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Abstract

An attempt to use phylogenetic invariants for tree reconstruction was
made at the end of the 80s and the beginning of the 90s by several au-
thors (the initial idea due to Lake [Lake, 1987] and Cavender and Felsen-
stein [Cavender and Felsenstein, 1987]). However, the efficiency of methods
based on invariants is still in doubt ([Huelsenbeck, 1995], [Jin and Nei, 1990]),
probably because these methods only used few generators of the set of phylo-
genetic invariants. The method studied in this paper was first introduced in
[Casanellas et al., 2005] and it is the first method based on invariants that uses
the whole set of generators for DNA data. The simulation studies performed
in this paper prove that it is a very competitive and highly efficient phylo-
genetic reconstruction method, especially for non-homogeneous phylogenetic
trees.

Introduction

Since the introduction of phylogenetic invariants by Cavender and Felsenstein
[Cavender and Felsenstein, 1987] and Lake [Lake, 1987], several attempts to give a
generating set of polynomial phylogenetic invariants have been made (see for exam-
ple [Steel et al., 1993], [Ferreti and Sankoff, 1995]) but it has not been until recently
that algebraic geometers have managed to find them all ([Allman and Rhodes, 2004a/,
[Sturmfels and Sullivant, 2005], [Casanellas and Sullivant, 2005]). Methods based
on invariants have already proved to be wuseful in comparative genomics
[Sankoff and Blanchette, 1999]). However, they have not had much success in phy-
logenetic inference ([Jin and Nei, 1990], [Huelsenbeck, 1995]) because only a small
set of invariants has been considered (for example, Lake’s method of invariants only
used two phylogenetic invariants of degree one among the 795 generators of the



set of polynomial invariants of a quartet tree for the Kimura 2-parameter model
[Garcia and Porter, |). But as Felsenstein explains, invariants are worth more at-
tention for what they might lead to in the future ([Felsenstein, 2003]). This future
may be the present now since the studies of this paper validate the method based
on invariants presented in this report as a promising method. Recently, other meth-
ods based on a large set of invariants have also been considered [Eriksson, 2005],
[Kim et al., ].

Phylogenetic invariants are equations satisfied by the expected pattern frequen-
cies of a given tree topology T evolving under an evolutionary model. More precisely,
if t is the set of model parameters on 7" and p,(t) is the probability of observing
the pattern a at the leaves of T, by letting t vary on an open subset of R? the
probability vector p(t) = (paa..a(t),...,prr.r(t)) defines a subset Sy of dimension
< d of RY. A phylogenetic invariant is a real-valued continuous f(z) on R*" such
that f(p) = 0 for any p € Sp, but not for all the points on the subset Sy deter-
mined by another tree topology T”. Essentially, the equations f(p) = 0 are satisfied
whatever the parameters of the model are, so they might be used for recovering the
tree topology. In practice, the vector of observed pattern frequencies p obtained
from an alignment of n taxa with enough data, should approximate p(t) for some
set of parameters t on a tree topology 7. In other words, p should be a point close
to the subset St so, if f is an invariant for the topology 7', one should have that
f(p) is very close to 0. Thus, with probability one, there will be a unique tree
topology T for which all its phylogenetic invariants are close to 0 when evaluated at
p. Therefore, using the phylogenetic invariants for tree reconstruction is a consis-
tent method (see [Hagedorn and Landweber, 2000], [Felsenstein, 2003]). A practical
introduction to the theory of invariants can be found in the book of J. Felsenstein
[Felsenstein, 2003, chapter 22], whereas the book [Pachter and Sturmfels, 2005] pro-
vides a beautiful insight into the applications of algebraic statistics (and in particular
polynomial phylogenetic invariants) to computational biology.

There are two major motivations for using phylogenetic invariants in tree re-
construction: one of them is the prohibitive computational expense of a full max-
imum likelihood estimation of a tree and its edge lengths and the other is that
the evolutionary models underlying the theory of invariants are non-homogeneous.
Indeed, it is known that for biological species different rate matrices should be
allowed in different lineages. Thus it is essential to have at our disposal phylo-
genetic methods for reconstructing trees admitting non-homogeneous models (see
[Yang and Yoder, 1999]).

