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Abstract

In this work we consider a 1:-1 non semi-simple resonant periodic orbit of a three-degrees
of freedom real analytic Hamiltonian system. From the formal analysis of the normal form, we
prove the branching off a two-parameter family of two-dimensional invariant tori of the normalized
system, whose normal behavior depends intrinsically on the coefficients of its low-order terms.
Thus, only elliptic or elliptic together with parabolic and hyperbolic tori may detach from the
resonant periodic orbit. Both patterns are mentioned in the literature as the direct and inverse,
respectively, quasiperiodic Hopf bifurcation. In this paper we focus on the direct case, which has
many applications in several fields of science. Our target is to prove, in the framework of KAM
theory, the persistence of most of the (normally) elliptic tori of the normal form, when the whole
Hamiltonian is taken into account, and to give a very precise characterization of the parameters
labelling them, which can be selected with a very clear dynamical meaning. Furthermore, we give
sharp quantitative estimates on the “density” of surviving tori, when the distance to the resonant
periodic orbit goes to zero, and show that the 4-dimensional Cantor manifold holding them admits
a Whitney-C∞ extension. Due to the strong degeneracy of the problem, some standard KAM
methods for elliptic low-dimensional tori of Hamiltonian systems do not apply directly, so one
needs to suite properly these techniques to the context.
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1 Introduction

This paper is related with the persistence of the quasiperiodic Hopf bifurcation scenario in the Hamilto-
nian context. In its more simple formulation, we shall consider a real analytic three-degrees of freedom
Hamiltonian system with a one-parameter family of periodic orbits undergoing a 1:-1 resonance for
some value of the parameter. By 1:-1 resonance we mean that, for the corresponding resonant or crit-
ical periodic orbit, a pairwise collision of its characteristic nontrivial multipliers (i. e., those different
from 1) takes place at two conjugate points on the unit circle. When varying the parameter it turns
out that, generically, prior to the collision the nontrivial multipliers are different and lay on the unit
circle (by conjugate pairs) and, after that, they leave it to the complex plane so the periodic orbits
of the family become unstable. This mechanism of instabilization is often referred in the literature
as complex instability (see [21]), and has been also studied for families of four-dimensional symplectic
maps, where an elliptic fixed point evolves to a complex saddle as the parameter of the family moves
(see [14, 39]).

Under general conditions, the branching off two-dimensional quasiperiodic solutions (respectively,
invariant curves for mappings) from the resonant periodic orbit (respectively, the fixed point) has been
described both numerically (in [13, 22, 34, 37, 38, 40]) and analytically (in [6, 28, 35]). The analytic
approach relies on the computation of the normal form around the critical orbit. Thus, a biparametric
family of two-dimensional invariant tori follows at once from the dynamics of the (integrable) normal
form. This bifurcation can be direct or inverse. In our context, the direct case means that only
normally elliptic tori unfold, while in the inverse case normally parabolic and hyperbolic tori are
present as well. The type of bifurcation is determined by the coefficients of a low-order normal form.

However, this bifurcation pattern cannot be directly stated for the complete Hamiltonian, since the
normal form computed at all orders is, generically, divergent. If we stop the normalizing process up
to some finite order, the initial Hamiltonian is then casted (by means of a canonical transformation)
into the sum of an integrable part plus a non-integrable remainder. Hence, the question is whether
some quasiperiodic solutions of the integrable part survive in the whole system, and we know there
are chances for this to happen if the remainder is sufficiently small to be thought of as a perturbation
(see [16] for a nonperturbative approach to KAM theory).

This work tackles with the persistence of the elliptic bifurcated tori in the direct case. In the
inverse case, elliptic and hyperbolic tori can be dealt in a complete analogous way (see remark 4.4)
whilst parabolic tori require a slightly different approach (we refer to [8, 19, 20] for works concerning
the persistence of parabolic invariant tori).

For the direct case, in theorem 3.1 we prove that there exists a two-parameter Cantor family of two-
dimensional elliptic tori branching off the resonant periodic orbit. Moreover, we also give quantitative
estimates on the (Lebesgue) measure, in the parameters space, of the holes between invariant tori and
prove the Whitney-C∞ smoothness of the 4D (Cantor) manifold holding them. Amid the features
of this theorem, here we stress two. One is the precise description of the parameter set of “basic
frequencies” for which we have an invariant bifurcated torus, i. e., the “geometry of the bifurcation”.
The other one is the sharp asymptotic measure estimates for the size of these holes, when the distance
to the periodic orbit goes to zero.

The mere existence of this “smooth” family can be also derived from [6] —where the quasiperiodic
Hopf bifurcation is considered under a more general setting—, by adding external parameters and
applying Broer-Huitema-Takens theory to the extended system (see [10]). However, neither asymptotic
quantitative measure estimates nor a discussion on the dynamical characterization of the parameters
set follow directly from their approach.

The existence of this bifurcated family has some straight applications, for instance in Celestial
Mechanics. Indeed, let us consider the so-called vertical family of periodic orbits of the (Lagrange)
equilibrium point L4 in the (spatial) Restricted Three Body Problem, that is, the Lyapunov family
associated with the vertical oscillations of L4. It turns out that, for values of the mass parameter
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greater than the Routh’s value, there appear normally elliptic 2D-tori linked to the transition stable-
complex unstable of the family, that constitutes a direct (quasiperiodic) Hamiltonian Hopf bifurcation.
These invariant tori were computed numerically in [34]. For other applications, see [35] and references
therein.

When computing the normal form of a Hamiltonian around maximal dimensional tori, elliptic fixed
points or normally elliptic periodic orbits or tori, there are (standard) results providing exponentially
small estimates for the size of the remainder as function of the distance, R, to the object (if the order
of the normal form is chosen appropriately as function of R). These estimates can be translated into
bounds for the relative measure of the complement of the Cantor set of parameters for which we have
invariant tori (see [7, 17, 24, 25, 26] for papers dealing with exponentially small measure estimates in
KAM theory). In the present context, the generic situation at the resonant periodic orbit is a non
semi-simple structure for the Jordan blocks of the monodromy matrix associated with the colliding
characteristic multipliers. This yields to homological equations in the normal form computations that
cannot be reduced to diagonal form. When the homological equations are diagonal, it means that only
one “small divisor” appears as a denominator of any coefficient of the solution. In the non semi-simple
case, there are (at any order) some coefficients having as a denominator a small divisor raised up
to the order of the corresponding monomial. This fact gives rise to very big “amplification factors”
in the normal form computations, that do not allow to obtain exponentially small estimates for the
remainder. In [36] it is proved that it decays with respect to R faster than any power of R, but with
less sharp bounds than in the semi-simple case. This fact translates into poor measure estimates for
the bifurcated tori.

