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Abstract. Let R = k[x1, . . . , xd] or R = k[[x1, . . . , xd]] be either a
polynomial or a formal power series ring in a finite number of variables
over a field k of characteristic p > 0 and let DR|k be the ring of k-
linear differential operators of R. In this paper we prove that if f is
a non-zero element of R then Rf , obtained from R by inverting f , is
generated as a DR|k–module by 1

f
. This is an amazing fact considering

that the corresponding characteristic zero statement is very false. In
fact we prove an analog of this result for a considerably wider class of
rings R and a considerably wider class of DR|k-modules.

1. Introduction

Let k be a field and let R = k[x1, . . . , xd], or R = k[[x1, . . . , xd]] be either
a ring of polynomials or formal power series in a finite number of variables
over k. Let DR|k be the ring of k-linear differential operators on R. For
every f ∈ R, the natural action of DR|k on R extends uniquely to an action
on the localization Rf via the standard quotient rule. Hence Rf acquires
a natural structure of DR|k–module. It is a remarkable fact that Rf has
finite length in the category of DR|k-modules. This fact has been proven
in characteristic 0 by Bernstein [2, Cor. 1.4] in the polynomial case and by
Björk [4, Thm. 2.7.12, 3.3.2] in the formal power series case. In positive
characteristic the polynomial case was established by Bøgvad [8, Prop. 3.2]
and the formal power series case by Lyubeznik [15, Thm. 5.9]. Consequently
the ascending chain of DR|k-submodules

DR|k · 1
f
⊆ DR|k · 1

f2
⊆ · · · ⊆ DR|k · 1

fs
⊆ · · · ⊆ Rf

stabilizes, i.e. Rf is generated by 1
f i for some i. This paper is motivated by

the natural question: What is the smallest i such that 1
f i generates Rf as a

DR|k–module?
If k is a field of characteristic zero and f ∈ R is a non-zero polynomial, the

answer to this question is known: Theorem 1’ of [2] shows that there exists
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of a monic polynomial bf (s) ∈ k[s] and a differential operator Q(s) ∈ DR|k[s]
such that

Q(s) · fs+1 = bf (s) · fs

for every s. The polynomial bf (s) is called the Bernstein-Sato polynomial
of f . Let −i be the negative integer root of bf (s) of greatest absolute value
(it exists since −1 is always a root of bf (s)). Then, bf (s) �= 0 for any integer
s < −i, hence fs ∈ DR|k · fs+1 implying 1

fs ∈ DR|k · 1
f i for all s > i. In

particular, Rf is DR|k-generated by 1
f i and, as is shown in [19, Lem. 1.3], it

cannot be generated by 1
fj for j < i. This gives a complete answer to our

question in characteristic zero.
For example, consider the polynomial f = x2

1 + · · · + x2
2n. Then, the

functional equation

1
4
(

∂2

∂x2
1

+ · · · + ∂2

∂x2
2n

) · fs+1 = (s + 1)(s + n) · fs

shows that the Bernstein-Sato polynomial is bf (s) = (s+1)(s+n) [20, Cor.
3.17]. Hence Rf is DR|k-generated by 1

fn but it cannot be generated by 1
fj

for j < n.
The goal of this paper is to prove the following amazing result.

Theorem 1.1. Let R = k[x1, . . . , xd] or R = k[[x1, . . . , xd]] be either a ring
of polynomials or formal power series over a field k of characteristic p > 0
and let f ∈ R be non-zero. Then Rf is DR|k-generated by 1

f .

In fact we prove this result for a considerably wider class of rings R and
a considerably wider class of DR|k-modules.

In Section 2 we have collected for the reader’s convenience some basic
(and not so basic) facts about DR|k-modules in characteristic p > 0. These
are needed in Section 4 and 5, whereas Section 3 can be read with minimal
prior exposure to DR|k–module theory.

In Section 3 we introduce a chain of ideals associated to an element f
of a regular F -finite ring R of characteristic p > 0. These ideals are of
considerable interest in their own right and are likely to become useful in
other contexts as well, especially in the theory of tight closure. The crucial
fact is that this chain of ideals stabilizes if and only if Rf is DR|k-generated
by 1

f (Corollary 3.6). This yields a very elementary proof that Rf is DR|k-
generated by 1

f in the special case that R is a polynomial ring over a field
(Theorem 3.7 and Corollary 3.8).

In Section 4 we extend our results to all regular rings R that are of fi-
nite type over an F -finite regular local ring of characteristic p > 0 and
to all finitely generated unit R[F ]-modules (Theorem 4.1 and Corollary
4.4). The proof uses considerably more advanced tools than the elementary
proof of Section 3 for the polynomial ring. Namely, Frobenius descent and
Lyubeznik’s theorem [15, Cor. 5.8] to the effect that Rf has finite length in
the category of DR|k-modules are used. This result implies that the chain of
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ideals constructed in Section 3 stabilizes for this class of rings. These ideals
squarely belong to commutative algebra and it is quite remarkable that the
only available proof that they stabilize requires the use of DR|k-modules!

In Section 5 we extend our results to the case of regular algebras R of finite
type over a formal power series ring k[[x1, . . . , xd]] where k is an arbitrary
field of characteristic p > 0 (the case that k is perfect is covered by the
results of Section 4).