In this paper, a phylogenetic reconstruction method that uses polynomial phylo-
genetic invariants (introduced in [Casanellas et al., 2005]) is studied and tested for
quartet unrooted trees evolving under the Kimura 3-parameter model of nucleotide
substitution [Kimura, 1981]. Actually, we consider an algebraic Kimura model: the
parameters of the model are the entries of the transition matrices (not of the rate
matrices). Hence the model is non-homogenous —because it allows different rate
matrices along different lineages— but it is stationary and we always assume that all
sites are independent and identically distributed (i.i.d. hypotheses). We performed



simulation studies to prove its efficiency. Our approach to test the efficiency of the
method is taken from Huelsenbeck [Huelsenbeck, 1995] so that a large portion of
the tree space is examined to get a general idea of how the algorithm performs. We
present the results obtained for sequences of length 100 up to 10000.

We also checked the performance of the method on simulated data from non-
homogeneous trees (different rate matrices in different branches) by carrying out
a comparison to Neighbor-Joining algorithm [Saitou and Nei, 1987], maximum like-
lihood algorithm [Felsenstein, 1981], and a non-homogeneous algorithm from PAML
[Yang, 1997] for sequences generated under a Kimura 2-parameter model
[Kimura, 1980] and different rate matrices along different tree branches.

Results

Homogeneous data

The performance of the invariants method studied here on homogeneous trees can be
seen in figures 1 and 2. Using the approach of J.P. Huelsenbeck in [Huelsenbeck, 1995]
for quartet trees, we considered two branch-length parameters a, b (see figure 6(a))
and simulated data for each couple of parameters. Parameters a and b were var-
ied from 0.01 to 0.75 in increments of 0.02 and 1000 alignments were simulated for
each couple (a,b) (see figure 6(b)). The simulated trees evolve under the Kimura
3-parameter model [Kimura, 1981] with a fixed rate matrix of the form
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along the tree (- = —a — 3 — ). Figures 1 and 2 show the efficiency of the method
considered in this paper for two different rate matrices and for nucleotide sequences
of lengths 100, 500, 1000 and 10000. The performance of the method is similar
in both cases, although the results are slightly better in the first case (notice that
in this case the transition:transversion bias is 1:1 against 2.93:1 in figure 2). This
difference in the performance is shown, for example, considering the 95% isocline in
the graphic corresponding to sequences of length 100.

These figures are to be compared with those shown in Figure A2 of
[Huelsenbeck, 1995] (corresponding to phylogenetic inference for sequences gener-
ated under a Kimura 2-parameter model of substitution [Kimura, 1980] with 5:1
transition:transversion bias). Though this is of course a biased comparison because
our method admits non-homogeneous data and Kimura 3-parameter model, it is
worth noticing that our method outperforms many of the methods considered there.
In particular, it is clearly better than Lake’s invariant method (which is not sur-
prising because Lake only used linear invariants). At least for sequences of length
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Figure 1: The graphics above represent the probability of reconstructing the correct tree
in the parameter space (see Figure 6). Black areas correspond to couples (a,b) for which
the tree was correctly estimated, while white regions correspond to couples (a, b) for which
the tree is never estimated; grey tones indicate areas of intermediate probability. The 95%
isocline is drawn in white, while the 33% is drawn in black. The four graphics above show
the results obtained under the Kimura 3-parameter model when using a rate matrix with
parameters v = 0.2, = 0.5, 5 = 0.3 (hence a 1:1 transition:transversion bias).
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Figure 2: The four graphics above show the results obtained in the four-taxon space
when the sequences are generated under the Kimura 3-parameter model of substitution

using a rate matrix with parameters v = 0.12,a = 0.73, 3 = 0.13 (hence a 2.93:1 transi-
tion:transversion bias).



500 or larger, our method performs better than neighbor-joining —referred as Min-
imum Evolution (Kimura,) in figure A2 of Huelsenbeck’s paper. Notice also that
the shape of the 95%-isocline for lengths around 500 or larger is quite different from
the corresponding shapes in the methods tested by Huelsenbeck: for large values of
a (near 0.7), the performance of our method of invariants does not drop drastically
(as it happens in most methods considered there).