To prove the persistence of these tori, we are faced with KAM methods for elliptic low-dimensional
tori (see [9, 10, 18, 25, 26, 41]). More precisely, the proof resembles those on the existence of invariant
tori when adding to a periodic orbit the excitations of its elliptic normal modes (compare [18, 25, 43]),
but with the additional intricacies due to the present bifurcation scenario. The main difficulty in
tackling this persistence problem has to do with the choice of suitable parameters to characterize the
tori of the family along the iterative KAM process. In this case one has three frequencies to control,
the two intrinsic (those of the quasiperiodic motion) and the normal one, but only two parameters
(those of the family) to keep track of them. So, we are bound to deal with the so-called “lack of
parameters” problem for low-dimensional tori (see [9, 33, 44]). However, some usual tricks for dealing
with elliptic tori cannot be applied directly to the problem at hand, for the reasons shown below.

When applying KAM techniques for invariant tori of Hamiltonian systems, it is usual to set a
diffeomorphism between the intrinsic frequencies and the “parameter space” of the family of tori
(typically the actions). In this way, in the case of elliptic low-dimensional tori, the normal frequencies
can be expressed as a function of the intrinsic ones. Under these assumptions, the standard non-
degeneracy conditions on the normal frequencies require that the denominators of the KAM process,
which depend on the normal and intrinsic frequencies, “move” as function of the latter ones. Assuming
these transversality conditions, the Diophantine ones can be fulfilled at each step of the KAM iterative
process. Unfortunately, in the current context these conditions are not defined at the critical orbit, due
to the strong degeneracy of the problem. In few words, the elliptic invariant tori we study are too close
to parabolic. This catch is worked out taking as vector of basic frequencies (those labelling the tori)
not the intrinsic ones, say Ω = (Ω1, Ω2), but the vector Λ = (µ, Ω2), where µ is the normal frequency
of the torus. Then, we put the other (intrinsic) frequency as a function of Λ, i. e., Ω1 = Ω1(Λ). With
this parametrization, the denominators of the KAM process move with Λ even if we are close to the
resonant periodic orbit.

Another difficulty we have to face refers to the computation of the sequence of canonical trans-
formations of the KAM scheme. At any step of this iterative process we compute the corresponding
canonical transformation by means of the Lie method. Typically in the KAM context, the (homo-
logical) equations verified by the generating function of this transformation are coupled through a
triangular structure, so we can solve them recursively. However, due to the forementioned proximity
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to parabolic, in the present case some equations —corresponding to the average of the system with
respect to the angles of the tori— become simultaneously coupled, and have to be solved all together.
Then, the resolution of the homological equations becomes a little more tricky, specially for what
refers to the verification of the nondegeneracy conditions needed to solve them.

This work is organized as follows. We begin fixing the notation and introducing several definitions
in section 2. In section 3 we formulate theorem 3.1, which constitutes the main result of the paper.
Section 4 is devoted to review some previous results about the normal form around a 1 : −1 resonant
periodic orbit (both from the qualitative and quantitative point of view). The proof of theorem 3.1 is
given in section 5, whilst in appendix A we compile some technical results used throughout the text.

2 Basic notation and definitions

Given a complex vector u ∈ Cn, we denote by |u| its supremum norm, |u| = sup1≤i≤n{|ui|}. We extend
this notation to any matrix A ∈ Mr,s(C), so that |A| means the induced matrix norm. Similarly, we
write |u|1 =

∑n
i=1 |ui| for the absolute norm of a vector and |u|2 for its Euclidean norm. We denote

by u∗ and A∗ the transpose vector and matrix, respectively. As usual, for any u, v ∈ Cn, their bracket
〈u, v〉 =

∑n
i=1 uivi is the inner product of Cn. Moreover, b·c stands for the integer part of a real

number.
We deal with analytic functions f = f(θ, x, I, y) defined in the domain

Dr,s(ρ, R) = {(θ, x, I, y) ∈ Cr × Cs × Cr × Cs : |Im θ| ≤ ρ, |(x, y)| ≤ R, |I| ≤ R2}, (1)

for some integers r, s and some ρ > 0, R > 0. These functions are 2π-periodic in θ and take values on
C, Cn or Mn1,n2(C). By expanding f in Taylor-Fourier series (we use multi-index notation through
the paper),

f =
∑

(k,l,m)∈Zr×Z
r
+×Z

2s
+

fk,l,m exp(i〈k, θ〉)I lzm, (2)

where z = (x, y) and Z+ = N ∪ {0}, we introduce the weighted norm

|f |ρ,R =
∑

k,l,m

|fk,l,m| exp(|k|1ρ)R2|l|1+|m|1 . (3)

We observe that |f |ρ,R < +∞ implies that f is analytic in the interior of Dr,s(ρ, R) and bounded up
to the boundary. Conversely, if f is analytic in a neighbourhood of Dr,s(ρ, R), then |f |ρ,R < +∞.
Moreover, we point out that |f |ρ,R is an upper bound for the supremum norm of f in Dr,s(ρ, R). Some
of the properties of this norm have been surveyed in section A.1. These properties are very similar
to the corresponding ones for the supremum norm. We work with weighted norms instead of the
supremum norm because some estimates become simpler with them, specially those on small divisors.
Several examples of the use of these norms can be found in [17, 25, 36]. Alternatively, one can work
with the supremum norm and use the estimates of Rüssmann on small divisors (see [42]).

For a complex-valued function f = f(θ, x, I, y) we use Taylor expansions of the form

f = a(θ) + 〈b(θ), z〉 + 〈c(θ), I〉 +
1

2
〈z, B(θ)z〉 + 〈I, E(θ)z〉 +

1

2
〈I, C(θ)I〉 + F(θ, x, I, y), (4)

with B∗ = B, C∗ = C and F holding the higher order terms with respect to (z, I). From (4) we
introduce the notations [f ]0 = a, [f ]z = b, [f ]I = c, [f ]z,z = B, [f ]I,z = E, [f ]I,I = C and [f ] = F.