This paper combines and generalizes the results of preprints [1] and [7].

2. Rings of differential operators and modules over them in

characteristic p > 0

In this purely expository section we have collected some basic facts which
are needed in the following sections. Throughout this section R is a com-
mutative ring containing a field of characteristic p > 0.

2.1. Definition and elementary properties. The differential operators
δ : R −→ R of order ≤ n, where n is a non-negative integer, are defined
inductively as follows (cf. [10, §16.8]). A differential operator of order 0
is just the multiplication by an element of R. A differential operator of
order ≤ n is an additive map δ : R −→ R such that for every r ∈ R, the
commutator [δ, r̃] = δ ◦ r̃ − r̃ ◦ δ is a differential operator of order ≤ n − 1
where r̃ : R −→ R is the multiplication by r. The sum and the composition
of two differential operators are differential operators, hence the differential
operators form a ring which is a subring of EndZR. We denote this ring DR.

If k ⊆ R is a subring, we denote by DR|k ⊆ DR the subring of DR

consisting of all those differential operators that are k-linear. Since every
additive map R −→ R is Z/pZ-linear, DR = DR|Z/pZ, i.e. DR is a special
case of DR|k. The ring homomorphism R −→ DR|k that sends r ∈ R to the
multiplication by r makes R a subring of DR|k.

By a DR|k–module we always mean a left DR|k–module. For example, R
with its natural DR|k-action is a DR|k–module. If M is a DR|k–module and
S ⊂ R is a multiplicatively closed set, then MS has a unique DR|k–module
structure such that the natural localization map M −→ MS is a DR|k–
module homomorphism [15, Ex. 5.1]. In particular, Rf carries a natural
DR|k–module structure for every f ∈ R.

Every differential operator δ ∈ DR of order ≤ ps − 1 is Rps
-linear, where

Rps ⊆ R is the subring consisting of all the ps-th powers of all the elements
of R [21, 1.4.8a]. In other words, DR is a subring of the ring

⋃

s

D
(s)
R

where D
(s)
R = EndRps (R). In particular, this implies that if k is not just

Z/pZ, but any perfect subfield of R, i.e. k ⊆ Rps
for every s, then every

δ ∈ DR is k-linear, i.e. DR = DR|k.
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Let k[Rps
] be the k-subalgebra of R generated by the ps-th powers of all

the elements of R. If R is a finite k[Rp]–module, then [21, 1.4.9]

(1) DR|k =
⋃

s

Endk[Rps
](R).

The ring R is called F -finite if R is a finitely generated Rp–module. Since
DR = DR|Z/pZ and Z/pZ[Rps

] = Rps
, it follows that if R is F -finite, then

(2) DR =
⋃

s

D
(s)
R .

If R = k[x1, . . . , xd] or R = k[[x1, . . . , xd]] is either the ring of polynomials
or the ring of formal power series over k, then DR|k is the ring extension of
R generated by the differential operators Dt,i = 1

t!
∂t

∂xt
i

where ∂t

∂xt
i

is the t-th
k-linear partial differentiation with respect to xi, i.e. Dt,i(xs

i ) = 0 if s < t

and Dt,i(xs
i ) =

(
t
s

)
xs−t

i if s ≥ t [10, §16.11], [15, Ex. 5.3d,e]. If k is perfect,
i.e.

⋃
s D

(s)
R = DR = DR|k, then D

(s)
R is the ring extension of R generated

by the operators Dt,i with t < ps.

2.2. Frobenius descent. The exposition in this subsection is based on
Chapter 3.2 of [5]. We state and prove the basic result but refer to [5] for
all the straightforward (but tedious) compatibilities one has to check.

Frobenius descent has been used by a number of authors; see for example
S.P. Smith [18, 17], B. Haastert [11, 12] and R. Bøgvad [8]. Its precursor is
Cartier descent1 as described, for example, by N. M. Katz [13, Thm. 5.1].
A big generalization has recently been given by P. Berthelot [3].

In the basic form used here Frobenius descent is based on the fact that a
ring R is Morita equivalent to the algebra of n × n matrices with entries in
R. That is R and Matn×n(R) have equivalent module categories. Namely,
Mat1×n(R), the rows of length n with entries from R (resp. Matn×1(R),
the columns of length n with entries from R) is an R-Matn×n(R)-bimodule
(resp. a Matn×n(R)-R bimodule) and the maps

Mat1×n(R) ⊗Matn×n(R) Matn×1(R) −→ R

Matn×1(R) ⊗R Mat1×n(R) −→ Matn×n(R)
that send A ⊗ B to the matrix product AB are isomorphisms, hence the
functors

Mat1×n(R) ⊗Matn×n(R) ( ) : Matn×n(R)−mod −→ R−mod

Matn×1(R) ⊗R ( ) : R−mod −→ Matn×n(R)−mod
are inverses of each other and establish an equivalence of categories.