For length 1000, the efficiency of the invariants method considered here is similar
to that obtained for lengths > 10000 in many of the methods tested in
[Huelsenbeck, 1995]. From this, it can be inferred that in order to reconstruct the
correct tree, much less data is needed in the invariants method presented here than in
many other methods (contrary to what was thought wuntil now
[Hagedorn and Landweber, 2000]).

Non-homogeneous data

We tested the invariants method studied in this paper on non-homogeneous data by
comparing it with other methods.

1. Comparison with neigbor-joining

First of all we compared the performance of the invariants method presented here
with neighbor-joining (the algorithm of [Saitou and Nei, 1987]) using Kimura
3-parameter distance [Kimura, 1981]. As it can be seen in figure 3, considering
certain non-homogeneous sets of data, we found that the invariants method is more
efficient than neighbor-joining. Indeed, we simulated data on an unrooted quartet
tree evolving under the Kimura 3-parameter model where different rate matrices at
each edge were choosen (see figure 4) and we studied the efficiency of the method
when varying the length of nucleotide sequences. In this case, the mean of cor-
rectly reconstructed trees for the invariants method is 90.2% whereas the mean for
neighbor-joining is 84%. For this particular tree, the maximum likelihood algorithm
for the Kimura 3-parameter model reconstructed the tree correctly almost all times,
so we do not include the results here.

2. Comparison with maximum likelihood

We compared the invariants method with two versions of maximum-likelihood:
the usual maximum likelihood for Kimura 2-parameter [Kimura, 1980] and non-
homogeneous maximum likelihood method developped in the package PAML
[Yang, 1997] for Kimura 2-parameter model (see details in the methods section).
This last method allows different transition/transversion ratio in different tree
branches. To perform this comparison we simulated data according to the tree
in figure 4 evolving under the Kimura 2-parameter model. The entries in the rate
matrices are functions of a parameter £ that is varied from 1 to 9. When ¢ = 1
the tree is homogeneous and we studied the efficiency of the three methods as ¢
increases up to 9.
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Figure 3: Performance of neighbor-joining and the invariants method on non-
homogeneous data for sequence length varying from 100 to 3000. The non-homogeneous
tree used for simulations is described in figure 4.

Figure 5 summarizes the results relative to the comparison between our method
(invariants), the non-homogeneous method in PAML for Kimura 2-parameter model
(PAML non-homogeneous) and the maximum likelihood homogeneous in PAML (PAML
homogeneous) for Kimura 2-parameter. It shows the percentage of correctly re-
constructed trees for each value of parameter . As expected, the homogeneous
maximum-likelihood algorithm decreases its efficiency as ¢ increases. Thus, it is not
recommendable to use homogeneous methods on data that can be non-homogeneous.
Already for € = 5, the invariants method overtakes the homogenous maximum like-
lihood algorithm. As it is deduced from figure 5, our method performs worse than
the non-homogeneous algorithm in PAML. However, it is worth noticing that in this
test we generated data according to Kimura 2-parameter model and the invariants
method presented here was developed under Kimura 3-parameter model.

Methods

The phylogenetic reconstruction method used in this paper is based on phyloge-
netic invariants and was first introduced by the first author and L.D. Garcia and S.

Sullivant in [Casanellas et al., 2005].
We consider the Kimura 3-parameter model [Kimura, 1981] on an unrooted bi-
nary (trivalent) tree of n species. The taxa are given by an alignment of n DNA



Figure 4: A non-homogeneous tree used for simulations. The numbers labelling each edge
correspond to branch lenghts (i.e. expected percent change between the two taxa on the
edge). 1. In comparing our method with neighbor-joining, the parameters «;, 3;,7; in
the Kimura 3-parameter rate matrices Q; were chosen as: v1 = l,a1 = 4,61 =1, y0 =
Sya0 =14,00 =3 ;y3=4,a3=15,83=3, u =2, 04 = 6,8, =2, 75 =2, a5 = 3,05 = 1.
2. In comparing our method with maximum likelihood algorithm based on the Kimura
2-parameter model, we chose v = 8 = 1 in all rate matrices whereas parameter o was set
as follows: in Q1, a =4, in Q2, Q4 and Qs, @ = 3+¢2,in Q3, « = 3+e. When € = 1 the
tree is homogeneous and we studied the efficiency of three methods as ¢ increases up to 9.