The coordinates (θ, x, I, y) ∈ Dr,s(ρ, R) are canonical through the symplectic form dθ∧dI+dx∧dy.
Hence, given scalar functions f = f(θ, x, I, y) and g = g(θ, x, I, y), we define their Poisson bracket by

{f, g} = (∇f)∗Jr+s∇g,
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where ∇ is the gradient with respect to (θ, x, I, y) and Jn the standard symplectic 2n × 2n matrix.
If Ψ = Ψ(θ, x, I, y) is a canonical transformation, close to the identity, then we consider the following
expression of Ψ (according to its natural vector-components),

Ψ = Id + (Θ,X , I,Y), Z = (X ,Y). (5)

To generate such canonical transformations we mainly use the Lie series method. Thus, given a
Hamiltonian H = H(θ, x, I, y) we denote by ΨH

t the flow time t of the corresponding vector field,
Jr+s∇H. We observe that if Jr+s∇H is 2π-periodic in θ, then also is ΨH

t − Id.
Let f = f(θ) be a 2π-periodic function defined in the r-dimensional complex strip

∆r(ρ) = {θ ∈ Cr : |Im θ| ≤ ρ}. (6)

If we expand f in Fourier series, f =
∑

k∈Zr fk exp(i〈k, θ〉), we observe that |f |ρ,0 gives the weighted
norm of f in ∆r(ρ). Moreover, given N ∈ N, we consider the following truncated Fourier expansions,

f<N,θ =
∑

|k|1<N

fk exp(i〈k, θ〉), f≥N,θ = f − f<N,θ. (7)

Notation (7) can also be extended to f = f(θ, x, I, y). Furthermore, we also introduce

LΩf =

r∑

j=1

Ωj∂θj
f, 〈f〉θ =

1

(2π)r

∫

Tr

f(θ) dθ, {f}θ = f − 〈f〉θ, (8)

where Ω ∈ Rr and Tr = (R/2πZ)r. We refer to 〈f〉θ as the average of f .
Given an analytic function f = f(u) defined for u ∈ Cn, |u| ≤ R, we consider its Taylor expansion

around the origin, f(u) =
∑

m∈Z
n
+

fmum, and define |f |R =
∑

m |fm|R|m|1 .

Let f = f(φ) be a function defined for φ ∈ A ⊂ Cn. For this function we denote its supremum
norm and its Lipschitz constant by

|f |A = sup
φ∈A

|f(φ)|, LipA(f) = sup

{ |f(φ′) − f(φ)|
|φ′ − φ| : φ, φ′ ∈ A, φ 6= φ′

}

Moreover, if f = f(θ, x, I, y; φ) is a family of functions defined in Dr,s(ρ, R), for any φ ∈ A, we denote
by |f |A,ρ,R = supφ∈A |f(·; φ)|ρ,R.

Finally, given σ > 0, one defines the complex σ-widening of the set A as

A + σ =
⋃

z∈A

{z′ ∈ Cn : |z − z′| ≤ σ}, (9)

i. e., A + σ is the union of all (complex) balls of radius σ (in the norm | · |) centered at points of A.

3 Formulation of the main result

Let us consider a three-degrees of freedom real analytic Hamiltonian system H with a 1:-1 resonant
periodic orbit. We assume that we have a system of symplectic coordinates specially suited for this
orbit, so that the phase space is described by (θ, x, I, y) ∈ T1 × R2 × R × R2, being x = (x1, x2) and
y = (y1, y2), endowed with the 2-form dθ∧dI +dx∧dy. In this reference system we want the periodic
orbit to be given by the circle I = 0, x = y = 0. Such (local) coordinates can always be found for a
given periodic orbit (see [11, 12] and [27] for an explicit example). In addition, a (symplectic) Floquet
transformation is performed to reduce to constant coefficients the quadratic part of the Hamiltonian
with respect to the normal directions (x, y) (see [28]). If the resonant eigenvalues of the monodromy
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matrix of the critical orbit are non semi-simple, the Hamiltonian expressed in the new variables can
be written as 1

H(θ, x, I, y) = ω1I + ω2(y1x2 − y2x1) +
1

2
(y2

1 + y2
2) + Ĥ(θ, x, I, y), (10)

where ω1 is the angular frequency of the periodic orbit and ω2 its (only) normal frequency, so that
its nontrivial characteristic multipliers are {λ, λ, 1/λ, 1/λ}, with λ = exp(2πiω2/ω1). The function
Ĥ is 2π-periodic in θ, holds the higher order terms in (x, I, y) and can be analytically extended to a
complex neighbourhood of the periodic orbit. From now on, we set H to be our initial Hamiltonian.

To describe the dynamics of H around the critical orbit we use normal forms. A detailed analysis of
the (formal) normal form for a 1:-1 resonant periodic orbit and of the (integrable) dynamics associated
to it can be found in [35]. The only (generic) nonresonant condition required to carry out this
normalization (at any order) is that ω1/ω2 /∈ Q, which is usually referred as irrational collision.

The normalized Hamiltonian of (10) up to “degree four” in (x, I, y) looks like

Z2(x, I, y) = ω1I + ω2L +
1

2
(y2

1 + y2
2) +

1

2
(aq2 + bI2 + cL2) + dqI + eqL + fIL, (11)

where q = (x2
1 +x2

2)/2, L = y1x2−y2x1 and a, b, c, d, e, f ∈ R. As usual, the contribution of the action
I to the degree is counted twice. Now, writing the Hamilton equations of Z2, it is easy to realize that
the manifold x = y = 0 is foliated by a family of periodic orbits, parametrized by I, that contains the
critical one. By assuming irrational collision, it is clear that —applying Lyapunov Center Theorem,
see [45]— this family also exists (locally) for the full system (10). The (nondegeneracy) condition that
determines the transition from stability to complex instability of this family is d 6= 0. Moreover, the
direct or inverse character of the bifurcation is defined in terms of the sign of a and, for our concerns,
a > 0 implies direct bifurcation. Hence, in the forthcoming we shall assume d 6= 0 and a > 0.

Once a direct quasiperiodic Hopf bifurcation is set, we can establish for the dynamics of Z2 and,
in fact, for the dynamics of the truncated normal form up to an arbitrary order, the existence of a
two-parameter family of two-dimensional elliptic tori branching off the resonant periodic orbit. Of
course, due to the small divisors of the problem, it is not possible to expect full persistence of this
family in the complete Hamiltonian system (10), but only a Cantor family of two-dimensional tori.