1It states that F ∗ is an equivalence between the category of R–modules and the category
of modules with integrable connection and p–curvature zero. The inverse functor of F ∗

on a module with connection (M,∇) is in this case given by taking the horizontal sections
ker∇ of M . As an R–module with integrable connection and p–curvature zero is nothing

but a D
(1)
R –module, Cartier descent is just the case e = 1 of Proposition 2.1.
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Let R(s) be the abelian group of R with the usual left D
(s)
R –module

structure (and hence the usual left R–structure) and with the right R–
module structure defined by r′r = rps

r′ for all r ∈ R and r′ ∈ R(s). Thus
R(s) is a D

(s)
R –R–bimodule. We define a structure of R–D

(s)
R –bimodule on

Homr
R(R(s), R) where Homr denotes the homomorphisms in the category of

right R-modules as follows. For δ ∈ D
(s)
R , ϕ ∈ Homr

R(R(s), R) and r ∈ R
the product r · ϕ · δ is the composition r̃ ◦ ϕ ◦ δ where δ acts on the left
on R(s) and r̃ is the multiplication by r on R. The identification of D

(s)
R

with Homr
R(R(s), R(s)) shows that this composition r̃ ◦ ϕ ◦ δ is indeed in

Homr
R(R(s), R). Thus we have functors

F s∗( ) def= R(s) ⊗R : R−mod −→ D
(s)
R −mod

T s( ) def= Homr
R(R(s), R) ⊗

D
(s)
R

: D
(s)
R −mod −→ R−mod

the first of which is called the (s-fold) Frobenius functor on R–modules.

Proposition 2.1 (Frobenius Descent). If R is regular and F–finite, the
functors F s∗( ) and T s( ) are inverses of each other. Consequently they
induce an equivalence between the category of R–modules and the category
of D

(s)
R –modules.

Proof. To show that F s∗( ) and T s( ) are inverses of each other it is
enough to show that the natural map

Φ : R(s) ⊗R Homr
R(R(s), R) −→ D

(s)
R

given by sending a ⊗ ϕ to the composition

R(s) ϕ−−→ R
ã−−→ R

id−−→ R(s)

(where id is the identity map on the underlying abelian group of R and R(s))
and the natural map

Ψ : Homr
R(R(s), R) ⊗

D
(s)
R

R(s) −→ R

given by sending ϕ ⊗ a to ϕ(a) are both ring isomorphisms.
They are isomorphisms if and only if they are isomorphisms locally. Since

R is regular, R(s) is a locally free right R–module of finite rank [14]. Once
an R-basis of R(s) is fixed, we may view R(s) as the set of coordinate rows
of the elements of R(s) with respect to this basis and Homr(R(s), R) as the
set of the coordinate columns of the elements of Homr(R(s), R) with respect
to the dual basis, and D

(s)
R is just the matrix algebra over R, so we are done

by Morita duality between R and Matn×n, as described above. �

Remark 2.2. For a more explicit description of T s let Js be the left ideal of
D

(s)
R consisting of all δ such that δ(1) = 0. Then it is shown in [5, Prop.

3.12] that T s(M) ∼= AnnM Js ⊆ M .
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Proposition 2.1 implies that the categories of D
(s)
R –modules for all s are

equivalent since each single one of them is equivalent to R–mod. The functor
giving the equivalence between D

(t)
R –mod and D

(t+s)
R –mod is, of course, F s∗.

Concretely, to understand the D
(t+s)
R –module structure on F s∗M for some

D
(t)
R –module M , we write M ∼= F t∗N for N = T t(M). Then F s∗M =

F (t+s)∗N = R(t+s) ⊗R N carries obviously a D
(t+s)
R –module structure with

δ ∈ D
(t+s)
R acting via δ ⊗ idN .

Since the union
⋃

s D
(s)
R is just the ring of differential operators DR of R

this implies the following proposition (after the obvious compatibilities are
checked, which is straightforward and carried out in [5, Chapter 3.2]):

Proposition 2.3. Let R be regular and F–finite. Then F s∗ is an equiva-
lence of the category of DR–modules with itself.

2.3. Unit R[F]-modules. We denote by R[F ] the ring extension of R gen-
erated by a variable F subject to relations Fr = rpF for all r ∈ R. Clearly,
a (left) R[F ]–module is an R–module M with a map of additive abelian
groups F : M −→ M such that F ◦ r̃ = r̃p ◦F where r̃ : R −→ R is the multi-
plication by r. To every R[F ]–module M is associated the map of R-modules
ϑM : F ∗M = R(1) ⊗R M −→ M sending r ⊗m to rF (m). The R[F ]–module
M is called a unit R[F ]–module if ϑM is bijective. Unit R[F ]-modules are
called F -modules in [15].

A unit R[F ]–module (M, ϑ) carries a natural structure of
⋃

s D
(s)
R –module

and hence also of DR–module as DR is a subring of
⋃

s D
(s)
R =

⋃
s EndRps (R).

Namely, set

ϑs = F (s−1)∗(ϑ−1
M ) ◦ F (s−2)∗(ϑ−1

M ) ◦ · · · ◦ ϑ−1
M : M −→ F s∗M.

Every u ∈ Us = EndRps (R) acts on F s∗M = R(s) ⊗R M via u ⊗R idM . We
let u act on M via ϑ−1

s ◦ (u ⊗R idM ) ◦ ϑs. This action is well-defined, i.e. it
depends only on u, but not on the particular s [15, p. 116].