sequences of length N. A continous time Markov process along the tree is assumed
and we consider that all sites are independently and identically distributed (i.i.d.
hypotheses). At each branch i the substitution matrix has the form

A C G T

a; by e dy
b; a; d; c;
cq d; a; b;
d; c; b; a;

for some a;, b;, ¢;, d; positive parameters representing the substitution probabilities

along the branch ¢ and satisfying a;+b;4c¢; +d; = 1. Usually a rate matrix @) is fixed
and common to the whole tree and S; is the exponential e?% (for some parameter ¢;
representing time). However, in our method we do not make use of rate matrices @
—we only use the substitution matrices— so, as we will see later, the rate matrices
might vary along different lineages. We want to stress that the parameters of the
model we are considering are the entries of the substitution matrices (we should
rather speak of an algebraic Kimura 3-parameter model, according to the book
[Pachter and Sturmfels, 2005, chapters 1 and 4]).

S; =

HQAQx

Phylogenetic invariants

Sturmfels and Sullivant [Sturmfels and Sullivant, 2005] gave an explicit description
of the generators of the set of polynomial phylogenetic invariants I(7") for an arbi-
trary tree evolving under a group-based model. For the Kimura 3-parameter model
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Figure 5: The effect of rate heterogeneity among lineages on method performance. The
simulated nucleotide sequences have length 1000 and evolve under the non-homogeneous
Kimura 2-parameter model is described in figure 4 (homogeneous for ¢ = 1). The trees
were reconstructed with our method (invariants), with PAML under a non-homogeneous
method (PAML non-homogeneous) and the usual PAML maximum likelihood homogeneous
(PAML homogeneous).

on an unrooted 4-taxa tree the ideal of phylogenetic invariants has 8002 minimal gen-
erators (see the webpage [Garcia and Porter, ], [Casanellas et al., 2005] and the dis-
cussion in [Sturmfels and Sullivant, 2005], section 7 to see why a smaller subset of in-
variants does not suffice). According to the results in [Sturmfels and Sullivant, 2005],
we produced this generating set for an unrooted tree with 4 leaves under the Kimura
3-parameter model. This requires doing a Fourier transform (or Hadamard conjuga-
tion) on the vector of probabilities (pa.. 4, .., pr..r) and the phylogenetic invariants
are described in terms of the Fourier coordinates. It turns out that the phylogenetic
invariants in this case are generated by 144 binomials of degree 2, 1984 binomi-
als of degree 3 and 5874 binomials of degree 4. They can be found in the small
trees website [Garcia and Porter, | (see [Casanellas et al., 2005] for an explanation
on the website), and more precisely at http://www.math.tamu.edu/~1gp/small-
trees/small-trees_30.html.

Algorithm

Our tree reconstruction algorithm performs the following tasks. Given 4 aligned
DNA sequences si, So, S3, S4, it first computes the observed relative frequencies of



each pattern for the topology ((s1,$2), S3,54) on an unrooted quartet tree. Then it
transforms these relative frequencies to Fourier coordinates. From this, we compute
the Fourier coordinates in the other two possible topologies for unrooted trees with
4 species. We then evaluate all phylogenetic invariants for the Kimura 3-parameter
model in the Fourier coordinates of each tree topology. We call s? the absolute
value of this evaluation for the polynomial f and tree topology T'. From these
values {57}, we produce a score for each tree topology T, namely s(T) = 3 s |7 1.
The algorithm then chooses the topology that corresponds to the minimum score.
The code was written in PERL and is available upon request. For 4 sequences of 1000
nucleotides it takes 0.35s on a single 3.0-Ghz processor.