The precise result we have obtained about the persistence of this family is stated as follows, and
constitutes the main result of the paper.

Theorem 3.1. We assume that the real analytic Hamiltonian H in (10) is defined in the complex
domain D1,2(ρ0, R0), for some ρ0 > 0, R0 > 0, and that the weighted norm |H|ρ0,R0 is finite. Moreover,
we also assume that the (real) coefficients a and d of its low-order normal form Z2 in (11), verify
a > 0, d 6= 0, and that the vector ω = (ω1, ω2) satisfies the Diophantine condition2

|〈k, ω〉| ≥ γ|k|−τ
1 , ∀ k ∈ Z2 \ {0}, (12)

for some γ > 0 and τ > 1. Then, we have:

(i) The 1 : −1 resonant periodic orbit I = 0, x = y = 0 of H is embedded into a one-parameter
family of periodic orbits having a transition from stability to complex instability at this critical
orbit.

(ii) There exists a Cantor set E (∞) ⊂ R+×R such that, for any Λ = (µ, Ω2) ∈ E(∞), the Hamiltonian
system H has an analytic two-dimensional elliptic invariant torus —with vector of intrinsic

frequencies Ω(Λ) = (Ω
(∞)
1 (Λ), Ω2) and normal frequency µ— branching off the critical periodic

orbit. However, for some values of Λ this torus is complex (i. e., a torus laying on the complex
phase space but carrying out quasiperiodic motion for real time).

1Nevertheless, to achieve this form, yet an involution in time may be necessary. See [35].
2The Lebesgue measure of the set of values ω ∈ R2 for which condition (12) is not fulfilled is zero (see [30], appendix 4).

7



(iii) The “density” of the set E (∞) becomes almost one as we approach to the resonant periodic orbit.
Indeed, there exist constants c∗ > 0 and c̄∗ > 0 such that, if we define

V(R) := {Λ = (µ, Ω2) ∈ R2 : 0 < µ ≤ c∗R, |Ω2 − ω2| ≤ c∗R}

and E (∞)(R) = E (∞) ∩ V(R), then, for any given 0 < α < 1/19, there is R̆∗ = R̆∗(α) such that

meas
(
V(R) \ E (∞)(R)

)
≤ c̄∗(M (0)(R))α/4, (13)

for any 0 < R ≤ R̆∗. Here, meas stands for the Lebesgue measure of R2 and the expression
M (0)(R), which is defined precisely in the statement of theorem 4.1, goes to zero faster than any
power of R (in spite of it is not exponentially small in R).

(iv) There exists a real analytic function Ω̃2, with Ω̃2(0) = ω2, such that the curves γ1(η) = (2η, η +
Ω̃2(η

2)) and γ2(η) = (2η,−η + Ω̃2(η
2)), locally separate between the parameters Λ ∈ E (∞) giving

rise to real or complex tori. Indeed, if Λ = (µ, Ω2) ∈ E(∞) and µ = 2η > 0, then real tori are
those with −η + Ω̃2(η

2) < Ω2 < η + Ω̃2(η
2). The meaning of the curves γ1 and γ2 are that their

graphs represent, in the Λ-space, the periodic orbits of the family (i), but only those in the stable
side of the transition. For a given η > 0, the periodic orbit labelled by γ1(η) is identified by the
one labelled by γ2(η), being η + Ω̃2(η

2) and −η + Ω̃2(η
2) the two normal frequencies of the orbit

(η = 0 corresponds to the critical one).

(v) The function Ω
(∞)
1 : E(∞) → R is C∞ in the sense of Whitney. Moreover, for each Λ ∈ E (∞),

the following Diophantine conditions are fulfilled by the intrinsic frequencies and the normal one
of the corresponding torus:

|〈k, Ω(∞)(Λ)〉 + `µ| ≥ (M (0)(R))α/2|k|−τ
1 , k ∈ Z2, ` ∈ {0, 1, 2}, |k|1 + ` 6= 0.

(vi) Let Ĕ(∞) be the subset of E (∞) corresponding to real tori. There is a function Φ(∞)(θ, Λ), defined
as Φ(∞) : T2×Ĕ(∞) → T×R2×R×R2, analytic in θ and Whitney-C∞ with respect to Λ, giving a
parametrization of the Cantorian four-dimensional manifold defined by the real two-dimensional
invariant tori of H, branching off the critical periodic orbit. Precisely, for any Λ ∈ Ĕ(∞), the
function Φ(∞)(·, Λ) gives a parametrization of the corresponding two-dimensional invariant torus
of H, in such a way the pull-back of the dynamics on the torus to the variable θ is a linear
quasiperiodic flow. Thus, for any θ(0) ∈ T2, then t ∈ R 7→ Φ(∞)(Ω(Λ) · t+θ(0), Λ) is a solution of
the Hamilton equations of H. Moreover, Φ(∞) can be extended to a smooth function of T2 × R2

—analytic in θ and C∞ with respect to Λ—.

The proof of theorem 3.1 extends till the end of the paper.

4 Previous results

In this section we review some previous results we use to carry out the proof of theorem 3.1. Concretely,
in section 4.1 we discuss precisely how the normal form around a 1 : −1 resonant periodic orbit looks
like and give, as function of the distance to the critical orbit, quantitative estimates on the remainder
of this normal form. In sections 4.2 and 4.3 we identify the family of 2D-bifurcated tori of the normal
form, branching off the critical orbit, and its (linear) normal behaviour.
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4.1 Quantitative normal form

Our first step is to compute the normal form of H in (10) up to a suitable order. This order is chosen
to minimize (as much as possible) the size of the non-integrable remainder of the normal form. Hence,
for any R > 0 (small enough), we consider a neighbourhood of “size” R around the critical periodic
orbit (see (1)), and select the normalizing order, ropt(R), so that the remainder of the normal form of
H up to degree ropt(R) becomes as small as possible in this neighbourhood. As we have pointed out
before, for an elliptic nonresonant periodic orbit it is possible to select this order so that the remainder
becomes exponentially small in R. In the present resonant setting, the non semi-simple character of
the homological equations leads to poor estimates for the remainder. The following result, that can be
derived from [36], states the normal form up to “optimal” order and the bounds for the corresponding
remainder.

Theorem 4.1. With the same hypotheses of theorem 3.1. Given any ε > 0 and σ > 1, both fixed, there
exists 0 < R∗ < 1 such that, for any 0 < R ≤ R∗, there is a real analytic canonical diffeomorphism
Ψ̂(R) verifying:

(i) Ψ̂(R) : D1,2(σ
−2ρ0/2, R) → D1,2(ρ0/2, σR).