Lemma 2.4. Let R be regular and F–finite and let M be a unit R[F ]–
module. Then ϑM : F ∗M −→ M is a map of DR–modules where the DR-
structure on F ∗M is due to Theorem 2.1.

Proof. We omit a straightforward verification of this and instead refer to [5,
Chapter 3.2] �

The usual DR–module structure on Rf is induced, as above, by the unit
R[F ]–module structure F : Rf −→ Rf sending x ∈ Rf to xp [15, Ex. 5.2c].
The R[F ]–module Rf is generated by 1

f because F s( 1
f ) = 1

fs , i.e. Rf is a
finitely generated unit R[F ]–module (finitely generated unit R[F ]-modules
are called F -finite modules in [15]).

Theorem 2.5. ([15, Cor. 5.8]) Let R be a regular finitely generated algebra
over a commutative Noetherian regular F -finite local ring A of character-
istic p > 0. A finitely generated unit R[F ]–module M has finite length in
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the category of DR-modules. In particular, Rf with its usual DR–module
structure has finite length in the category of DR-modules for every f ∈ R.

3. A chain of ideals associated to an element of a regular

F -finite ring

In this section R is a regular and F–finite ring of characteristic p > 0. For
a given element f ∈ R we aim to define a descending chain of ideals Is(f)
indexed by the positive integers.

For this let us first assume that R is a free Rps
–module. Let {cps

1 , cps

2 , . . . } ⊂
Rps

be the string of coordinates of f ∈ R with respect to some Rps
-basis of

R. We define Is(f) to be the ideal of R generated by the set {c1, c2, . . . }.
This definition is independent of the choice of basis because the coordinates
of f with respect to one basis are linear combinations with coefficients from
Rps

of the coordinates of f with respect to another basis, hence the corre-
sponding ideals are the same.

Since any regular F–finite ring R is a finite locally free Rp–module [14],
Spec R is covered by a finite number of open affines Spec Rr such that Rr

is a free Rp
r–module (and consequently Rr is a free Rps

r –module for every
s). Hence we define Is(f) in general by glueing the local ideals defined
above. This is possible due to the independence of the choice of basis in the
construction.

This section is devoted to the study of the ideals Is(f) leading to an
elementary proof of our main result in the polynomial case. But these
ideals are interesting by themselves and are likely to become important,
for example in tight closure theory.

A further consequence of R being F -finite, is that the ring of differential
operators of R is

⋃
s D

(s)
R where D

(s)
R = EndRps (R), according to formula

(2) of Section 2. One has the following relationship between the ideals Is(f)
and differential operators.

Lemma 3.1. D
(s)
R · f = Is(f)[p

s] where D
(s)
R · f def= {δ(f)|δ ∈ D

(s)
R } ⊆ R and

Is(f)[p
s] is the ideal generated by the ps-th powers of the elements of Is(f),

equivalently, by the ps-th powers of a set of generators of Is(f).

Proof. Since R is a finitely generated Rps
–module, D

(s)
R = EndRps R com-

mutes with localization with respect to any multiplicatively closed subset
of Rps

. Hence we may assume that R is a free Rps
–module. In this case

f =
∑

i c
ps

i ei where {e1, e2, . . . } is an Rps
-basis of R and {cps

1 , cps

2 , . . . } are
the coordinates of f with respect to this basis. Since δ(f) =

∑
i c

ps

i δ(ei) ∈
Is(f)[p

s] = (cps

1 , cps

2 , . . . ) for every δ ∈ D
(s)
R , we see that D

(s)
R · f ⊆ Is(f)[p

s].
Conversely, setting δi ∈ D

(s)
R to be the Rps

-linear map that sends ei to 1
and ej to 0 for every j �= i we see that δi(f) = cps

i , i.e. every generator of
Is(f)[p

s] is in D
(s)
R . �
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Lemma 3.2. Is(f) = Is+1(fp).

Proof. It is enough to prove this after localization at every maximal ideal of
R, hence we can assume that R is local in which case R is a free Rp-module.
Since 1 �∈ mR, where m is the maximal ideal of Rp, Nakayama’s lemma
implies that we can take 1 to be part of a free Rp-basis of R, i.e. we may
assume that R is a free Rp–module on some basis {e1, e2, . . .} and e1 = 1.

Now let {ẽj} be an Rps
-basis of R. Then the set of all products {ej,i =

ẽp
jei} is an Rps+1

–basis of R. Raising the equality f =
∑

j cps

j ẽj to the p-th

power we get fp =
∑

j cps+1

j ẽp
j . But ẽp

j = ẽp
j · 1 = ẽp

j · e1 = ej,1, hence the

(j, i)-th coordinate of fp with respect to the basis {ej,i} is cps+1

j if i = 1 and
0 if i �= 1. Hence Is(f) and Is+1(fp) are generated by the same elements. �

Lemma 3.3. Is(ff̃) ⊆ Is(f)Is(f̃) ⊆ Is(f) for every f̃ ∈ R.