Simulations

To test the sensitivity of our method to branch length variation we considered the
approach taken by Huelsenbeck in [Huelsenbeck, 1995], where a large portion of the
four-taxon tree space is examined for different phylogenetic reconstruction methods.
Therefore, we considered two branch-length parameters and constructed a simulated
tree for each couple of parameters. One parameter (parameter a) assigns the branch
length to the internal branch and two opposite peripheral branches, and the other
parameter (parameter b) assigns the branch length to the two remaining branches
(see figure 6).The parameters a and b were varied from 0.01 to 0.75 in increments of
0.02, so that the parameter space studied here includes 1296 different combinations
of branch lengths (figure 6).
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Figure 6: (a) The parameter space for the unrooted four-taxon tree. Parameter a is
plotted in the abscissa, while parameter b in the ordinate. Changes in the length of the
branches a and b are varied from 1% to 75% in increments of 2%. (b) Unrooted 4-taxa
tree. The branches labelled with the same letter (either a or b) are supposed to have the
same expected percent of changes. The taxa are named with arabic numbers, 1 to 4.
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The simulations of this study were obtained using the program Seq-Gen v1.3.2
[Rambaut and Grassly, 1997]. We performed two different sets of simulations in the
parameter space. In the first set we consider the following calibrated rate matrix
for each branch:

02 05 0.3
02 - 03 05
05 03 - 0.2
0.3 05 0.2

where - = —0.2 — 0.5 — 0.3. For each assignment of branch lengths in the tree space
we simulated 1000 alignments for which we used our algorithm to reconstruct the
tree, so that in total 1296000 tests of our algorithm have been performed. The
results corresponding to this simulation appear in figure 1.

In the second set of simulations we considered the following rate matrix along
all branches

- 0.12 0.73 0.13
0.12 - 013 0.73
0.73 013 - 0.12
0.13 0.73 0.12

where - = —0.12 — 0.73 — 0.13. This rate matrix was obtained from
[Al-Aidroos and Snir, 2005] and it corresponds to the maximum likelihood estimate
from an alignment of homologous sequences of eight vertebrates under a Kimura 3-
parameter model. Again, for each assignment of branch lengths in the tree space we
did 1000 tests of our algorithm. The results of this set of simulations are presented
in figure 2.

As we mentioned above, the hypotheses of the model allow for different rate
matrices along different lineages in the tree. In other words, our method admits a
non-homogeneous model. It is worth pointing out that, as we consider a Kimura
3-parameter model along all branches, the uniform distribution of base composition
holds for the whole tree (stationarity hypothesis). To test the non-homogeneity
hypothesis in our phylogenetic reconstruction method we performed the following
study.

1. Comparison with neigbor-joining

We considered the tree in figure 4, with rate matrices as given in figure caption.
For each lenght from 100 to 3000, in intervals of 100, we generated 100 sets of data
according to the model specified in figure 4. The simulations were made using Seq-
Gen, as this software allows to keep record of ancestral sequences and it is possible
to generate trees with a given ancestor sequence at the root. The we reconstructed
the tree using the invariants method and neighor-joining (see results in figure 3). We
used the algorithms implemented in the package APE [Paradis et al., 2006] v1.8-3 of
R [Team, 2005] v2.1.1 to compute Kimura 3-parameter distance [Kimura, 1981] and
perform neighbor-joining algorithm [Saitou and Nei, 1987].

11



2. Comparison with maximum likelihood

Finally, to perform the comparison of our program against a maximum likelihood
we considered the tree in figure 4 (branch lengths represent expected percentage
of substitutions per site and were chosen so that none of the methods considered
below performed perfectly). The rate matrices in figure 4 correspond to Kimura
2-parameter model and are

-1 41
1 - 1 4
le 4 1 1 )
1 4 1
1 3+ &2 1
P 1 1 3+
Q2 =0Q1=0Qs = 3+e2 1 1 ’
1 3+ 1
1 3+¢ 1
- 1 1 3+e
@s = 3+ 1 : 1
1 3+¢ 1

We let parameter € vary from 1 to 9.0 in intervals of 0.5. For each value of
e Seq-Gen generated 100 replicates of data. We reconstructed the tree with our
algorithm and with two algorithms in PAML [Yang, 1997]: maximum-likelihood
under a Kimura 2-parameter model homogeneous (option nhomo=0 in baseml control
file) and the non-homogeneous maximum likelihood Kimura 2-parameter (option
nhomo=0 in baseml control file). Option nhomo=2 in PAML allows for different
transition/transversion ratio for different branches in the tree. Notice that this
option in PAML has no effect on Kimura 3-parameter model, so we had to simulate
data under a Kimura 2-parameter model. The results of this test can be seen in
figure 5.