(ii) If Ψ̂(R) − Id = (Θ̂(R), X̂ (R), Î(R), Ŷ(R)), then all the components are 2π-periodic in θ and satisfy

|Θ̂(R)|σ−2ρ0/2,R ≤ (1 − σ−2)ρ0/2, |Î(R)|σ−2ρ0/2,R ≤ (σ2 − 1)R2,

|X̂ (R)
j |σ−2ρ0/2,R ≤ (σ − 1)R, |Ŷ(R)

j |σ−2ρ0/2,R ≤ (σ − 1)R, j = 1, 2.

(iii) The transformed Hamiltonian by the action of Ψ̂(R) takes the form:

H ◦ Ψ̂(R)(θ, x, I, y) = Z(R)(x, I, y) + R(R)(θ, x, I, y), (14)

where Z(R) ( the normal form) is an integrable Hamiltonian system which looks like

Z(R)(x, I, y) = Z2(x, I, y) + Z̃(R)(x, I, y), (15)

where Z2 is given by (11) and Z̃(R)(x, I, y) = Z(R)(q, I, L/2), with q = (x2
1 + x2

2)/2 and L =
y1x2 − x1y2. The function Z(R)(u1, u2, u3) is analytic around the origin, with Taylor expansion
starting at degree three. More precisely, Z (R)(u1, u2, u3) is a polynomial of degree less than or
equal to bropt(R)/2c, except by the affine part on u1 and u3, which allows generic dependence on
u2. The remainder R(R) contains terms in (x, I, y) of higher order than “the polynomial part”
of Z(R), being all of them of O3(x, y).

(iv) The expression ropt(R) is given by

ropt(R) := 2 +

⌊
exp

(
W

(
log

(
1

R1/(τ+1+ε)

)))⌋
, (16)

with W : (0, +∞) → (0, +∞) defined from the equation W (z) exp (W (z)) = z.

(v) R(R) satisfies the bound

|R(R)|σ−2ρ0/2,R ≤ M (0)(R) := Rropt(R)/2. (17)

In particular, M (0)(R) goes to zero with R faster than any algebraic order, that is

lim
R→0+

M (0)(R)

Rn
= 0, ∀n ≥ 1.
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(vi) There exists a constant c̃ independent of R (but depending on ε and σ) such that

|Z(R)|0,R ≤ |H|ρ0,R0 , |Z̃(R)|0,R ≤ c̃R6. (18)

Remark 4.1. The function W corresponds to the principal branch of a special function W : C → C

known as the Lambert W function. A detailed description of its properties can be found in [15].

Actually, the full statement of theorem 4.1 is not explicitly contained in [36], but can be gleaned
easily from the paper. Let us describe which are the new features we are talking about.

First, we have modified the action of the transformation Ψ̂(R) so that the family of periodic orbits
of H, in which the critical orbit is embedded, and its normal (Floquet) behavior, are fully described
(locally) by the normal form Z (R) of (15). Thus, the fact that the remainder R(R) is of O3(x, y),
implies that neither the family of periodic orbits nor its Floquet multipliers change in (14) from those
of Z(R) (see sections 4.2 and 4.3). To achieve this, we are forced to work not only with a polynomial
expression for the normal form Z (R) (as done in [36]), but to allow generic dependence on I for the
coefficients of the affine part of the expansion of Z (R) in powers of q and L. For this purpose, we
have to extend the normal form criteria used in [36]. We do not plan to give here full details on these
modifications, but we are going to summarize the main ideas below.

Let us consider the initial Hamiltonian H in (10). Then, we start by applying a partial normal
form process to it in order to reduce the remainder to O3(x, y), and to arrange the affine part of
the normal form in q and L. After this process, the family of periodic orbits of H and its Floquet
behaviour remain the same if we compute them either in the complete transformed system or in the
truncated one when removing the O3(x, y) remainder. We point out that the divisors appearing in this
(partial) normal form are kω1 + lω2, with k ∈ Z and l ∈ {0,±1,±2} (excluding the case k = l = 0).
As we are assuming irrational collision, these divisors are not “small divisors” at all, because all of
them are uniformly bounded from below and go to infinity with k. Hence, we can ensure convergence
of this normalizing process in a neighborhood of the periodic orbit.

After we carry out this convergent (partial) normal form scheme on H, we apply the result of [36]
to the resulting system. In this way we establish the quantitative estimates, as function of R, for the
normal form up to “optimal order”. It is easy to realize that the normal form procedure of [36] does
not “destroy” the O3(x, y) structure of the remainder R(R).

However, we want to emphasize that the particular structure for the normal form Z (R) stated in
theorem 4.1 is not necessary to apply KAM methods. We can prove the existence of the (Cantor)
bifurcated family of 2D-tori only by using the polynomial normal form of [36]. The reason motivating
to modify the former normal form is only to characterize easily which bifurcated tori are real tori as
stated in point (iv) of the statement of theorem 3.1 (for details, see remark 4.2 and section 5.13).

The second remark on theorem 4.1 refers to the bound on Z̃(R) given in the last point of the
statement, that neither is explicitly contained in [36]. Again, it can be easily gleaned from the paper.
However, there is also the chance to derive it by hand form the bound on Z (R) and its particular
structure. This is done in section A.2.

4.2 Bifurcated family of 2D-tori of the normal form

It turns out that the normal form Z (R) is integrable, but in this paper we are only concerned with
the two-parameter family of bifurcated 2D-invariant tori associated with this Hopf scenario. See [35]
for a full description of the dynamics. To easily identify this family, we introduce new (canonical)
coordinates (φ, q, J, p) ∈ T2 × R+ × R2 × R, with the 2-form dφ ∧ dJ + dq ∧ dp, defined through the
change:

θ = φ1, x1 =
√

2q cos φ2, y1 = − J2√
2q

sin φ2 + p
√

2q cos φ2,

I = J1, x2 = −√
2q sin φ2, y2 = − J2√

2q
cos φ2 − p

√
2q sin φ2,

(19)
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that casts the Hamiltonian (14) into (dropping the superindex (R)):

H̆(φ, q, J, p) = Z̆(q, J, p) + R̆(φ, q, J, p), (20)

where,

Z̆(q, J, p) = 〈ω, J〉 + qp2 +
J2

2

4q
+

1

2
(aq2 + bJ2

1 + cJ2
2 ) + dqJ1 + eqJ2 + fJ1J2 + Z(q, J1, J2/2). (21)

Let us consider the Hamilton equations of Z̆:

φ̇1 = ω1 + bJ1 + dq + fJ2 + ∂2Z(q, J1, J2/2), J̇1 = 0,

φ̇2 = ω2 +
J2

2q
+ cJ2 + eq + fJ1 +

1

2
∂3Z(q, J1, J2/2), J̇2 = 0,

ṗ = −p2 +
J2

2

4q2
− aq − dJ1 − eJ2 − ∂1Z(q, J1, J2/2), q̇ = 2qp.