Proof. As before we may assume that R is a free Rps
–module on some basis

{e1, e2, . . .}. Multiplying the equalities f =
∑

i c
ps

i ei and f̃ =
∑

i c̃
ps

i ei we
get ff̃ =

∑
i,j cps

i c̃ps

j eiej . Writing eiej =
∑

q cps

q eq, substituting this into
the preceding equality and collecting similar terms we see that all the coor-
dinates of ff̃ with respect to the basis {ei} are linear combinations (with
coefficients from Rps

) of the products cps

i c̃ps

j . This implies that Is(ff̃) is
generated by linear combinations (with coefficients from R) of the products
cicj , hence Is(ff̃) ⊆ Is(f)Is(f̃) ⊆ Is(f). �

Lemma 3.4. Is+1(fps+1−1) ⊆ Is(fps−1).

Proof. fps+1−1 = fps+1−pfp−1 so Is+1(fps+1−1) ⊆ Is+1(fps+1−p) by Lemma
3.3. Since fps+1−p = (fps−1)p, we are done by Lemma 3.2. �

Proposition 3.5. The descending chain of ideals

I1(fp−1) ⊇ I2(fp2−1) ⊇ . . .

stabilizes at s, i.e. Is(fps−1) = Is+1(fps+1−1) = Is+2(fps+2−1) = . . . , if and
only if there is δ ∈ D

(s+1)
R such that δ( 1

f ) = 1
fp .

Proof. Assume Is(fps−1) = Is+1(fps+1−1). On the other hand Lemma 3.2
implies that Is(fps−1) = Is+1(fps+1−p). Hence

Is+1(fps+1−p) = Is+1(fps+1−1)

and consequently Is+1(fps+1−p)[p
s+1] = Is+1(fps+1−1)[p

s+1]. This implies that
D

(s+1)
R ·fps+1−p = D

(s+1)
R ·fps+1−1 by Lemma 3.1. But fps+1−p = δ′(fps+1−p)

where δ′ = 1 ∈ D
(s+1)
R so we have fps+1−p ∈ D

(s+1)
R · fps+1−p. Hence

fps+1−p ∈ D
(s+1)
R · fps+1−1
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i.e. there is δ ∈ D
(s+1)
R such that δ(fps+1−1) = fps+1−p. Dividing this

equality by fps+1
and considering that every δ ∈ D

(s+1)
R commutes with

every element of Rps+1
we get δ(fps+1−1

fps+1 ) = fps+1−p

fps+1 , i.e. δ( 1
f ) = 1

fp .

Conversely, assume there is δ ∈ D
(s+1)
R such that δ( 1

f ) = 1
fp . Multiplying

this equality by fps+1
we get δ(fps+1−1) = fps+1−p. This implies that

D
(s+1)
R · fps+1−p = D

(s+1)
R · (δ(fps+1−1)) =

= (D(s+1)
R · δ)(fps+1−1) ⊆ D

(s+1)
R · fps+1−1.

Hence Is+1(fps+1−p)[p
s+1] ⊆ Is+1(fps+1−1)[p

s+1] by Lemma 3.1. As is shown
in the paragraph after next, this implies Is+1(fps+1−p) ⊆ Is+1(fps+1−1). Now
Lemma 3.2 implies Is(fps−1) ⊆ Is+1(fps+1−1) since fps+1−p = (fps−1)p. This
containment and Lemma 3.4 imply that Is(fps−1) = Is+1(fps+1−1).

We have proven that the existence of δ ∈ D
(s+1)
R such that δ( 1

f ) = 1
fp

is equivalent to equality Is(fps−1) = Is+1(fps+1−1). It now follows that
Is(fps−1) = Is+1(fps+1−1) is equivalent to Is(fps−1) = Is′(fps′−1) for all
s′ > s because every δ ∈ D

(s+1)
R automatically belongs to D

(s′)
R for all s′ > s.

This completes the proof of the lemma modulo the fact, used in the para-
graph before the preceding one, that if I and J are two ideals of R such
that I [ps+1] ⊂ J [ps+1], then I ⊂ J . We are now going to prove this fact. It is
enough to prove this locally, hence we can assume like in the proof of Lemma
3.2 that R is a free Rps+1

-module and e1 = 1 is one of the free generators,
i.e. R = Rps+1 ⊕ M where M is a free Rps+1

-module. Let ϕ : R −→ Rps+1

be the map sending r ∈ R to rps+1 ∈ Rps+1
. Clearly, I [ps+1] = ϕ(I)R, hence

I [ps+1] ∩Rps+1
= ϕ(I)R∩Rps+1

= (ϕ(I)⊕ϕ(I)M)∩Rps+1
= ϕ(I), and the

same holds with I replaced by J . Hence upon taking the intersection with
Rps+1

the containment I [ps+1] ⊂ J [ps+1] implies ϕ(I) ⊂ ϕ(J ) which implies
I ⊂ J since ϕ is a ring isomorphism. �

We note that the proof shows that the descending chain of ideals stabilizes
at the first integer s such that Is(fps−1) = Is+1(fps+1−1).

Corollary 3.6. The chain of ideals I1(fp−1) ⊇ I2(fp2−1) ⊇ . . . stabilizes if
and only if 1

f generates Rf as a DR–module.

