties of Theorem 
�� follow readily from the proper�
ties stated above� By a primary homoclinic orbit of our perturbed problem
we mean a perturbed homoclinic orbit O� � �Wu

�

TWs
� � n fp��g of F�� de�

�ned for j�j small enough and depending in a smooth way on �� These are
the kind of orbits that a perturbative theory based on the Melnikov potential
can detect�
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��� Topological results for the perturbed system

Since the transverse homoclinic orbits detected by the Melnikov method are
in fact associated to non�degenerate critical points of the Melnikov potential
L � �� R� Morse theory can be applied to L to provide lower bounds on the
number of transverse primary homoclinic orbits�

We recall again that we are assuming that the invariant manifolds Wu�s
�

are doubled� that is�
W ��Wu

� �Ws
� �

and that the separatrix is de�ned by � ��Wn�� where the bifurcation set � is
the subset ofW of points where there is a coincidence of the topology induced
by the inclusion W � T �M and the two ones induced by the inclusions
W � Wu�s

� �
The separatrix � is not a compact submanifold of P� However� by the

invariance of L under the action of the unperturbed map F�� it turns out that
the Melnikov potential can de de�ned on the quotient manifold �� �� �
F��
consisting of unperturbed homoclinic orbits of �� The quotient manifold
�� �� �
F� will be called the reduced separatrix �of the unperturbed map��

In general� �� needs not to be compact� One way to ensure that �� is
a compact manifold� is by assuming that the bifurcation set is minimal� i�e��
� � fp�g� �Remember that the hyperbolic �xed point p� is always con�
tained in the bifurcation set �� see Lemma 
�
�� This hypothesis is equivalent
to require that the separatrix is � � Wu�s

� n fp�g� We will say that the in�
variant manifolds are completely doubled in this case�

It is worth remarking that in the planar case with a double loop ����
the bifurcation set is just the hyperbolic �xed point� i�e�� if the invariant
manifolds are doubled� then they are completely doubled� But� in general�
for more dimensions the situation is not so simple�

For example� let F� � R
�d � R

�d � d � �� be the product of d planar
maps fj � R

� � R
� � each one with a double loop �j � fpj�g 
 �j where

pj� � R
� stands for the �xed point of fj and �j are the two components

of �j n fpj�g� for j � �� � � � � d� Then� � � �� � � � � � �d has 

d connected

components and � � ��� � � � � � �d� n � contains strictly the hyperbolic
�xed point p�� � �p��� � � � � p

d
�� � R

�d � In particular� � �� Wu�s
� n fp�g� and

each connected component of the reduced separatrix �� is homeomorphic
to S�� R

d�� � In this example� the invariant manifolds are doubled but not
completely doubled� and the reduced separatrix is not compact�
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For completely doubled invariant manifolds� we now state a result about
the number of primary homoclinic orbits that persist under a general per�
turbation�

Theorem ��� If the invariant manifolds are completely doubled� �� is a
compact manifold without boundary� Assume that L � �� � R is a Morse
function� Then� the number of primary homoclinic orbits is at least ��

We recall that a real�valued smooth function over a compact manifold
without boundary is called a Morse function when all its critical points are
non�degenerate� It is very well�known that the set of Morse functions is open
and dense in the set of real�valued smooth functions �Hir��� page ���
� Thus�
to be a Morse function is a condition of generic position�

The proof of the theorem above can be found� again� in �DR��a
� along
with the exact topological characterization of the manifold ���

It is very important to notice that additional symmetries I � P � P of the
map F��that is� involutions I such that F�I � IF� and I

�� � ��can give
rise to new invariances for the Melnikov potential� LI � L� In particular� L
can be considered as a function over the quotient manifold ��I �� �
fF�� Ig�
and the number of homoclinic orbits provided by the Morse theory may be
increased� Instead of describing here a general theory� we will apply directly
this idea to our examples�

��� Variational results for the perturbed system

We �nish this account of general results by introducing very brie�y some
variational results�

There exists a variational principle� due to MacKay� Meiss and Perci�
val �MMP��� Eas��
� which establishes that the homoclinic orbits of the
perturbed twist map �
�
� are the extremals of the homoclinic action

W �O
 ��X
k�Z

L��zk� zk���� O � �zk�k�Z�

and a homoclinic area can be de�ned for every pair of homoclinic orbits O�
O�� and is given by the di�erence of homoclinic actions

�W �O�O�
 � W �O
�W �O�
�
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For a motivation of these names� we again refer the reader to �DR��a
�
There� one can see that given p � O� p� � O�� and paths �u�s from p to p� in
Wu�s

� � such that there exists an oriented 
�chain D with �D � � �� �u � �s�
then

�W �O�O�
 �
I
�
w dz � �

Z Z
D
dz � dw� �
���

In this formula� by a path �u�s in the immersed submanifold Wu�s
� we mean

that �u�s is contained in Wu�s
� and it is continuous in the topology of Wu�s

� �
For example� if � is any of the loops of �gure �� it is a closed path in R� but
not in W�

The formula above shows clearly that the homoclinic area is a symplectic
invariant� i�e�� it neither depends on the symplectic coordinates used� nor on
the choice of the symplectic potential w dz� The homoclinic action can be
considered as the homoclinic area between the homoclinic orbit at hand and
the �orbit� of the �xed point p��� Thus� it is a symplectic invariant� too�

In particular� if P � R
� � T �R with the standard area as the symplectic

structure� and p � O� p� � O� are consecutive intersections of the invariant
manifolds� then the homoclinic area �W �O�O�
 is simply the �algebraic� area
of the associated lobe�

We end this section noting that in terms of the Melnikov potential� there
is also a nice expression for the homoclinic action and the homoclinic area�
The proof� again� can be found in �DR��a
�

Theorem ��� Let O� be a primary homoclinic orbit with O� �
�
F�

k�p�
�
k�Z

for some p � �� Then� the homoclinic action admits the asymptotic expres�
sion W �O�
 � W �O�
 � �L�p� � O����� Given another orbit O�� such that

O�� �
�
F�

k�p��
�
k�Z

for some p� in the same connected component of � as p�

the homoclinic area is given by

�W �O��O��
 � ��L�p�� L�p��
 �O�����

� Planar billiards

��� Convex billiards

Let us consider the problem of the �convex billiard table� �Bir
�a� Bir
�b
�
let C be a smooth closed convex curve of the plane R� � parameterized by
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���������

� �

�

Figure 
� T ��� v� � � � V �� where v � j !����j cos
 and V � j !�� �j cos"�

� � T �� C� where T �� R

�Z� in such a way that C is traveled coun�
terclockwise� Suppose that a material point moves inside C and collides
elastically with C according to the law �the angle of incidence is equal to
the angle of re�ection�� Such discrete dynamical systems can be modeled
by a smooth twist map �called billiard map� T de�ned on a subset P of the
cotangent bundle of T� that is� the annulus A �� T �T � T� R�� This subset
is de�ned as

P �� f��� v� � A � jvj 	 j !����jg�
where the coordinate � is the parameter on C� and v � j !����j cos 
� where

 � �	� �� is the angle of incidence�re�ection of the material point� In this
way� we obtain the map T � P �� P given by ��� v� ��� � � V � that models
the billiard �see Figure 
��

This map T is a twist map with one degree of freedom� with

G � f��� � � T � T � � ��  g �� R� G��� � �� j����� �� �j
as its twist generating function� since

T ��� v� � � � V �	
 v � ���G��� �� V � ��G��� ��
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Indeed� the left�to�right implication is simply a computation�

��G��� � �
h����� �� �� !����i
j����� �� �j � �j !����j cos
 � �v�

��G��� � �
h�� �� ����� !�� �i
j����� �� �j � j !�� �j cos" � V�

whereas the right�to�left one follows from the convexity hypothesis on C�
It is geometrically clear that if C � is another closed convex curve obtained

from C by a translation plus a homothety plus an orthogonal linear map �that
is� a similarity� then its associated billiard map T � is conjugated to T � and so
they are equivalent from a dynamical point of view� We will take advantage
of this property� working in the space of smooth closed convex curves modulo
similarities�

The billiard map T has no �xed points but it has two�periodic orbits�
corresponding to opposite points with the �maximum� and �minimum� dis�
tance between them� In these orbits the angle of incidence�re�ection is �


and thus v � 	�

Instead of studying them as �xed points of T �� we introduce the following
simpli�cation� as is usual in the literature �LT��� Tab��� DR��� Lom��a
� We
will assume that C is symmetric with regard to a point� Modulo a similarity�
we can assume that this point is the origin�

C � �C�

Consequently� we can choose a parameterization � of C such that satis�es
������ � ������ in such a way that the two�periodic orbits are of the form
f���� 	�� ��� � �� 	�g� that is� two opposite points over C� Then� the billiard
map T and the involution

S � P � P� S��� v� �� ��� �� v��

commute� This allows us to introduce the symmetric billiard map

F � P � P� F �� ST�

so that those two�periodic points for T are �xed points for F � Moreover� the
dynamics of F and T are equivalent� since F � � T ��
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The map F is also a twist map� with

L � f��� � � T � T � � ��  � �g � R� L��� � �� j���� � �� �j �����
as its twist generating function� since �� � �� � ��� ��

Thus� given a sequence �pn�n�Z such that pn � ��n� vn� � P� we have that
�pn�n�Z is an orbit of F if and only if

vn � ���L��n� �n��� � ��L��n��� �n�� �n � Z� ���
�

This leads us to the following variational principle� the orbits of the
symmetric billiard map F are in one�to�one correspondence with the critical
con�gurations of the functional �called the action�

W � TZ� R� W ���n�n�Z
 ��
X
n�Z

L��n� �n����

that is� with the con�gurations ��n�n�Z� T such that

�kW ���n�n�Z
 � ��L��k� �k��� � ��L��k��� �k� � 	� �k � Z�

�Note that although the series for W is in general not convergent� �kW
involves only two terms of the series� and therefore rW is well de�ned�� The
orbit �pn�n�Z of F can be found from the critical con�guration ��n�n�Z of W
by using relation ���
��

Thus� having a twist generating function allows us to work with only half
of the coordinates �the base coordinates� i�e�� the �#s�� The �ber coordinates
�i�e�� the v#s� are super�uous� We can also work with the coordinate q � ����
of the impact points on the curve C� We will use indistinctly the p�notation
�p � ��� v� � P�� the ��notation �� � T�� or the q�notation �q � C��

To end the discussion about convex billiards� let us introduce the involu�
tion

R � P � P� R��� v� �� ����v��
which is a reversor of the symmetric billiard map F � that is� F�� � RFR�

The reversor R and the symmetry S can be interpreted as follows� given
an orbit �qn�n�Z of the symmetric billiard map F �respectively� the billiard
map T �� �q�n�n�Z� ��qn�n�Z� and ��q�n�n�Z are also orbits of F �respectively�
T �� see Table ���� These four orbits are all di�erent� except in the trivial cases
of �xed points or two�periodic orbits� Besides� the image of a homoclinic
orbit by R� S or RS is another homoclinic orbit� As is usual� we will use this
property to save work in looking for the set of primary homoclinic orbits�
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Id R S RS
P �pn�n�Z �Rpn�n�Z �Spn�n�Z �RSpn�n�Z
T ��n�n�Z ���n�n�Z ��n � ��n�Z ���n � ��n�Z
C �qn�n�Z �q�n�n�Z ��qn�n�Z ��q�n�n�Z

Table �� The e�ect of the reversor R and the symmetry S on an orbit �pn�n�Z
of F � Here pn � ��n� vn� � P � T � R and qn � ���n� � C�

��� Elliptic billiards

The simplest example of closed convex curves are the ellipses� Among them�
the circumferences are very degenerate for a billiard� since they have a one�
parametric family of two�periodic orbits� So� let us consider now a non�
circular ellipse�

C� ��

�
x�

��
�
y�

��
� �

�
� f����� � �� cos�� � sin�� � � � Tg �

with �� �� ��� Modulo a similarity� we can assume that �� � �� � �� Thus
� � �� � � 	� the foci of the ellipse are ���� 	�� and the eccentricity is
e � �
�� Let us denote T� � P �� P the twist map associated to the ellipse
C�� and F� � S � T�� The billiard map T� is called elliptic billiard�

The points pr� � �	� 	� and pl� � ��� 	� form a two�periodic orbit for
T� that corresponds to the �right and left� vertexes ���� 	� of the ellipse�
and hence they are �xed points for F�� We will check that these two �xed
points are hyperbolic with four separatrices connecting them� Thus� we are
really dealing with heteroclinic connections� Nevertheless� all the results
about the homoclinic case in the previous section can be applied to the
symmetric billiard problem� This is due to the fact that we can consider
the variable � de�ned modulo � in the symmetric case� using the symmetry
S��� v� � �� � �� v�� Then� the �xed points pr� and pl� become the same
�xed point� so that the previous connections can be considered homoclinic
ones�

Let us recall that a caustic is a smooth curve with the following property�
if at least one of the segments �or its prolongation� of the polygonal trajectory
of the point is tangent to the curve� then all the other segments �or their
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�
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� �

�
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��

� ��

S���

RS���

v

�

Figure �� Phase portrait of F�� �� R���� S��� and RS��� are the four
separatrices�

prolongations� are tangent to the curve� It is a very well�known fact that
all the orbits of an elliptic billiard have a caustic� and actually the caustics
are just the family of confocal conics to C� �little Poncelet#s theorem �KT���
Tab��a
��

This property indicates the integrability of elliptic billiards since the ex�
istence of caustics re�ects some stability in the system� In fact� it is not
di$cult to obtain an explicit expression for a �rst integral of the elliptic bil�
liard in ��� v� coordinates �Lom��a
� Under the assumption �� � �� � ��
a �rst integral is I��� v� � v� � sin� �� As a consequence� the level sets
fI � �g������� are invariant for T� and F�� Thus� the phase portrait of the
symmetric billiard map F� can be easily obtained� see �gure ��

The main properties of F� are listed in the following lemma�

Lemma ��� Let h � 	 be determined by the equations

� � coth�h

�� � � cosech�h

�� e � tanh�h

�� �����

a� The points pr� � �	� 	� and pl� � ��� 	� are hyperbolic �xed points of
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the symmetric billiard map F�� with h as their characteristic exponent�
that is� Spec� dF��p

l�r
��
 �

n
eh� e�h

o
�

b� Let Wu�s
� �pl�r�� be the unperturbed unstable and stable invariant curves

of F� at pl�r�� Then� Ws
��p

l�r
�� � Wu

� �p
r�l
��� Thus� F� has exactly four

separatrices �heteroclinic connections��

� � f��� sin�� � � � �	� ��g�
R��� � f���� sin�� � � � �	� ��g�
S��� � f���� sin�� � � � ��� 
��g�

RS��� � f��� sin�� � � � ��� 
��g�

c� Let p� � ���� v�� � R � � be the di�eomorphism de�ned by

���t� � arccos�tanh t�� v��t� � sin���t� � sech t�

Then� p��t� is a natural parameterization of �� F��p��t�� � p��t � h��
Moreover� the natural parameterizations of R���� S���� and RS��� are
R�p���t��� S�p��t��� and RS�p���t���

d� Let  ��t� � ���t� h�� Then�

�
sin���t� � sin ��t�

j������t�� � ��� ��t��j � sech�t� h

�� �����

Proof� It is only sketched here� More details can be found in �DR��
�
a� We know that pr� and pl� are �xed points for F�� Let

L���� � � j����� � ��� �j
� 
� �

��� � ��� � ��� � ����� �  ��




�
�O���� �

be the twist generating function of F���� v� � � � V �� where we have used
that �� � �� � �� From the implicit equations of F� generated by L� we get

trace� dF��p
r
��
 � �� �	� 	� � ��V �	� 	�

� �����L��	� 	� � ���L��	� 	�

���L��	� 	��
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and a straightforward calculus yields trace� dF��p
r
��
 � 
��� � ��
��� � ���

Moreover� det� dF�
 � �� Thus � � �� � ��
�� � �� � � is an eigenvalue of
dF��p

r
��� and ����� implies � � eh� The proof for pl� is analogous�

b� This is a direct consequence of the conservation of the �rst integral I�
c� A tedious �but elementary� computation shows that

��L�����t�� ���t� h�� � ��L�����t� h�� ���t�� � 	�
Thus� the con�gurations ��n�n�Z � T� �n � ���t � hn�� are critical points
of the action W����n�
 �

P
n�ZL���n� �n���� and therefore� by the above�

mentioned variational principle� the sequences �pn�n�Z� pn � p�t � hn�� are
orbits of F�� This proves that p�t� is a natural parameterization of ��

The �nal part of �c� follows from the equalities FR � RF�� and FS �
SF �

d� It is another cumbersome computation� �

��� Non�integrability of billiards close to ellipses

Birkho� conjectured that the elliptic billiard is the only integrable smooth
convex billiard� Our goal is to see that this is locally true for symmetric entire
perturbations� Concretely� we shall prove that any non�trivial symmetric
entire perturbation of an ellipse is non�integrable� �Roughly speaking� a
perturbation of an ellipse will be called trivial when it is again an ellipse��

To begin with� let us consider an arbitrary symmetric smooth perturba�
tion C� � �C� of the ellipse C�� Modulo O��

�� terms �which do not play
any r%ole in our �rst order analysis� and a similarity� C� can be put in the
following parameterized �normal� form

C� � f����� � �� cos�� �� � �����
� sin�� � � � Tg � �����

for some smooth ��periodic function ����� or in the following implicit form

C� �

�
�x� y� � R

� �
x�

��
�
y�

��
� � � 
�P ����x� ���y�

�
� �����

for some even smooth function P �u� w� such that P ��� 	� � ��P ��� 	� � 	�
The parameterized form can be considered a normal form for C�� whereas

the implicit form cannot� since ���� is completely determined by the pertur�
bation� whereas di�erent functions P �u� w� can give rise to the same pertur�
bation C�� Because of it� we have preferred to deal with the parameterized
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form� instead of the implicit one� This does not imply loss of generality� since
it is easy to check that the connection between them is simply

P �cos�� sin�� � ���� sin� �� �����

The parameterized normal form ����� shows that C� is an ellipse �up
to O���� terms� of course� if and only if the function ���� is constant� As a
consequence� we will say that C� is a non�trivial �at order 	� symmetric entire
perturbation of the ellipse C� if and only if ���� is a non�constant ��periodic
entire function�

Let T� � P � P be the billiard map associated to the curve C�� and
F� � ST� the symmetric billiard map� We note that the hyperbolic �xed
points pl�r� are preserved by the perturbations ����� and ������ F��p

l�r
�� � pl�r��

since ���� 	� are still the more distant points on the perturbed ellipse C��
For j�j � �� C� is a convex closed curve� and thus F� is a twist map� with

L���� � � j����� � ��� �j � L���� � � �L���� � �O����

as its twist generating function� where

L���� � � j����� � ��� �j �
L���� � � �� sin�� sin 

j����� � ��� �j �sin� ���� � sin �� �
� �����

Using the natural parameterization provided by Lemma ���� the formula
of L���� � given in equation ������ and the formula ������ the Melnikov
potential of our perturbed billiard problem �on the separatrix �� is L�t� �P

n�Zg�t� hn�� where

g�t� � L�����t�� ���t � h��

� � sech�t � h

��sech�t������t�� � sech�t� h������t� h��
�

We have taken t as the coordinate over the separatrix ��
Before proceeding to study the Melnikov potential� it is very convenient

to arrange the sum
P

n�Zg�t � hn�� and express the Melnikov potential in
the following way�

L�t� �
X
n�Z

f�t� hn�� �����

f�t� � ��v��t� � v��t�
��t� � 
�v��t�v��t������t���
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where

v��t� �� sin���t� � sech t� v��t� �� v��t� h

�� ��t� �� v��t������t���

Now� assume we are given a non�trivial �at order �� symmetric entire
perturbation C� of the ellipse� Our aim is to prove the non�integrability of
the billiard map T�� which is analytic since C� so is� For this purpose we
only have to prove that the Melnikov potential ����� is non�constant� The
argument is heavily based in the fact that ���� is a non�constant ��periodic
entire function�

Under this hypothesis� �� � � i

 is a singularity of �����t��� It su$ces to
note that sin���t� � sech�t� and cos���t� � tanh�t� have simple poles at ��
and no more singularities on �t � �

� Then� �� is also a singularity of the
function f�t� de�ned in ������ since v��t�v��t� is analytic and non�zero on ���
Finally� using that L�t�� f�t� is clearly analytic on ��� �� is a singularity of
L�t�� In particular� the Melnikov potential L�t� is non�constant and we have
proved the following result�

Theorem ��� Let C� be a non�trivial �at order 	� symmetric entire pertur�
bation of a non�circular ellipse� Then the billiard in C� is non�integrable for
	 	 j�j � ��

Given an integer � � �� a perturbation C� of an ellipse C� is called trivial
up to order � if there exists a family of ellipses E� such that C� � E��O��

�����
The discussion above fails for perturbations trivial up to order �� but the
result of non�integrability can be generalized to non�trivial perturbations�
that is� except for perturbations that are trivial up to any order � � ��

Theorem ��� Let C� be a non�trivial symmetric entire perturbation of a
non�circular ellipse� Then the billiard in C� is non�integrable for 	 	 j�j � ��

We describe brie�y how this theorem can be proved and the interested
reader should �ll in the gaps without di$culty�

First� the curve C� can be written� modulo a similarity� as �compare
with �������

C� �
n�
&���� cos�� &���� �� &���� sin�

�
� � � T

o
�
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where &���� �� � ���������O������� ���� is a non�constant ��periodic entire
function� &����� &���� are smooth functions such that &����� � &����� � �� and
� � � is the smallest integer such that C� is non�trivial at order ��

Next� we consider the family of ellipses

E� � f�&���� cos�� &���� sin�� � � � Tg�

and the biparametric family of curves

G��� � f�&���� cos�� '���� �� �� &���� sin�� � � � Tg�

where '���� �� �� � ��������O���� is de�ned in such a way that C� � G��� �
E� �O���� for � � ���

Finally� since elliptic billiards are integrable systems with separatrices�
we can take E� as the unperturbed curve and G��� as the perturbation� being
� � �� the perturbation strength� In this setting� Theorem ��
 follows just
along the same lines as Theorem ���� The crux of the argument is again that
���� is a non�constant ��periodic entire function�

��� Symmetric reversible perturbations

Along this subsection we shall study several topics concerning a special kind
of symmetric perturbations� called reversible� By de�nition� these are per�
turbations preserving the original axial symmetries of the ellipse� that is�
perturbations ����� such that P �u� w� � P ��u� w� � P �u��w�� or equiv�
alently� P �u� w� � Q�u�� w�� for some smooth function Q � R� � R such
that Q��� 	� � 	� Let ��s� be the smooth function de�ned as ��s� ��
Q��� s�� s��s��� Then� relation ����� implies that ���� � ��sin� ���

The lobe area

Our goal now is to introduce the lobe area as a quantity measuring the split�
ting size�

To such end� we �rst look for the reversors of the system� We will �nd
two of them� a property that will allow us to state the existence of at least a
couple of symmetric heteroclinic orbits O�� � The area of the region enclosed
by these orbits will be then de�ned as the lobe area�
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The involution

R�
� � P � P� R�

� ��� v� �� �� � �� v��

is a reversor for the elliptic billiard T�� and also for F� � ST�� The separatrix
� is R�

� �symmetric� i�e�� R
�
� � � �� and intersects transversely the �xed set

of R�
�

C�
� �� fp � P � R�p � pg � f��� v� � P � � � �

g

in one point p�� � ��

� ��� The natural parameterization p��t� of � given in
Lemma ��� has been chosen to satisfy p��	� � p�� �

Moreover� the involution R�� � F�R
� is another reversor of F�� The

separatrix � is also R�� �symmetric and intersects transversely the �xed set
C�� of R

�
� in one point p

�
� � and it turns out that p��h

� � p�� � The associated

unperturbed heteroclinic orbits

O�
� �� fp��hn� � n � Zg� O�� �� fp��h

 � hn� � n � Zg ����	�

are called symmetric heteroclinic orbits� since R�� O�� � O�� �
For � �� 	� since we have restricted the study to reversible perturbations�

R� �� R�
� is also a reversor of F�� as well as the involutionR

� �� F�R
�� Their

�xed sets C� � fp � P � R�p � pg are important because R�Wu
� �p

l
�� �

Ws
� �p

r
��� where Wu�s

� �pr�� and Wu�s
� �pl�� stand for the perturbed invariant

curves at the hyperbolic �xed points pr� and pl�� Consequently� any point
in the intersection C� � Ws

