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�� Introduction

We are interested in the motion of a small particle in some regions of the Earth�Moon
system� As a �rst model� we will use the spatial Restricted Three Body Problem �RTBP�
see ��� for de�nition and main properties	� It is well known that� in synodic coordinates� this
model has �ve equilibrium points� We will focus on the one that is behind the Moon� usually
called the L� point� Our purpose is to describe the dynamics in an extended neighbourhood
of that point� This information is very useful to keep an spacecraft there� because we can
take advantage of the natural dynamics of the problem�

The main tools used are an e
ective computation of the central manifold of the point
�to give a qualitative description of the dynamics	 and a Lindstedt�Poincar�e method �to
compute invariant tori inside the central manifold	� This methodology has already been
used in similar problems �see ���	�

�� E�ective reduction to the central manifold

This section is devoted to the computation of the central manifold associated to L�� The
procedure is quite similar to a normal form computation�

���� THE HAMILTONIAN

The reference system is the following the origin is taken at L�� the x axis is directed opposite
to the Moon� the z axis is given by the vector of angular motion of Earth and Moon and
the y axis is selected in order to obtain a orthogonal positive�oriented system of reference�
Then� the Hamiltonian takes the form
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rE
� �

rM
�

where rE and rM are the distances from �x� y� z	 to Earth and Moon respectively� To
compute the power expansion of H around the origin� it is worth noting that
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where �� � x� � y� � z�� Pn is the Legendre polynomial of degree n and
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being � the distance between L� and Moon divided by the Earth�Moon distance� A good
way of implementing this expansion on a computer is to take advantage of the recurrence
of the Legendre polynomials �see� for instance� ���	�

���� LINEAR BEHAVIOUR AND EXPANSIONS

The linearization of the Hamiltonian around L� shows that the local behaviour near this
point is of the type saddle � centre � centre� So� using a real� linear and symplectic change
of variables the Hamiltonian takes the form

H � �x�y� �
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�x�� � y��	 �

��
�
�x�� � y��	 � � � � �

where �� �� and �� are real numbers� For the following computations it is very convenient
to �diagonalize� the second order terms� This is done by using the complex change xi �
�qi �

p��pi	�
p
�� yi � �

p��qi � pi	�
p
�� i � �� �� So� the Hamiltonian looks like
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In fact� a good way of performing these changes of variables on the Hamiltonian is to write
them as a unique linear transformation and to apply the recurrence mentioned above to this
change� This produces the expansion of the Hamiltonian in the �nal variables�

���� COMPUTATION OF THE CENTRAL MANIFOLD

The next step is to perform canonical transformations to ��	 to obtain
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The changes are done using Poisson brackets �see� for similar examples� ���� ��� or ���	� The
purpose is to kill all the monomials with k� �� k�� Of course� this is done up to a �nite order
N � The divisors obtained in the generating function of the change of variables are

��k� � k�	 �
p�����k� � k�	 �

p�����k� � k�	�

As we only want to eliminate monomials with k� �� k�� the corresponding divisors can be
bounded from below� This shows the absence of small denominators in the process� So�
although this procedure is not convergent� it produces very good approximations to the
dynamics� The last step is to call I � q�p�� and the �nal Hamiltonian looks like

H � HN �I� q�� p�� q�� p�	 �RN���q� p	�

Now� if we skip RN�� �it is very small near L�	� we see that I is a �rst integral� and setting
I � � we skip the hyperbolic part and we reduce the Hamiltonian to its central manifold�
Finally� the resulting Hamiltonian is reali�ed�
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�� Dynamics inside the central manifold

The phase space in the central manifold is four dimensional� To describe the dynamics� we
�x the Poincar�e section q� � � �this will correspond� at �rst order� to z � � in the initial
coordinates	 and we use� as a parameter� the energy level h of the Hamiltonian� This implies
that it is enough to plot these ��D sections for several levels of h to obtain a qualitative
description of the phase space�

�� Computation of invariant tori near L�

Here is better to work with the equations of motion instead of the Hamiltonian� They can
be written in the from
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where the reference system is the one introduced in section ��� and cn has been de�ned in ��	�
Note that� in these equations� the left�hand side contains the linear part and the right�hand
side the nonlinear part� For the computation of invariant tori� we will use a Lindstedt�
Poincar�e method �see ���	� This is a recurrent procedure that produces approximations to
the solutions starting from the solutions of the linear part�

���� THE ��D INVARIANT TORI

We look for formal expansions� in powers of the amplitudes 
 and �� of the type
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where �� � �t � �� and �� � t � ��� The frequencies � and  are expanded as � �P�
i�j�	 �ij
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a �nite order i� j�

���� HALO ORBITS

Now we look for �periodic	 Halo orbits� In this case we only have one frequency and one
amplitude� Nevertheless� we will keep the two amplitudes 
 and � adding a constrain
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between them� So� the expansions have the form

x �
�X

i�j��

�
� X
k�i�j

aijk cos�k�t	

�
A
i�j �

y �
�X

i�j��

�
� X
k�i�j

bijk sin�k�t	

�
A
i�j �

z �
�X

i�j��

�
� X
k�i�j

cijk cos�k�t	

�
A
i�j �

where � �
P�

i�j�	 �ij

i�j and the relation between both amplitudes can be written in the
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We want to stress that Halo orbits are not present in the linearized system and they
are only found when nonlinear terms are considered� since they are produced by a � to �
resonance between the two frequencies of the central part�

�� Results

All the algorithms have been implemented by the authors in C and FORTRAN� taking
advantage of the symmetries and particularities of the problem� The use of commercial
algebraic manipulators does not allow to reach high orders in the expansions to get accurate
results �the central manifold has been computed up to order ��� the Lindstedt�Poincar�e has
been applied up to order �� for the invariant tori and �� for the Halo orbits	�

We have summarized the results in �gure �� The �rst plot is one of the Poincar�e sections
�h � �	 of the central manifold� The elliptic point in the centre corresponds to a vertical
Lyapunov orbit� the lateral elliptic points correspond to Halo orbits and the boundary of
the section is a planar Lyapunov orbit�

The second plot corresponds to one of the invariant tori in the central manifold� It has
been plotted as seen from the Earth� jointly with the Moon disk� Note the �cut� between
the initial and the �nal part of the trajectory� just over the Moon disk� This point has the
same position in both cases but with di
erent velocities� This implies that� if we want to
avoid the lunar disk� we can restart the orbit with only a manoeuvre� The time between
two of these manoeuvres is about two weeks�

�� Applications to spacecraft dynamics

The most interesting trajectories are the ones that� as seen from the Earth� avoid the Moon
disk� They can be useful� for instance� to keep constant communication with a mission to
the dark side of the Moon� Halo orbits are suitable for that purpose� The main drawback
is that the orbit is very wide in the horizontal direction� so the spacecraft must carry an
orientable antenna� always pointing to the Earth� This makes the mission more expensive�

Another possibility is to use an invariant tori in the central manifold of L�� Note that
the orbit can be selected more �squared�� so the antenna does not need to be orientable�
On the other hand� and from time to time� the spacecraft will be eclipsed by the Moon� This
can be avoided by doing a manoeuvre every two weeks�

Full details of these computations� as well as the stability properties of the orbits and
the corresponding control strategies will appear in a future paper�
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Figure �� Left� Poincar�e section of the central manifold� Right� Quasiperiodic trajectory in the central
manifold� as seen from the Earth �in the centre we have drawn the Moon disk��

	� Extensions

The next step is to take into account the main perturbations of the problem� namely the
noncircular motion of the Moon and the e
ect of the Sun� This will allow to give precise
details about the dynamics of the real problem� This work is still in progress�
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