Proof. If 1
f generates Rf as a DR–module, then 1

fp ∈ DR · 1
f , i.e. there is

δ ∈ DR such that 1
fp = δ( 1

f ). Since δ ∈ D
(s+1)
R for some s, the preceding

proposition shows that the chain of ideals stabilizes at s.
Conversely, if the chain of ideals stabilizes at s, the preceding proposition

implies that there exists δ ∈ D
(s+1)
R such that δ( 1

f ) = 1
fp . As is proven in the

course of the proof of Lemma 3.2, locally the element 1 can always be taken
as one of the elements of an Rp-basis of R, hence R/Rp is a finite locally
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free, hence projective, Rp–module. Thus the natural surjection R −→ R/Rp

splits, i.e. there exists an Rp–module isomorphism R ∼= Rp ⊕ R/Rp. Let
δ′ ∈ D

(s+2)
R be defined by δ′(xp ⊕ y) = δ(x)p for all x ∈ R (i.e. xp ∈ Rp) and

y ∈ R/Rp ⊆ R. Then δ′( 1
fp ) = (δ( 1

f ))p = ( 1
fp )p = 1

fp2 , i.e. 1

fp2 ∈ DR · 1
f .

Thus we have shown for any f that 1
fp ∈ DR · 1

f implies that 1

fp2 ∈ DR · 1
f .

Hence 1
fps ∈ DR · 1

f for every s, by induction on s. But the set { 1
fps }

generates Rf as an R–module. �
Open Question. Let R be a regular F -finite ring of characteristic p > 0 and

let f ∈ R be an element. Does the chain of ideals I1(fp−1) ⊇ I2(fp2−1) ⊇ . . .
stabilize? Equivalently, is Rf generated by 1

f as a DR–module?

For an arbitrary F -finite ring R the question is open. But in the next
section we show that for a large class of regular F -finite rings the answer
is yes! First however, we give an elementary treatment for R a polynomial
ring.

3.1. The case of a polynomial ring. We will use multi-index notation
in the case of the polynomial ring R = k[x1, . . . , xn], where k is a field
of characteristic p > 0. A differential operator δ ∈ DR will be written
in the right normal form, i.e. δ =

∑
aαβ xα Dβ , where xα will stand for

the monomial xα := xα1
1 · · ·xαn

n , Dβ will denote the differential operator
Dβ := Dβ1,1 · · ·Dβn,n and all but finitely many aαβ ∈ k are zero.

Theorem 3.7. Let R = k[x1, . . . , xd] be a polynomial ring in x1, . . . , xd over
a perfect field k of characteristic p > 0 and let f ∈ R be any element. The
chain of ideals I1(fp−1) ⊇ I2(fp2−1) ⊇ . . . stabilizes.

Proof. The monomials {xα = xα1
1 · · ·xαd

d | 0 ≤ αi ≤ ps − 1} form an Rps
-

basis of R. Let fps−1 =
∑

α cps

α xα, so that Is(fps−1) is generated by the set
{cα}. No monomials on the right side of the equation fps−1 =

∑
α cps

α xα get
cancelled as a result of reducing similar terms, hence deg fps−1 ≥ deg cps

α

for every α. This inequality translates to (ps − 1) deg f ≥ ps deg cα, i.e.
deg cα ≤ ps−1

ps deg f . Hence deg cα < deg f . Thus the ideals Is(fps−1)
for every s are generated by polynomials of degrees less than deg f which
is independent of s. The set of polynomials of degrees less than deg f is a
finite dimensional k-vector space and the intersections of the ideals Is(fps−1)
with this vector space form a descending chain of subspaces which stabilizes
because the space is finite dimensional. Hence I1(fp−1) ⊇ I2(fp2−1) ⊇ . . .
stabilizes. �
Corollary 3.8. Let R = k[x1, . . . , xd] be a polynomial ring in x1, . . . , xd over
an arbitrary field k of characteristic p > 0 and let f ∈ R be any element.
Rf is generated by 1

f as a DR|k–module.

Proof. If k is perfect, we are done by Corollary 3.6 and Theorem 3.7. In
the general case, let K be the perfect closure of k. Since K is perfect, there
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is a differential operator δ =
∑

aαβxαDβ with coefficients aαβ ∈ K such
that δ( 1

f ) = 1
fp . This is equivalent to the fact that a system of finitely

many linear equations with coefficients in k has solutions in K, where the
non-zero coefficients aαβ of δ are thought of as the unknowns of the system.
(For example, if f = x1, we may be looking for a solution in the form
δ = aDp−1,1, so we get an equation δ( 1

x) = 1
xp . Since δ( 1

x1
) = a 1

xp
1
, the

corresponding linear system is just one equation a = 1.) The system has
a solution in K, namely, the coefficients of δ. Hence it is consistent, so it
must have a solution in k because the coefficients of the linear system are
in k (they depend only on the coefficients of f). So there is a differential
operator δ′ with coefficients in k such that δ′( 1

f ) = 1
fp . �

We conclude this section with an example. Let R = k[x1, x2, x3, x4] where
k is a field of characteristic p > 0 and let f = x2

1 + x2
2 + x2

3 + x2
4. In

characteristic 0, as is pointed out in the Introduction, 1
f2 does not belong

to the DR-submodule of Rf generated by 1
f . But in characteristic p > 0 we

are going to find a differential operator δ ∈ DR such that δ( 1
f ) = 1

fp just by
investigating the monomials appearing in fp−1.