� �p
r
�� is a heteroclinic one� and gives rise to a

symmetric heteroclinic orbit�
Since the separatrix � intersects transversely the unperturbed curve C��

at the point p�� � there exists a point p
�
� � p�� � O��� � C� � Ws

� �p
r
�� and�

therefore� there exist at least two symmetric heteroclinic orbits� denoted O�� �
on the region

f��� v� � P � 	 	 � 	 �� 	 	 vg�
for j�j small enough� They are called primary since they exist for arbitrary
small j�j�

Of course� using the reversor R and the symmetry S� we get that there
exist at least eight symmetric primary heteroclinic orbits� O�� � RO�� � SO�� �
and RSO�� �

On the other hand� from v��t� � sin���t� � sech t and ���� � ��sin� ���
it follows that f�t� � 
�v��t�v��t������t�� is even� so that the Melnikov
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potential L�t� �
P

n�Zf�t � hn� is even and h�periodic� Its derivative�
M�t� �� L��t� is odd and h�periodic( hence M�nh

� � 	� n � Z� Therefore�
hZ

 is a set of critical points for L�t�� that generically� are non�degenerate�

We shall prove in Proposition ��
 that for any given non�zero polynomial
perturbation and h small enough� the critical points of L�t� are just hZ

� all
of them being non�degenerate� As a consequence� the perturbed billiard map
has just eight primary heteroclinic orbits� the symmetric ones O�� � RO�� �
SO�� � and RSO�� � Moreover� the pieces of the perturbed invariant curves
between the points p�� � O�� enclose a region called lobe� Our measure of
the splitting size for the planar billiard problem will be the area A � A��� h�
of this lobe� which is nothing else but the homoclinic area between O�

� and
O�� � By Theorem 
��� it is given by

A � �W �O�
� �O�� 
 � �)�h� �O����� )�h� � L�	�� L�h

��

Polynomial perturbations

In order to perform an explicit computation of the Melnikov potential ������
we restrict ourselves to symmetric reversible polynomial perturbations� that
is� perturbations such that the function P �u� w� in the implicit form �����
is a polynomial in the variables u� and w�� P �u� w� �

P� piju
�iw�j� withP�

� pij � 	� Here
P� stands for a �nite sum over a range of non�negative

integers i and j� whereas
P�
� denotes the same sum without the terms with

j �� 	� �The additional condition is due to the normalization modulo a
similarity� which allows us to assume that P ��� 	� � ��P ��� 	� � 	��

In the parameterized normal form ������ by relation ������ these symmetric
reversible polynomial perturbations are equivalent to suppose that

���� �
NX
n��

�n sin
�n �� �N �� 	�

for some integer N � 	 �called the order of the perturbation��
We now address the explicit computation of the Melnikov potential ������

Since v��t� � sin���t� � sech t� then �����t�� �
PN

n�� �n sech
�n t� and the

function f�t� � 
�v��t�v��t������t�� is � i�periodic and meromorphic� so
that the Melnikov potential L�t� �

P
n�Zf�t�hn� is an elliptic function with

periods h and � i� This crucial observation goes back to �LT��� DR��� Lev��
�
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We now review some properties of the elliptic functions �for a general
background� we refer to �AS�
� WW
�
��

Let us recall that a cell of an elliptic function of periods �� and �� is
any parallelogram P	 of vertexes � � � � ��� � � ��� and � � �� � ��� such
that its boundary does not contain poles� Then� the set of poles in any
given cell is called an irreducible set of poles� A direct consequence of the
Liouville#s Theorem is that two elliptic functions with the same periods�
poles� and principal parts� must be the same modulo an additive constant�
�By periodicity� in practice it su$ces to consider an irreducible set of poles��
This additive constant is not relevant for our purposes� since the intrinsic
geometrical object associated to the problem is L��t� rather than L�t� itself�

Therefore� we are naturally led to the location of an irreducible set of
poles for the Melnikov potential L�t�� and next to the computation of the
associated principal parts�

First� consider �� � � i

 and ��� � �� � h

� By the comments before
Theorem ���� the poles of f�t� are �� � � iZ� which are of order 
N � and
��� � � iZ� which are simple ones�

Now we focus on their principal parts� We denote by a��f� �� the coe$�
cient of the term �t� ��� in the Laurent expansion of f�t� around t � � �

From the relations

a���v�� ��� � a���v�� ����

the formula f�t� � ��v��t��v��t�
��t�� and the symmetry of f�t� with regard
to its �central� pole �� � ��

�
� � ��� �

� we get

a���f� �
�
� � � a���f� �

�
� � � 	�

a��������f� ��� � 
�a��������v��� ����

a��������f� ��� � 	�

This shows that f� i

g is an irreducible set of poles of the Melnikov
potential L�t� �

P
n�Zf�t� hn�� The pole � i

 has order 
N and

a��������L� � i

� � 	� a��������L� � i

� � 
�a��������v��� � i

��

for all � � 	� � � � � N � �� Therefore� modulo an additive constant� we can ex�
press the Melnikov potential L�t� as a linear combination of even derivatives



Homoclinic orbits of twist maps and billiards 
�

of the Weierstrass ��function associated to the periods h and � i evaluated
at the point t� � i

�

L�t� � constant�
�
N��X
���

a��������v��� � i

�

�
�� ��*
������t� � i

�� ������

It su$ces to check that both sides of the equality have the same periods�
poles� and principal parts� To see this� let us remember that the Weierstrass
��function associated to the periods �� � h and �� � � i is de�ned by the
series

��t� �� t�� �
X
n�Z�

�

f�t� �n�
�� � �n

��g�

where �n��n� � n��� � n��� and Z
�
� � Z

� n f�	� 	�g� From its de�nition� it is
obvious that ��t� is elliptic with periods h and � i� and f	g is an irreducible
set of poles for ��t�� with t�� as the principal part of ��t� around t � 	�
Then� formula ������ follows�

For purposes of numerical computations the function ��t� is useless on
account of the slowness of its convergence� �The general term in the series
above is only of order jnj���� Accordingly� we will introduce another function
��t�� best suited for pencil�and�paper and+or numerical computations� based
in the use of Jacobian elliptic functions� such that

��t� � constant���t� � i

�� ����
�

Then� we will rewrite formula ������ as

L�t� � constant�
�
N��X
���

a��������v��� � i

�

�
�� ��*
������t�� ������

This simple formula allows us to compute the Melnikov function in a �nite
number of steps� for any symmetric reversible polynomial perturbation� that
is� for any ���� �

PN
n�� �n sin

�n �� We need only to compute the numbers
a��������v��� � i

�� � � 	� � � � � N � �� in each concrete case� where

v��t� � sech�t� h

�� ��t� �
NX
n��

�n sech
�n�� t� ������

For instance� it is easy to compute a��N �v��� � i

� � ����N�N���
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The de�nition of ��t� requires the introduction of some additional nota�
tions� which we borrow again from �AS�
� WW
�
� Given the parameterm �
�	� �
� K � K�m� ��

R 
��
� ���m sin
����� d
 is the complete elliptic integral

of the �rst kind� K � � K ��m� �� K�� �m� and q � q�m� �� exp���K �
K�
is the nome� If any of the numbers m� K� K �� K �
K or q is given� all the
rest are determined� From our purposes� it is convenient to determine the
value of the quotient K �
K by imposing K �
K � �
h� From now on� we can
consider the quantities m� q and K as functions of h� For instance� the nome
is exponentially small in h�

q � q�h� � e�

��h�

Under these notations and assumptions it turns out that the elliptic function

��t� ��
�

K

h

��
dn�

�

Kt

h

				m� � ������

where dn�u� � dn�ujm� is one of Jacobian elliptic functions� veri�es ����
��
Indeed� it su$ces to observe that dn��ujm� is an elliptic function of periods

K and 
K � i� which has fK � ig as an irreducible set of poles� ��u�K � i���

being the principal part of dn��ujm� around u � K � i� Then� the change of
scale u � 
Kt
h makes ��t� elliptic with periods h and � i �this is the reason
for the choice K �
K � �
h�� and the pre�factor �
K
h�� prevents a change
of its principal part�

In order to convince the reader on the adequacy of ��t� for numerical
work� we note that its Fourier expansion� valid for j�tj 	 �

� is given by

��t� � constant�
X
k��

�k cos�
�kt
h�� �k �
�

�

h

�� 
kqk

�� q�k
� �k � ��

������
�The value of �� �

R h
� ��t� dt 
h is not needed� since we are working modulo

additive constants�� Clearly� this series is rapidly convergent for real t �the
values we are interested in�� This Fourier expansion can be obtained from the
relation dn��ujm� � ��msn��ujm� and the Fourier expansion of sn��ujm�
given in �WW
�� page �
	