Next result sets precisely the bifurcated family of 2D-tori of Z̆ (and hence of Z).

Theorem 4.2. With the same notations of theorem 4.1. If d 6= 0, there exists a real analytic function
I(ξ, η) defined in Γ ⊂ C2, (0, 0) ∈ Γ, determined implicitly by the equation

η2 = aξ + dI(ξ, η) + 2eξη + ∂1Z(ξ, I(ξ, η), ξη), (22)

with I(0, 0) = 0 and such that, for any ζ = (ξ, η) ∈ Γ ∩ R2, the two-dimensional torus

T (0)
ξ,η = {(φ, q, J, p) ∈ T2 × R × R2 × R : q = ξ, J1 = I(ξ, η), J2 = 2ξη, p = 0}

is invariant under the flow of Z̆ with parallel dynamics for φ determined by the vector Ω = (Ω1, Ω2)
of intrinsic frequencies:

Ω1(ξ, η) = ω1 + bI(ξ, η) + dξ + 2fξη + ∂2Z(ξ, I(ξ, η), ξη) = ∂J1Z̆|
T

(0)
ζ

, (23)

Ω2(ξ, η) = ω2 + η + 2cξη + eξ + fI(ξ, η) +
1

2
∂3Z(ξ, I(ξ, η), ξη) = ∂J2Z̆|

T
(0)

ζ

. (24)

Moreover, for ξ > 0, the corresponding tori of Z are real.

Remark 4.2. If we set ξ = 0, then T (0)
0,η corresponds to the family of periodic orbits of Z in which the

critical one is embedded, but only those in the stable side of the bifurcation. These periodic orbits are
parametrized by q = p = J2 = 0 and J1 = I(0, η) := Ĩ(η2), and hence the periodic orbit given by η is

the same given by −η. The angular frequency of the periodic orbit T (0)
0,η is given by Ω1(0, η) := Ω̃1(η

2)

and the two normal ones are Ω2(0, η) := η + Ω̃2(η
2) and −η + Ω̃2(η

2) (check it in the Hamiltonian
equations of (15)). We observe that Ω2(0, η) depends on the sign of η, but that to change η by −η
only switches both normal frequencies. Moreover, the functions Ĩ, Ω̃1 and Ω̃2 are analytic around the
origin and, as a consequence of the normal form criteria of theorem 4.1, they are independent of R
and give the parametrization of the family of periodic orbits of (14) and of their intrinsic and normal
frequencies. See figure 1.

The proof of theorem 4.2 follows directly by substitution in the Hamilton equations of Z̆. Here we
shall only stress that d 6= 0 is the only necessary hypothesis for the implicit function I to exist in a
neighbourhood of (0, 0). On its turn, the reality condition follows at once writing the invariant tori in
the former coordinates (θ, x, I, y) (see (19)). Explicitly, the corresponding quasiperiodic solutions are

θ = Ω1(ζ)t + φ
(0)
1 , x1 =

√
2ξ cos(Ω2(ζ)t + φ

(0)
2 ), x2 = −√

2ξ sin(Ω2(ζ)t + φ
(0)
2 ),

I = I(ζ), y1 = −η
√

2ξ sin(Ω2(ζ)t + φ
(0)
2 ), y2 = −η

√
2ξ cos(Ω2(ζ)t + φ

(0)
2 ).
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Figure 1: Qualitative plots of the distribution of invariant tori of the normal form, linked to the direct
quasiperiodic Hopf bifurcation, in the parameter spaces (ξ, η) and (µ,Ω2). The acronyms R, C,
E and H indicate real, complex, elliptic and hyperbolic tori, respectively. In the left plot, the curve
separating CE and CH (which is close to the parabola ξ = −2η2/a) corresponds to complex parabolic
tori, whilst the line ξ = 0 and the curves separating RE and CE in the right plot (which are close
to the straight lines Ω2 = ω2 ± µ/2) correspond to stable periodic orbits.

Therefore, ζ = (ξ, η) are the parameters of the family of tori, so they “label” an specific invariant torus
of Z. Classically, when applying KAM methods, it is usual to require the frequency map, ζ 7→ Ω(ζ), to
be a diffeomorphism, so that we can label the tori in terms of its vector of intrinsic frequencies. This
is (locally) achieved by means of the standard Kolmogorov nondegeneracy condition, det(∂ζΩ) 6= 0.
In the present case, simple computations show that:

I(ξ, η) = −a

d
ξ+ · · · , Ω1(ξ, η) = ω1 +

(
d − ab

d

)
ξ+ · · · , Ω2(ξ, η) = ω2 +

(
e − af

d

)
ξ+η+ · · · (25)

(for higher order terms see [35]). Then, Kolmogorov’s condition computed at the resonant orbit reads
as d−ab/d 6= 0. Although this is the classic approach, we shall be forced to choose a set of parameters
on the family different from the intrinsic frequencies.

4.3 Normal behaviour of the bifurcated tori

Let us consider the variational equations of Z̆ around the family of (real) bifurcated tori T (0)
ξ,η (with

ξ > 0). The restriction of these equations to the normal directions (q, p) is given by a two dimensional
linear system with constant coefficients, with matrix

Mξ,η =




0 2ξ

−2η2

ξ
− a − ∂2

1,1Z(ξ, I(ξ, η), ξη) 0


 . (26)

Then, the characteristic exponents (or normal eigenvalues) of this torus are

λ±(ξ, η) = ±
√
−4η2 − 2aξ − 2ξ∂2

1,1Z(ξ, I(ξ, η), ξη). (27)

If a > 0, it is easy to realize that the eigenvalues λ± are purely imaginary if ξ > 0 and η are both

small enough, and hence the family T (0)
ξ,η holds only elliptic tori. If a < 0, then elliptic, hyperbolic and

parabolic tori co-exist simultaneously in the family. In this paper we are only interested in the case
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a > 0 (direct bifurcation), so from now on we shall only be concerned with elliptic tori. Hence, we

denote by µ = µ(ξ, η) > 0 the only normal frequency of the torus T (0)
ξ,η , so that λ± = ±iµ, with

µ2 := 2ξ∂2
q,qZ̆|

T
(0)

ζ

= 4η2 + 2aξ + 2ξ∂2
1,1Z(ξ, I(ξ, η), ξη). (28)

If we pick up the (stable) periodic orbit (±η, 0), then µ = 2|η|. Hence, it is clear that µ → 0 as we
approach to the resonant orbit ξ = η = 0. Thus, the elliptic bifurcated tori of the normal form are
very close to parabolic. This is the main source of problems when proving their persistence in the
complete system.