• If 4 divides p − 1, then fp−1 contains the term aαxα where

aα = (p−1)!

( p−1
4

!)4
�= 0 and α = (p−1

2 , p−1
2 , p−1

2 , p−1
2 ).

• If 4 does not divide p − 1, then fp−1 contains the term aαxα where

aα = (p−1)!

( p+1
4

!)2( p−3
4

!)2
�= 0 and α = (p+1

2 , p+1
2 , p−3

2 , p−3
2 ).

Notice that 1
aα

Dα(fp−1) = 1 because all other monomials appearing in
fp−1 contain some xi raised to a power smaller than the power of ∂i

∂xi
in

Dα hence Dα annihilates all other monomials. The differential operator
δ = 1

aα
Dα commutes with fp so, dividing the equation δ(fp−1) = 1 by fp

we get the desired result.

4. The case of a regular finitely generated algebra over an

F -finite regular local ring

Here we prove the central result of our paper using the techniques surveyed
in Section 2.

Theorem 4.1. Let R be a regular finitely generated algebra over an F -finite
regular local ring of characteristic p > 0. Let f ∈ R be a nonzero element.
Then the DR–module Rf is generated by 1

f .

Proof. For any DR–submodule M ⊆ Rf we identify F ∗M with its isomor-
phic image in Rf via the natural DR–module isomorphism ϑ : F ∗Rf −→ Rf

of Lemma 2.4 (with Rf viewed as a unit R[F ]-module given by the map
F : Rf −→ Rf that sends every x ∈ Rf to xp). Then F ∗M is R-generated
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by the elements mp for m ∈ M ⊆ Rf . By Frobenius descent (Proposition
2.1), F ∗M is a DR–submodule of Rf .

Let M = DR · 1
f . We claim that M ⊆ F ∗M . Because F ∗M is a DR–

submodule of Rf , it is enough to show that 1
f ∈ F ∗M . But 1

f ∈ M implies
( 1

f )p = 1
fp ∈ F ∗M , hence fp−1 · 1

fp = 1
f ∈ F ∗M . This proves the claim.

Now we get an ascending chain of DR–submodules of Rf :

(3) M ⊆ F ∗M ⊆ F 2∗M ⊆ F 3∗M ⊆ . . .

The fact that 1
f ∈ M implies 1

fps = F s( 1
f ) ∈ F s∗M , hence the union of

the chain must be all of Rf . Thus it is enough to show that M = F ∗M since
then M = F s∗M for all s, hence M = Rf as claimed. Assume otherwise,
that is assume that the inclusion M � F ∗M is strict. Then all the inclusions
of (3) must be strict since F s∗( ) = R(s) ⊗R ( ) and R(s) is a faithfully
flat right R–module. But this contradicts the fact that by Theorem 2.5 the
length of Rf as a DR–module is finite. �

Corollary 4.2. Let R be a regular finitely generated algebra over an F -
finite regular local ring of characteristic p > 0. Let f ∈ R be any element.
The descending chain of ideals I1(fp−1) ⊇ I2(fp2−1) ⊇ . . . defined in the
preceding section stabilizes.

Proof. This follows from Corollary 3.6. �

Theorem 4.1 also follows from the following more general observation
which was inspired by [9, Prop. 15.3.4], which in the notation of Theorem
4.3 states that if F ∗M ⊆ M then M is also a unit R[F ]–submodule.

Theorem 4.3. Let R be a regular finitely generated algebra over an F -finite
regular local ring of characteristic p > 0. Let N be a finitely generated unit
R[F ]–module. Suppose M ⊆ N is a DR–submodule such that M ⊆ F ∗M (we
identify F ∗M ⊆ F ∗N with its image in N via the structural isomorphism
ϑ : F ∗N −→ N of N). Then M is a unit R[F ]–submodule.

Proof. M being a unit R[F ]–submodule of N just means that the inclusion
M ⊆ F ∗M is in fact an equality. If the inclusion is strict, then all the
inclusions F s∗M � F (s+1)∗M are strict as well because they are obtained by
tensoring M ⊆ F ∗M with the faithfully flat R–module R(s). The resulting
strictly increasing infinite chain

M � F ∗M � F 2∗M � F 3∗M � · · ·
contradicts the finiteness of the length of N as a DR–module. �

To obtain Theorem 4.1 from this just note that M = DR · 1
f satisfies

M ⊆ F ∗M and contains the R[F ]–module generator 1
f of Rf .

An R–submodule N0 of a unit R[F ]–module N is called a root, if N0 is
finitely generated as an R–module, N0 ⊆ F ∗N0 and

⋃
s F s∗N0 = N . The
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existence of a root is equivalent to N being finitely generated as a unit
R[F ]–module [5, Cor. 2.12].