Discussion

The simulation studies performed in this paper present a very competitive phylo-
genetic reconstruction method based on invariants. If one compares our results on
the tree space and those of Huelsenbeck [Huelsenbeck, 1995] (though it is a biased
comparison as he uses Jukes-Cantor or Kimura 2-parameter models for sequence
generation and our model is non-homogeneous), one sees that the method presented
here is highly efficient. There are some limitations of the tree space study performed
here, though. For example, this tree space does not consider trees where the inner
edge is extremely small or extremely large with respect to the peripheral branches.
As Huelsenbeck points out, the usefulness of considering this parameter space can
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be questioned, but he also gives strong arguments that convinced us to work in this
parameter space. Moreover, considering the same parameter space as Huelsenbeck
allows one to compare our results to the other methods studied by him.

We would like to make some considerations on the algorithm presented here and,
more generally, on all methods based on invariants. First of all we need to emphasize
that the phylogenetic invariants of a given model just need to be computed once
in your life. Then one can use them for phylogenetic inference as we have done in
this paper. Secondly, increasing the size of the sequences does not drop the com-
putational efficiency of the algorithm. Indeed, the sequences length only accounts
for computing the relative frequencies of the observed patterns (which is something
that most algorithms based on evolutionary models must do), but it does not par-
ticipate in any other part of the algorithm. A small comment on the election of
the 1-norm: we performed simulation studies not presented here to prove that the
algorithm performs clearly better with the 1-norm than with the maximum norm
(which takes into account only the distance to one of the hypersurfaces containing
the variety), and slightly better than with the euclidean norm. Another considera-
tion that might be important for the computational efficiency of the method is that,
in Fourier coordinates, the polynomials considered here are binomials and hence
they are easy to evaluate at a given point (so there is no need to worry compu-
tationally about the evaluation of the polynomials). Moreover, as it is proved in
[Sturmfels and Sullivant, 2005], these binomials have degree 4 at most so, again,
the computational cost is low.

We implemented and tested the algorithm presented here only on 4-taxon trees.
This seems a limitation of the method but as the reader may have noticed, the
method is universal and could be used to infer the topology of trees with arbitrary
number of taxa. However, the computational demands of deducing large phylogenies
led us not to develop this algorithm for larger trees. Instead, we suggest that invari-
ants might be a good starting point for quartet methods of phylogenetic inference.
In this direction, it is also worth thinking about new tree reconstruction algorithms
for arbitrary taxa based on invariants (this is something the authors will surely work
on in the future).

In this paper we focused on the Kimura 3-parameter evolutionary model. How-
ever, a full generating set of invariants is known for any group-based model
([Sturmfels and Sullivant, 2005]) and a large set of invariants is known for the gen-
eral Markov model ([Allman and Rhodes, 2003], [Allman and Rhodes, 2004al).
Therefore, the method presented here can be extrapolated to these evolutionary
models and in the future further models can be considered.

As we pointed out in the introduction, invariants based methods focus on recov-
ering the tree topology and not estimating the parameters. Nevertheless, as Allman
and Rhodes say ([Allman and Rhodes, 2003], [Allman and Rhodes, 2004b]), it is fair
to think that phylogenetic invariants may also be useful for parameter recovery.

As we have already mentioned, one of the advantages of the method presented
here versus other methods of phylogenetic reconstruction based on evolutionary
models is that the model considered here is non-homogeneous in the sense that the

13



rate matrix is allowed to vary along the different branches of the tree. However, the
base distribution is the same at all nodes of the tree and so the model is stationary.
For an unrooted tree with n taxa, our algebraic Kimura model has 3 x (2n — 3)
free parameters, and it is a special case of the general Markov model which involves
12%(2n — 3) + 3 parameters. If one considered a Kimura 3-parameter model (not the
algebraic model considered here) allowing different rate matrices along the tree one
would have 3*(2n-3)+2n-3 (the extra parameters correspond to time parameters).
Other non-homogeneous models have been considered in the literature, see for exam-
ple [Galtier and Gouy, 1998] and [Yang and Roberts, 1995]. The emphasis in these
two papers is put on the non-stationarity hypothesis, and the maximum likelihood
approach taken in most non-homogeneous methods makes them computationally
unfeasible.
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