Remark 4.3. Besides those having 0 < ξ << 1 and |η| << 1 we observe that, from formula (27),
those tori having ξ < 0 but 4η2+2aξ+2ξ∂2

1,1Z(ξ, I(ξ, η), ξη) > 0 are elliptic too, albeit they are complex
tori when written in the original variables (recall that ξ = 0 corresponds to the stable periodic orbits
of the family, see remark 4.2). However, when performing the KAM scheme, we will work with them
all together (real or complex tori), because they turn to be real when written in the “action–angle”
variables introduced in (19). The discussion between real or complex tori of the original system (10)
is carried on in section 5.13. See figure 1.

Remark 4.4. There is almost no difference in studying the persistence of elliptic tori in the inverse
case using the approach of the paper for the direct case. For hyperbolic tori, the same methodology of
the paper also works, only taking into account that now λ± = ±µ, µ > 0. Thus, in the hyperbolic case
we can also use the iterative KAM scheme described in section 5.3, with the only difference that some
of the divisors, appearing when solving the homological equations (eq1)–(eq2), are not “small divisors”
at all, because their real part has an uniform lower bound in terms of µ (see (51), (54) and (55)). This
fact simplifies a lot the measure estimates of the surviving tori. As pointed before in the introduction,
the parabolic case, λ± = 0, requires a different approach and it is not covered by this paper.

5 Proof of theorem 3.1

We consider the initial Hamiltonian H in (10) and take R > 0, small enough, fixed from now on. Then,
we compute the normal form of H up to a “suitable order”, depending on R, as stated in theorem 4.1.
As the normalizing transformation Ψ̂(R) depends on the selected R, it is clear that the transformed
Hamiltonian H ◦ Ψ̂(R) also does. However, as R is fixed, in the forthcoming we drop the explicit
dependence on R unless it is strictly necessary. Now, we introduce the canonical coordinates (19) and
obtain the Hamiltonian H̆ in (20). Then, the keystone of the proof of theorem 3.1 is a KAM process
applied to H̆.

To carry out this procedure, first in section 5.1 we discuss which is the vector Λ of basic frequencies
we use to label the bifurcated tori. In section 5.2 we introduce Λ as a parameter on the Hamiltonian H̆.
Moreover, the resulting system is complexified in order to simplify the resolution of the homological
equations. The iterative KAM scheme we perform is explained in section 5.3. We also discuss the
main difficulties we found when applying this process —in the present close-to-parabolic setting— with
respect to the standard non-degenerate context. To justify the validity of our approach, the particular
non-degeneracy condition linked to this construction is checked in section 5.4. In section 5.5 we
explain how we carry out in the KAM process the ultra-violet cut-off with respect to the angles of
the tori. This cut-off is performed in order to prove the Whitney-smoothness, with respect to the
parameter Λ, of the surviving tori. After that, we begin with the quantitative part of the proof. To do
that, first we have to select the initial set of basic frequencies in which we look for the corresponding
invariant torus (section 5.6). Then, we have to control the bounds on the initial family of Hamiltonians
(section 5.7), the quantitative estimates on the KAM iterative process introduced before (section 5.8)
and the convergence of this procedure in a suitable set of basic frequencies (sections 5.9 and 5.10). To
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discuss the measure of this set we use Lipschitz constants. In section 5.11 we assure that we have a
suitable control on these constants, whilst in section 5.12 we properly control this measure. Finally,
in section 5.13 we discuss which of the invariant tori we have obtained are real when expressed in the
original coordinates and, in section 5.14, we establish the Whitney-C∞ smoothness of the bifurcated
family.

5.1 Lack of parameters

One of the problems intrinsically linked to the perturbation of elliptic invariant tori is the so-called
“lack of parameters”. In fact, this is a common difficulty in the theory of quasiperiodic motions in
dynamical systems (see [9, 33, 44]). Basically, it implies that one cannot construct a perturbed torus
with a fixed set of (Diophantine) intrinsic and normal frequencies, for the system does not contain
enough internal parameters to control them all simultaneously. All that one can expect is to build
perturbed tori with only a given subset of basic frequencies previously fixed (equal to the numbers of
parameters one has). The remaining frequencies have to be dealt (when possible) as function of the
prefixed ones.

Let us suppose for the moment that, in our case, the two intrinsic frequencies could be the basic ones
and that the normal frequency is function of the intrinsic ones (this is the standard approach). These
three frequencies are present on the (small) denominators of the KAM iterative scheme (see (29)).
It means that to carry out the first step of this process, one has to restrict the parameter set to the
intrinsic frequencies so that they, together with the corresponding normal one of the unperturbed
torus, satisfy the required Diophantine conditions (see (69)). After this first step, we only can keep
fixed the values of the intrinsic frequencies (assuming Kolmogorov nondegeneracy), but the function
giving the normal frequency of the new approximation to the invariant torus has changed. Thus, we
cannot guarantee a priori that the new normal frequency is nonresonant with the former intrinsic
ones.

To succeed in the iterative application of the KAM process, it is usual to ask for the denominators
corresponding to the unperturbed tori to move when the basic frequencies do. In our context, with
only one frequency to control, this is guaranteed if we can add suitable nondegeneracy conditions on
the function giving the normal frequency. These transversality conditions avoid the possibility that
one of the denominators falls permanently inside a resonance, and allows to obtain estimates for the
Lebesgue measure of the set of “good” basic frequencies at any step of the iterative process. For
2D-elliptic low-dimensional tori with only one normal frequency, the denominators to be taken into
account are3 (the so-called Mel’nikov’s second non-resonance condition, see [31, 32])

i〈k, Ω〉 + i`µ, ∀k ∈ Z2 \ {0}, ∀` ∈ {0,±1,±2}, (29)

where Ω ∈ R2 are the intrinsic frequencies and µ = µ(Ω) > 0 the normal one. Now, we compute
the gradient with respect to Ω of such divisors, and require them not to vanish. These transversality
conditions are equivalent to 2∇Ωµ(Ω) /∈ Z2 \ {0}. For equivalent conditions in the “general” case
see [25]. For nondegeneracy conditions of higher order see [9, 44].