�

Quartic perturbations

Let us assume now that C� is a symmetric reversible quartic perturbation�
that is� the function P �u� w� in the implicit normal form ����� is a polynomial
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of degree four�

P �u� w� � p���p��u
��p��w

��p��u
	�p��u

�w��p��w
	� p�� � ��p���p����

From relation ������ these symmetric reversible quartic perturbations are
equivalent to suppose that

���� � �� � �� sin
� �

in the parameterized normal form ������ where

�� � p�� � p�� � p���

�The value of �� makes no importance in the following discussion��
Taking P �u� w� � w	 we get an example of this kind of perturbations�

namely

C� �

�
�x� y� � R

� �
x�

��
�
y�

��
� � � 
�

y	

�	

�
�

which gives �� � 	 and �� � �� that is�

C� �
n
�� cos�� �� � � sin� �
� sin�� � � � T

o
� ������

Quartic perturbations are interesting because everything �Melnikov po�
tential� homoclinic orbits� and lobe areas� can be easily computed� For in�
stance� formula ������ takes the simple form

L�t� � constant�
����
���t�

� constant�
����
�
�

K

h

��
dn�

�

Kt

h

				m� � ������

From the properties of the function dn�ujm�� the set of real critical points of
L�t� is hZ

� all of them being non�degenerate� According to Theorem 
���
this gives two homoclinic orbits O�� close to the unperturbed ones O�� given
in ����	��

Taking into account the symmetries and reversors� the perturbed symmet�
ric billiard map has just eight �transverse� symmetric primary heteroclinic
orbits� O�� � RO�� � SO�� � and RSO�� �

Moreover� since dn�	jm� � � and dn�Kjm� � p
��m� the area A �

A��� h� of the lobe enclosed by the heteroclinic orbits O�� is given by
A � �)�h� �O����� )�h� � L�	�� L�h

� � 
����

�m�
K
h���

We summarize all these results in the following proposition�
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Proposition ��� For 	 	 j�j � �� the symmetric billiard map associated to
the convex curve �
�	�� has exactly � primary homoclinic orbits O�� � RO�� �
SO�� � and RSO�� � and all of them are transverse�

The Melnikov potential has the expression �
�	��� and the area of the lobe
enclosed by the homoclinic orbits O�� is given by

A � 
�����
�m�
K
h�� �O�����

From the formula
q

Km���
� � 


P
k	� q

�k������ �WW
�� page ���
 and

the expression of the nome q � e�

��h� we get another expression for )�h��

)�h� � �
������
�h��e�


��h


��X
k	�

exp����k�k � ��
h


�� �

This series can be numerically computed in a very fast way� due to the speed
of its convergence� even for relatively big values of h�

Clearly� )�h� is exponentially small in h� and we are led naturally to the
following duality� For regular perturbations �h � 	 remains �xed whereas
� � 	�� the Melnikov term �)�h� is the dominant term for the formula of
the lobe area A� On the contrary� in singular perturbations �h � 	� and
�� 	�� one is confronted with the di$cult problem of justifying the following
exponentially small asymptotic expression provided by the Melnikov method�

A � A��� h� � �)�h� � 
�������h�
e�
��h ��� 	� h� 	��� ������

where we have used that � � coth�h

� � 

h� and � � cosech�h

� � 

h�
We recall that h is the characteristic exponent of the hyperbolic �xed

points pl�r� for the symmetric billiard map F�� see Lemma ���� Therefore�
singular perturbations correspond to weakly hyperbolic cases� For a justi�
�cation of an exponentially small asymptotic expression like ������� but for
other kind of twist maps� we refer the reader to �DR��b� DR��c
�

Singular polynomial perturbations

Coming back to a general N � we give a generalization of the exponentially
small Melnikov prediction ������� Along the following discussion we will
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assume that h is small enough and that the coe$cients �n� n � 	� � � � � N � of
the perturbation

���� �
NX
n��

�n sin
�n �� �N �� 	�

are �xed� The convex curve is now

C� �

��
� cos��

�
� � �

NX
n��

�n sin
�n �

�
� sin�

�
� � � T

�
� ���
	�

By the de�nition of ��t� given in ������� the Melnikov potential ������
reads as

L�t� � constant�
�
NX
n��

n��X
���

Bn��

�
�� ��*
�n�

�����t�� ���
��

where

Bn�� � a��������v� � sech�n��� � i

�� �� 	 n� ���

�

�We note that Bn�� � 	� for � � n�� To get the dominant terms of ���
��� we
must study the order in h of the functions ������t� and the coe$cients Bn���
for 	 � � � n� �� � � n � N �

Let us begin with the derivatives of ��t�� From the Fourier expansion of
��t� given in ������� we obtain the exponentially small asymptotic expressions

������t� � constant������
�
�
h�����e�
��h cos�
�t
h�
h
� �O�e�


��h�
i
�

���
��
for integers � � 	� real t� and small enough h � 	�

Next� we focus on the coe$cients Bn��� We split the function v� de�ned
in ������ in its principal vp� and regular vr��� v� � vp�� part around its
singularity ��� � �� i � h�

� A simple computation gives

vp��t� �
� i

�t� ��� �
�

From the Cauchy inequalities� the coe$cients in the Taylor expansion of
vr� around � i

 are O���� since vr� is uniformly bounded� for h small� in a
ball of �xed radius centered at � i

� Thus�

a��v�� � i

� � a��v
p
�� � i

� � a��v

r
�� � i

� � �

h�

��� i �O���� �� � ��
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Besides� the principal part of sech�n�� around its pole � i

 is O��� and� in
particular� a���n����sech

�n��� � i

� � ����n�� i� The discussion above shows
that

Bn�� �
n��X
j��

a�j���v�� � i

� � a������j����sech�n��� � i

�

� ����n
�n���h����n
h
� �O�h��

i
� ���
��

From ������ and ���
�� we get

Bn���
�����t� � constant�

����n��
�n�	�����h���n���e�
��h cos�
�t
h�
h
� �O�h��

i
�

so that the dominant terms of ���
�� are attained at n � N �
Finally� using the relation � � cosech�h

� � 

h � O�h�� we get the

following exponentially small asymptotic expression for the Melnikov poten�
tial ���
���

L�t� � constant�
��)N�Nh
���N���e�


��h cos�
�t
h�
h
� �O�h��

i
� ���
��

where )N is a constant which depends only on the order of the perturbation
N � namely

)N � ����N
�N��
NX
���

��������
�
�� ��* � ���
��

As � is a transcendental number� )N �� 	 for all N � � �but )N � 	 for
N ���� Thus� the set of real critical points of the Melnikov potential L�t�
is hZ

� all of them being non�degenerate� provided that h is small enough�

As in the quartic perturbation� it follows that for 	 	 h� �� the billiard
has just eight �transversal� symmetric primary homoclinic orbits� O�� � RO�� �
SO�� � and RSO�� � Moreover� the area A � A��� h� of the lobe enclosed by
O�� is given by

A � �)�h� �O��
��� )�h� � )N�Nh

���N���e�

��h

h
� �O�h

��
i
�

We summarize now these results�
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Proposition ��� For h � 	 small enough� there exists �� � ���h� � 	 such
that for 	 	 j�j 	 ��� the symmetric billiard map associated to the convex
curve �
�
�� has exactly � primary homoclinic orbits O�� � RO�� � SO�� � and
RSO�� � and all of them are transverse�

The Melnikov potential has the expression �
�
��� and the area of the lobe
enclosed by the homoclinic orbits O�� is given by

A � �)N�Nh
���N���e�


��h
h
� �O�h��

i
�O�����

with )N �� 	 given in �
�
���

For regular perturbations the Melnikov term �)�h� dominates� but for
singular perturbations there is a lack of results about the validity of the
exponentially small Melnikov prediction

A � A��� h� � )N�N�h
���N���e�


��h ��� 	� h� 	���

as in the case before of quartic perturbations�

A geometric interpretation

All the previous results could be expressed in terms of the eccentricity of
the unperturbed ellipse e � tanh�h

�� which is a natural parameter for the
billiard due to its clear geometric meaning� We have preferred the charac�
teristic exponent h� since it can be considered as the intrinsic parameter for
the problem�

In that setting� singular perturbations �h� � � 	�� can be thought as
perturbations of the billiard in a circumference� since the eccentricity of a
circumference is e � 	� which corresponds to the value h � 	�

� High�dimensional billiards

��� Convex billiards

We consider the problem of the �convex billiard motion� in more dimensions�
Let Q be a smooth closed convex hypersurface of Rd�� � for d � 
� parame�
terized by � � Sd � Q� where Sd is the d�dimensional unit sphere� Suppose
that a material point moves inside Q and collides elastically with Q� Such
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discrete dynamical systems can be modeled by a smooth twist map �called
billiard map� T with d degrees of freedom� de�ned on a suitable open P of
the cotangent bundle of Sd�

In order to describe this twist map� let us introduce the discrete version
of the Legendre transformation B of Sd�Sd onto the cotangent bundle of Sd
de�ned by

B�z� z�� �� �z� w�� w dz � ���G�z� z�� dz �����

where w is the �ber coordinate� w dz is the standard ��form on the cotangent
bundle of Sd� and the function

G � f�z� z�� � S
d� S

d � z �� z�g � R� G�z� z�� �� j��z�� ��z��j
is the Lagrangian of the billiard �Ves��� MV��
�

Although generically the Legendre transformation B has only a local
inverse� using the convexity condition on Q� it can be easily checked that
the billiard Legendre transformation ����� is a di�eomorphism from the open
set V � f�z� z�� � S

d � S
d � z �� z�g onto its image P � B�V�� �This is a

consequence of the fact that for convex billiards the orbits can be determined
either by giving two consecutive di�erent impact points determined by their
�base� coordinates z and z�� or by giving the �base� coordinate z of an impact
point together with the direction of incidence� which is determined by the
�ber coordinate w��

Then� the billiard map is de�ned by

T � P � P� �z�� w�� � T �z� w� � B bTB���z� w�
where the di�eomorphism bT � V � V maps a couple of consecutive impact
points �z� z�� � V to another couple of consecutive impact points �z�� z���� z��
being the impact point following z and z�� The Lagrangian G�z� z�� is a twist
generating function for the billiard map T � that is�

T �z� w� � �z�� w��	
 w� dz� � w dz � T ��w dz�� w dz � dG�z� z���

As in the planar case� we shall work in the space of convex hypersurfaces
modulo similarities� since billiard maps associated to hypersurfaces related
by a similarity are conjugated� and so equal from a dynamical point of view�

The billiard map T has no �xed points� but it has two�periodic orbits�
For instance� the two more distant points �on the Euclidean metric in Rd���
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give rise to a two�periodic orbit� which is generically unstable in the linear
approximation� In these orbits the �ber coordinate w vanishes�

To study the dynamics of these two�periodic orbits for T � it is better to
consider them as �xed points of the square map T �� and study T �� But
since it is not easy to �nd the twist generating function for T �� we instead
introduce the same simpli�cation as in the planar case� We will assume that
Q is symmetric with regard to the origin�

Q � �Q�

Consequently� it is possible to choose an odd parameterization � � Sd�Q in
such a way that the two�periodic orbits are of the form f�z�� 	�� ��z�� 	�g� that
is� two opposite points over Q� Then� the billiard map T and the involution

S � P � P� S�z� w� �� ��z��w��

commute�
This allows us to introduce the symmetric billiard map

F � P � P� F �� ST�

so that the two�periodic orbits for T are �xed points for F � Since F � � T ��
the dynamics of F and T are equivalent� The map F is also a twist map�
with

L � f�z� z�� � S
d� S

d � z � z� �� 	g � R� L�z� z�� � j��z� � ��z��j

as its twist generating function� since ���z�� � ���z���
Finally� let us consider the involution

R � P � P� R�z� w� �� �z��w��

which is a reversor for F � We will use the symmetry S and the reversor R to
save work in the computation of homoclinic orbits �like in the planar case��

��� Prolate ellipsoidal billiards

The simplest examples of smooth convex hypersurfaces are the ellipsoids�
Among them� the spheres are too degenerate for a billiard system� since
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there are plenty of �parabolic� two�periodic orbits� formed by all the pairs of
opposed points� However� the study of a generic ellipsoid �that is� an ellipsoid
without axis of equal length� is much more complicated than the study of
the non�circular elliptic billiard before� because the explicit expression of the
biasymptotic motions in the �rst case requires the use of analytical tools
much more sophisticated than in the second one �Fed��
� Therefore� in order
to gain insight into the problem� it is interesting to consider a setting to
which the arguments of the planar case can be easily adapted�

This setting is provided by prolate ellipsoids �that is� ellipsoids with all
its axis of equal length except one� which is larger��

In order to put the involved objects in a compact form� let us introduce
the following notation� Given a point q � �q�� � � � � qd� � R

d�� � we denote

&q � q� � R� %q � �q�� � � � � qd� � R
d �

The same notation is used for points z � �z�� � � � � zd� � S
d� Now� we can

write a prolate ellipsoid as

Q� �

�
q � �&q� %q� � R

d�� �
&q�

��
�
j%qj�
��

� �

�
���
�

�
n
���z� � ��&z� �%z� � z � �&z� %z� � S

d
o
�

with � � � � 	� Modulo a similarity� we can assume that �� � �� � ��
Let us denote T� � P � P the twist map associated to the prolate ellipsoid

Q�� and F� � ST�� The billiard map T� is called �prolate� ellipsoidal billiard�
The points

pl�r� � �zl�r� � w
l�r
��� zl� � ���� 	�� zr� � ��� 	�� wl�r

� � 	�

form a two�periodic orbit for T� that correspond to the �left and right� ver�
texes ���� 	� of the prolate ellipsoid on its �horizontal� axis f%q � 	g� and
hence� they are �xed points for F�� It turns out that these �xed points are
hyperbolic ones� and their invariant manifolds are completely doubled giving
rise to two separatrices� in the sense explained in section 
�

Using the symmetry S� we could identify the points p � �z� w� and S�p� �
��z��w�� Then� the �xed points pl�r� become the same point� so that the
previous connections could be considered homoclinic ones�
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Now� we are confronted to the computation of the heteroclinic orbits for
F�� The rotational symmetry of the prolate ellipsoid Q� with regard to its
�horizontal� axis f%q � 	g is the essential point to accomplish it� Given a
direction a � S

d��� let ,a be the plane in R
d�� generated by the directions

��� 	� and �	� a�� and let C��a� be the section of the prolate ellipsoid Q� by
the plane ,a� that is�

,a �� ���� 	�� �	� a�
 � fq � �&q� %q� � �x� ya� � x� y � Rg �
and

C��a� �� Q� � ,a �

�
q � �&q� %q� � �x� ya� � R

d�� �
x�

��
�
y�

��
� �

�
� f���z� � ��&z� �%z� � &z � cos�� %z � �sin�
a� � � Tg �

All the sections C��a� are ellipses with the same foci� ���� 	�� and the same
eccentricity� e � �
�� The key observation is that if two consecutive impact
points are on the same section� the same happens to all the other impact
points� From Lemma ��� and this geometric property�which does not hold
for a generic ellipsoid�� we get the heteroclinic orbits for F�� The result is
summarized in the following lemma�

Lemma ��� Let h � 	 be determined by the equations

� � coth�h

�� � � cosech�h

�� e � tanh�h

��

Let q� � �&q�� %q�� � ��&z�� �%z�� � R � S
d�� � Q� n f���� 	�g be the di�eomor�

phism de�ned by

&z��t� a� � cos���t� � tanh t� %z��t� a� � �sin���t�
a � �sech t
a�

where �� � R � �	� �� stands for the map ���t� � arccos�tanh t��

a� Given any �t� a� � R � S
d�� the sequences of impact points

O	
� � �q

	
n�n�Z� Q�� � � f���g

where q�n � q��t� hn� a�� and q
n � q��n� are heteroclinic orbits for F��
The superscript � indicates the direction of the orbit� the orbit goes to
the left �that is� from the right vertex of the ellipsoid to the left one�
for � ��� whereas it goes to the right for � ��� Finally� there are
not more heteroclinic orbits for F� than the ones obtained in this way�
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b� Let z���t� a� � z��t� h� a�� Then�

�
%z��t� a� � %z

�
��t� a�

j���z��t� a�� � ���z���t� a��j
� �sech�t� h

�
a� �����

The main properties of F� are listed in the following lemma� which is a
straightforward consequence of the previous one�

Lemma ��� a� The points pl�r� are hyperbolic �xed points of the symmetric
billiard map F�� Actually� Spec� dF��p

r�l
��
 � feh� e�hg�

b� Let Wu�s
� �pr�l�� be the unperturbed unstable and stable invariant curves

of F� at pr�l�� Then� Ws
��p

r�l
�� �Wu

� �p
l�r
��� and F� has two separatrices�

�� ��Wu
� �p

l
�� �Ws

��p
r
�� �

n
p�� �t� a� � �t� a� � R � S

d��
o
�

�
 ��Ws
��p

l
�� �Wu

� �p
r
�� �

n
p
� �t� a� � �t� a� � R � S

d��
o
�

where

p�� �t� a� � B�z��t� a�� z
�
��t� a��� p
� �t� a� � B�z���t� a�� z��t� a���

are natural parameterizations� that is� F��p


� �t� a�� � p
� �t� h� a�� and

F��p
�
� �t� a�� � p�� �t� h� a��

The separatrices �� and �
 are invariant by the symmetry S� whereas
they are interchanged by the reversor R� since R changes the sense of the
�discrete� time� In the planar case �d � �� we had four separatrices� ��
R���� S���� and RS���� In the high�dimensional case we have just two�
�� and �
� A natural questions arises� Why- The answer is easy� If one
tries to rewrite the above lemma in the planar case� the variable a moves on
S
d�� � S

� � f��g� which has two di�erent connected components� Then� for
d � �� the set �� 
 �
 is formed by four di�erent connected components�
each one being a separatrix�

��� Splitting in billiards close to prolate ellipsoids

Any ellipsoidal billiard� including the non�prolate ones� is completely in�
tegrable �Ves��� MV��
� Thus� it is natural to conjecture that ellipsoidal
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billiards are the only completely integrable smooth convex billiards� as a
generalization of Birkho�#s conjecture in the plane� Nevertheless� we are not
ready to tackle this conjecture� not even a local version of it around prolate
ellipsoids� The tools at our disposal only allow us to establish the splitting
of separatrices under very general perturbations of a prolate ellipsoid�

To begin with� let us consider an arbitrary symmetric smooth perturba�
tion Q� � �Q� of the prolate ellipsoid Q�� Up to second order terms in
the perturbative parameter � �which do not play any r%ole in our �rst or�
der perturbative analysis� and a similarity� Q� can be put in the following
parameterized �normal� form

Q� �
n
���z� � ��&z� �� � ���z�
�%z� � z � �&z� %z� � S

d
o
� �����

for some even smooth function � � Sd� R� or in the following implicit form

Q� �

�
q � �&q� %q� � R

d�� �
&q�

��
�
j%qj�
��

� � � 
�P ����&q� ���%q�

�
� �����

for some even smooth function P �&z� %z� such that P ��� 	� � d�P ��� 	� � 	�
The connection between the two formulations is very simple� namely

P �&z� %z� � j%zj� ��z�� �z � �&z� %z� � S
d� �����

In order to make easier the translation of results directly from the planar
setting� it is convenient to consider the smooth function � � T � S

d�� � R

de�ned by

���� a� � ��z�� z � �&z� %z�� &z � cos�� %z � �sin�
a� �����

Now� our aim is to translate neatly the results for ellipses to results for
�prolate� ellipsoids� As in the planar case the key point is to elucidate for
which �degenerate� perturbations the Melnikov potential is identically con�
stant� The results in the planar case were optimal� since the only �degen�
erate� perturbations were the trivial ones giving rise to ellipses� which are
integrable�

Unfortunately� this is no longer the case in more dimensions� We shall
prove that Q� is a �degenerate� perturbation for the prolate ellipsoid Q�

when all its sections

C��a� �� Q� � ,a � f�� cos�� �� � ����� a��� sin�
a� � � � Tg
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are ellipses �up to second order terms� of course�� Obviously� the ellipsoids
are a particular case of such perturbations� but there are other ones� as the
following lemma shows� We skip its proof� which is a mere computation�

Lemma ��� Under the above notations and assumptions�

a� Q� is an ellipsoid �up to order 	� if and only if ���� a� � ha�Dai� for
some symmetric d� d matrix D�

b� C��a� is an ellipse �up to order 	� if and only if ���� a� is constant�

Let T� � P � P be the billiard map associated to hypersurface Q�� and
F� � ST�� For j�j � �� Q� is a convex closed hypersurface� and thus F� is a
twist map� with

L��z� z
�� � j���z� � ���z

��j � L��z� z
�� � �L��z� z

�� �O����

as its twist generating function� where

L��z� z
�� � j���z� � ���z

��j
L��z� z

�� � �� h%z � %z�� ��z�%z � ��z��%z�i
j���z� � ���z��j � �����

Using the natural parameterization provided by Lemma ���� the formula
of L��z� z

�� given in equation ������ and the formula ������ the Melnikov
potential of our perturbed billiard problem �on the separatrix ��� is

L � R � S
d��� R� L�t� a� �

X
n�Z

g�t� hn� a� �
X
n�Z

f�t� hn� a�� �����

where

g�t� a� � �v��t����t� a� � ��t� h� a�
� f�t� a� � 
�v��t�v��t������t�� a��

with

v��t� � sech t� v��t� � v��t� h

�� ��t� a� � v��t������t�� a��

�We have taken �t� a� as the coordinates over the separatrix ��� Compare
with the results in the planar case��
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Now� assume we are given a symmetric perturbation Q� of the prolate
ellipsoid Q� such that its section C��a�� is a non�trivial �up to order ��
symmetric entire perturbation of the ellipse C��a��� for some a� � S

d��� By
de�nition� � �� ���� a�� is a non�constant ��periodic entire function� Then�
t �� L�t� a�� is a non�constant function �it su$ces to copy the proof for the
planar case� and we have proved the following result�

Theorem ��� Let Q� be symmetric perturbation of the prolate ellipsoid Q��
such that some of its sections C��a� is a non�trivial �up to order 	� symmetric
entire perturbation of the ellipse C��a�� Then� the separatrices �� and �


split� for 	 	 j�j � ��

In fact� we have proved only that �� splits� but it is clear that �
 also
splits� Indeed� it is enough to observe that the heteroclinic orbits that go to
the right are in a one�to�one correspondence with the heteroclinic orbits that
go to the left� by means of the reversor R� Therefore� the destruction of a
separatrix automatically implies the destruction of the other one�

��� Lower bounds

Let us recall that in the planar case d � �� there were at least � symmet�
ric primary heteroclinic orbits �O�� � RO�� � SO�� � and RSO�� �� for reversible
symmetric perturbations of an ellipse� Our goal now is to present similar
results for perturbations of a prolate ellipsoid� Obviously� the �rst step is to
de�ne the term reversible for d � 
�

Following the planar case� a perturbation of the prolate ellipsoid ���
�
will be called reversible when it preserves the original symmetries of the
ellipsoid with regard to the hyperplane f&q � 	g and the axis f%q � 	g� that is�
perturbations ����� such that P �&z� %z� is even in &z and %z� Then� equations �����
and ����� imply that

���� a� � �����a�� ����	�

On the one hand� Morse theory provides lower bounds on the number
of critical points for functions de�ned on compact manifolds� On the other
hand� the critical points of the Melnikov potential L � R � S

d�� � R are
strongly related to primary heteroclinic orbits� Therefore� it is rather natural
to apply Morse theory in order to gain information on the number of primary
heteroclinic orbits that persist after perturbation� At a �rst glance� there
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exists a technical problem �L is de�ned on a non�compact manifold�� but
there is an obvious way to overcome this di$culty� L can be considered as
a function de�ned over the reduced separatrix S�� S

d��� using that L�t� a� is
h�periodic in t� and the identi�cation S� � R
ft � t� hg�

Under the condition that the Melnikov potential is a Morse function �a
condition of generic position�� we now state a result about the number of
primary heteroclinic orbits that persist under a general perturbation� We
will verify the optimality of this result for speci�c examples�

Theorem ��� Let Q� be a symmetric smooth perturbation of a prolate ellip�
soid Q� of dimension d� such that its Melnikov potential L � S�� S

d�� � R

is a Morse function� Then� the number of primary heteroclinic orbits after
perturbation is at least �� If� in addition� the perturbation Q� is reversible�
there exist at least �d primary heteroclinic orbits after perturbation�

Proof� Since the Melnikov potential L � S�� S
d�� � R is a Morse function�

its critical points are in one�to�one correspondence with the primary hete�
roclinic orbits that emanate from ��� which in their turn are in one�to�one
correspondence with the primary heteroclinic orbits that emanate from �
�

For reversible perturbations� the Melnikov potential can be considered as
a �Morse� function de�ned over S��Pd��� where Pd�� � S

d��
fa � �ag is the
projective space� since equations ����� and ����	� imply that L�t� a� is even
in a� Moreover� each critical point �t��a� � S

�� P
d�� of L � S�� P

d�� � R

corresponds to two di�erent critical points of L � S�� S
d��� R�

From the celebrated Morse#s inequalities �Hir��� pages ��	����
� a Morse
function over a d�dimensional compact manifold without boundary X has
at least SB�X(F � ��

Pd
q�� �q�X(F � critical points� where �q�X(F � are the

F �Betti numbers of X and F is any �eld� that is� �q�X(F � is the dimension
of the q�th singular homology F �vector space of X� noted Hq�X�F ��

Consequently� it su$ces to check that

SB�S�� S
d��(Z�� � �� SB�S�� P

d��(Z�� � 
d� ������

for all d � 
�
From the well�known Z��homologies

Hq�S
m(Z�� ��

�
Z� if q � 	� m
	 otherwise

Hq�P
m(Z�� ��

�
Z� if 	 � q � m
	 otherwise

�
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and the K.unneth#s FormulaHq�X�Y (Z�� �� Lq
p��Hp�X(Z���Hq�p�Y (Z���

we get

Hq�S
�� S

�(Z�� ��

����
Z� if q � 	� 

Z� � Z� if q � �
	 otherwise

�

Hq�S
�� S

d��(Z�� ��
�
Z� if q � 	� �� d� �� d
	 otherwise

� �d � 
�

Hq�S
�� P

d��(Z�� ��

����
Z� if q � 	� d
Z� � Z� if q � �� � � � � d� �
	 otherwise

� �d � 
�

And ������ follows adding dimensions� �

��� Polynomial perturbations

We shall study now polynomial perturbations of the prolate ellipsoid� that
is� perturbations such that the function P �&z� %z� in the implicit form ����� is
a polynomial� Our goals are the following�

� To compute explicitly the Melnikov potential �and its critical points�
for some concrete perturbations�

� To check that the lower bounds given in Theorem ���
� are optimal�

� To prove that the Melnikov method gives exponentially small �in h�
predictions of the splitting size for singular perturbations� as in the
planar case�

We shall omit many details in the computations below� since they are a
transcription of the same ones in the planar case� The only di�erence is the
additional variable a � S

d��� which can be considered as a parameter�

Polynomial reversible perturbations

Suppose we are given a polynomial reversible perturbation Q�� Thus� the
function P �&z� %z� in the implicit form ����� is an even polynomial in the vari�
ables &z and %z� For the sake of simplicity we will assume that

P �&z� %z� � j%zj�
NX
n��

P�n�%z��
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where P�n � R
d � R denotes a homogeneous polynomial of degree 
n( in

particular� this implies that P �&z� %z� does not depend on the variable &z�
Then� using ����� and ������ we get that

���� a� �
NX
n��

�n�a� sin
�n �� �n�a� � P�n�a��

and the Melnikov potential is

L�t� a� � constant�
�
NX
n��

n��X
���

Bn��

�
�� ��*
�n�a��

�����t�� ����
�

where the coe$cients Bn�� are given in ���

� and the elliptic function ��t�
is de�ned in ������� Furthermore� the dominant terms in h in the singular
limit h� 	� turns out to be

L�t� a� � constant�
��)Nh
���N���e�


��h cos�
�t
h�
h
�N�a� �O�h��

i
�

where )N is the non�zero constant de�ned in ���
���
This shows how to compute explicitly the Melnikov potential L�t� a� for

any polynomial perturbation� and makes evident its exponentially small de�
pendence on h�

A quartic reversible perturbation

Let us consider now the simplest non�trivial case of the previous polynomial
perturbations� that is� the case of quartic perturbations� N � �� Concretely�
given any symmetric d� d matrix M � we introduce the perturbation

Q� �

�
q � �&q� %q� � R

d�� �
&q�

��
�
j%qj�
��

� � � 
���	j%qj�h%q�M %qi
�
� ������

which gives ���a� � 	 and ���a� � ha�Mai� As in the planar case� everything
can be computed for quartic perturbations� Using that B��� � ���� we get
the Melnikov potential�

L�t� a� � constant�
�B������a���t�

� constant�
���
�

K

h

��
ha�Mai dn�

�

Kt

h

				m� �
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Proposition ��� Let �j be the eigenvalues of M and uj their respective
�normalized� eigenvectors� Muj � �juj and uj � S

d��� for � � j � d�
Suppose that

�j �� 	 �j� �j �� �s �j �� s� ������

Then� the symmetric billiard map associated to the hypersurface ���	
� has
exactly �d primary heteroclinic orbits�

O	�
��j
� �

�
q	�
��jn ���

�
n�Z

� Q�� � � f���g� � � f	� �g� j � f�� � � � � dg�
all of them being transverse� for 	 	 j�j � �� The superscript � indicates the
direction of the orbit� as in Lemma ��	� The functions q	�
��jn ��� are smooth
in � � 	� and

q��
��j
n �	� � q���h

 � nh��uj�� q
�
��j

n ��� � q��
��j
�n ����

where q� � �&q�� %q�� � R � S
d��� Q� n f���� 	�g is the di�eomorphism

&q��t� a� � � tanh t� %q��t� a� � �� sech t
a�

Proof� Let Q be the orthogonal matrix whose columns are the eigenvalues
uj� Then� S

d�� � a �� Qa � S
d�� is a di�eomorphism� such that ���Qa� �Pd

j�� �jaj
�� Thus� hypotheses ������ imply that �� � S

d�� � R has exactly

d critical points� f�uj � � � i � dg� all of them being non�degenerate�
Moreover� we recall that hZ

 is the set of real critical points of ��t�� and
that these critical points are non�degenerate�

Consequently� L�t� a� is a Morse function over R
hZ � S
d��� which has

exactly �d critical points� ��h

��uj�� for � � f	� �g� � � j � d� They are
non�degenerate� too�

Finally� the proposition follows from Theorem 
��� and Lemma ���� �

A quartic non�reversible perturbation

We shall describe similar results obtained for the simplest non�trivial non�
reversible perturbation� which is also a quartic one� We shall omit the details
since they do not involve any new idea� but only some tedious computations
with elliptic functions�

Given a non�zero vector u � R
d � we consider the perturbation

Q� �

�
q � �&q� %q� � R

d�� �
&q�

��
�
j%qj�
��

� � � 
���	j%qj�&qh%q� ui
�
� ������
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Then� using the same arguments than in the proof of the preceding proposi�
tion� we get the following result�

Proposition ��� The symmetric billiard map associated to the hypersur�
face ���	�� has exactly � primary heteroclinic orbits�

O	�
��
� �

�
q	�
��n ���

�
n�Z

� Q�� � � f���g� � � f	� �g�
all of them being transverse� for 	 	 j�j � �� Moreover�

q��
��j
n �	� � q��t
 � nh��u�� q
�
��

n ��� � q��
��
�n ����

where t� � �	� h

� and t� � ��h
�� h� are the only critical points in the
interval �	� h
 of the elliptic function �with periods h and 
� i��

t �� X
n�Z

sinh�t� hn�

cosh��t� hn�
�

Some last comments

The previous examples show that the lower bounds on the number of hete�
roclinic orbits provided by Theorem ��
 are optimal� The conditions �������
for the reversible perturbations� and u �� 	� for the non�reversible ones� are
the conditions of generic position for L�t� a� to be a Morse function� The
condition �j �� �s for j �� s� is equivalent to the complete breakdown of
the symmetry of revolution with regard to the axis f%q � 	g of the prolate
ellipsoid�

Following the planar case� singular perturbations correspond to pertur�
bations of a spheric billiard� and the Melnikov prediction of the heteroclinic
area between some distinguished pairs of heteroclinic orbits is again expo�
nentially small in h� As an example we simply note that� for the reversible
quartic perturbation �������

�W �O	����j
� �O	����j

� 
 � ��j�h� �O����� � � f���g� j � f�� � � � � dg�
where

�j�h� � L�h

� uj�� L�	� uj�

� �
���j��
�h��e�


��h


��X
k	�

exp����k�k � ��
h


��

� 
�����jh
�
e�


��h �h� 	���
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