Corollary 4.4. With the same assumptions as in Theorem 4.3, if n1, . . . , nt

are generators of a root of a finitely generated unit R[F ]–module N , then
n1, . . . , nt generate N as a DR–module.

Proof. By Theorem 4.3 it is enough to check that the DR–submodule M
def=

DR · 〈n1, . . . , nt〉 satisfies M ⊆ F ∗M and contains the R[F ]–module gen-
erators n1, . . . , nt of N . The second statement is trivial and for the first
one observes that, by definition of root, one can write ni =

∑
rjF (nj) for

some rj ∈ R. Noting that F (nj) ∈ F ∗M we conclude ni ∈ F ∗M for all i as
required. �

The above corollary is a generalization of Theorem 4.1 in that Rf is a
finitely generated R[F ]–module with root generated by n = 1

f .

5. The case of a finitely generated algebra over a formal

power series ring

The purpose of this section is to prove that Rf is DR|k-generated by 1
f in

an important case that is not covered by our previous results. Namely for R
a finitely generated algebra over a power series ring A = k[[x1, . . . , xn]] over
a field k of positive characteristic. The improvement is that we no longer
assume that k is perfect.

Fixing the notation just introduced we further denote by k[[Aps
]] =

k[[xps

1 , . . . , xps

n ]] the k-subalgebra of A consisting of all the power series in
xps

1 , . . . , xps

n with coefficients in k. By k[[Aps
]][Rps

] we denote the k[[Aps
]]-

subalgebra of R generated by the ps-th powers of all the elements of R. The
fact that A is a finite k[[Aps

]]–module implies that R is a finite k[[Aps
]][Rps

]–
module. Hence the ring of the k[[Aps

]][Rps
]-linear differential operators of R

is just Endk[[Aps
]][Rps

](R) due to formula (1) of Section 2. Every k[[Aps
]][Rpt

]-
linear differential operator of R is automatically k-linear so DR|k ⊇ V (R, k)
where

V (R, k) =
⋃

s

Endk[[Aps
]][Rps

](R)

As is pointed out in [15, Ex. 5.3c], we do not know whether this containment
is always an equality (but it is if R = A).

Let k∗ = k1/p∞ be the perfect closure of k, let A∗ = k∗[[x1, . . . , xn]] and
let R∗ = A∗ ⊗A R where A∗ is regarded as an A-algebra via the natural
inclusion k[[x1, . . . , xn]] ⊆ k∗[[x1, . . . , xn]]. Since R is a finitely generated
A-algebra, R∗ is a finitely generated, hence Noetherian, A∗-algebra.

Theorem 5.1. With notation as above, let R be a finitely generated A-
algebra such that R∗ is regular. Then Rf is generated by 1

f as a DR|k–
module.
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Proof. Since V (R, k) is a subring of DR|k, it is enough to prove that 1
f

generates Rf as a V (R, k)–module. According to [15, p. 129],

DR∗ = R∗ ⊗R V (R, k)

and there is a functor

V (R, k)-mod N �→R∗⊗RN−→ DR∗-mod

where for each V (R, k)–module N the DR∗–module structure on R∗ ⊗R N
is defined as follows: if δ ∈ DR∗ , r ⊗ n ∈ R∗ ⊗R N and δ(r) =

∑
i(ri ⊗ vi),

where ri ∈ R∗, vi ∈ V (R, k), then δ(r ⊗ n) =
∑

i(ri ⊗ vi(n)).
Since A∗ is flat over A [16, Thm. 22.3(β)(1)(3′)] and local, it is faithfully

flat over A, hence R∗ is faithfully flat over R. Let M ⊂ Rf be the V (R, k)-
submodule generated by 1

f . Since R∗
f = R∗⊗RRf , we conclude that R∗⊗RM

is a DR∗-submodule of R∗
f containing 1

f (we identify 1 ⊗ f with f). By
Theorem 4.1, R∗⊗R M = R∗

f . Since R∗
f is faithfully flat over R, we conclude

that M = Rf . �

Theorem 5.2. With notation as above, let R be a finitely generated A-
algebra such that R∗ is regular. If n1, . . . , nt are generators of a root of
a finitely generated unit R[F ]–module N , then n1, . . . , nt generate N as a
DR|k–module.

Proof. It is enough to prove that n1, . . . , nt generate N as a V (R, k)–module.
If not, let M ⊆ N be the V (R, k)-submodule of N generated by n1, . . . , nt.
Since R∗ is faithfully flat over R, we conclude that R∗ ⊗R M is a DR∗-
submodule of R∗⊗RN different from R∗⊗RN . But this contradicts Corollary
4.4 since R∗ ⊗R N contains 1⊗n1, . . . , 1⊗nt and these elements generate a
root of R∗ ⊗R N . �

The following special case of Theorems 5.1 and 5.2 deserves to be stated
separately.

Corollary 5.3. Let R be a finitely generated algebra over a field k of char-
acteristic p > 0 such that k1/p∞ ⊗k R is regular. Then

(a) Rf , for any f ∈ R, is generated by 1
f as a DR|k-module.

(b) More generally, if n1, . . . , nt are generators of a root of a finitely gen-
erated unit R[F ]–module N , then n1, . . . , nt generate N as a DR|k–module.
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