This, however, does not work in the current situation. To realize, a glance at (25) shows that the
first order expansion, at Ω = ω, of the inverse of the frequency map is

ξ =
d

d2 − ab
(Ω1 − ω1) + · · · , η =

af − ed

d2 − ab
(Ω1 − ω1) + Ω2 − ω2 + · · · .

Now, substitution in the expression (27) gives for the normal frequency

µ(Ω) =

√
2ad

d2 − ab
(Ω1 − ω1) + · · ·,

3Bourgain showed in [4, 5] that conditions with ` = ±2 can be omitted, but the proof becomes extremely involved.
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so ∇Ωµ(Ω) is not well defined at the critical periodic orbit. Therefore we use different parameters on
the family. From (25) and (27), it can be seen that ξ and η may be expressed as a function of µ and
Ω2,

ξ =
µ2

2a
− 2

a
(Ω2 − ω2)

2 + · · · , η = Ω2 − ω2 +

(
f

2d
− e

2a

)
µ2 +

(
2e

a
− 3f

d

)
(Ω2 − ω2)

2 + · · · .

Now, let us denote Λ = (µ, Ω2) the new set of basic frequencies and write Ω1 as function of them.
Substitution in the expression for Ω1 in (25) yields:

Ω
(0)
1 (µ, Ω2) := ω1 +

(
d

2a
− b

2d

)
µ2 +

(
3b

d
− 2d

a

)
(Ω2 − ω2)

2 + · · · . (30)

The derivatives with respect to Λ of the KAM denominators (29) are, at the critical periodic orbit,

∇Λ

(
k1Ω

(0)
1 (Λ) + k2Ω2 + `µ

)∣∣∣
Λ=(0,ω2)

= (`, k2), k1, k2, ` ∈ Z, with |`| ≤ 2. (31)

So, the divisors will change with Λ whenever the integer vector (`, k2) 6= (0, 0). But if ` = k2 = 0 then

k1 6= 0, and the modulus of the divisor k1Ω
(0)
1 (Λ) will be bounded from below.

5.2 Expansion around the unperturbed tori and complexification of the system

Once we have selected the parameters on the family, the next step is to put the system (20) into a

more suitable form. Concretely, we replace the Hamiltonian H̆ by a family of Hamiltonians, H
(0)
Λ ,

having as a parameter the vector of basic frequencies Λ. This is done by placing “at the origin” the
invariant torus of the “unperturbed Hamiltonian” Z̆, corresponding to the parameter Λ, and then
arranging the corresponding normal variational equations of Z̆ to diagonal form and uncoupling (up
to first order) the “central” and normal terms around the torus. This means to remove the quadratic
term [·]I,z (see (4)) from the unperturbed part of (34).

If for the moment we set the perturbation R̆ to zero, then H
(0)
Λ constitutes a family of analytic

Hamiltonians so that, for a given Λ = (µ, Ω2), the corresponding member has at the origin a 2D-

elliptic invariant torus with normal frequency µ and intrinsic frequencies (Ω
(0)
1 (Λ), Ω2), where Ω

(0)
1 (Λ)

is defined through (30). Our target is to prove that if we take the perturbation R̆ into account then,

for most of the values of Λ (in a Cantor set), the full system H
(0)
Λ has an invariant 2D-elliptic torus

close to the origin, with the same vector of basic frequencies Λ, but perhaps with a different Ω1.
Similar ideas have been used in [25, 26].

To introduce H
(0)
Λ we consider the family of symplectic transformations (θ1, θ2, x, I1, I2, y) 7→

(φ1, φ2, q, J1, J2, p), defined for Λ ∈ Γ (see theorem 4.2) and given by:

φ1 = θ1 −
2ξ

µ2
(∂2

J1,qZ̆|
T

(0)
ζ

)

(
λ+

2ξ
x +

1

2
y

)
, J1 = I(ζ) + I1,

φ2 = θ2 −
2ξ

µ2
(∂2

J2,qZ̆|
T

(0)
ζ

)

(
λ+

2ξ
x +

1

2
y

)
, J2 = 2ξη + I2,

q = ξ + x − ξ

λ+
y − 2ξ

µ2
(∂2

J1,qZ̆|
T

(0)
ζ

)I1 −
2ξ

µ2
(∂2

J2,qZ̆|
T

(0)
ζ

)I2, p =
λ+

2ξ
x +

1

2
y,

(32)

where λ+ = iµ. Although it has not been written explicitly, the parameters ζ = (ξ, η) must be thought
of as functions of the basic frequencies Λ, i. e., ζ = ζ(Λ).

This transformation can be read as the composition of two changes. One is the symplectic “diag-
onalizing” change

Q = x − ξ

λ+
y, P =

λ+

2ξ
x +

1

2
y, (33)
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that puts the normal variational equations —associated with the unperturbed part Z̆— of the torus
into diagonal form. We point out that we choose (33) as a diagonalizing change because it skips any
square root of ξ or µ. The other change moves the torus to the origin and gets rid of the contribution

of Z̆ to the term [·]I,z of the Taylor expansion of H
(0)
Λ (recall (28)). To diagonalize the normal

variationals and to kill this coupling term is not strictly necessary, but both operations simplify a lot
the homological equations of the KAM process (see (eq1)–(eq5)).

Note that the linear change (33) is a complexification of the real Hamiltonian (20), i. e., the real
values of the normal variables (q, p) correspond now to complex values of (x, y). Nevertheless, the
invariant tori of (34) we finally obtain are real tori when expressed in coordinates (φ1, φ2, q, J1, J2, p),
and those having q > 0 are also real in the original variables (through change (19)). The real character
of the tori of (34) can be verified in two ways. The first one is to overcome the complexification (33)
and to perform the KAM process by using the real variables (Q, P ) instead of (x, y). The price we paid
for using this methodology is that the solvability of the homological equations —of the iterative KAM
process— becomes more involved, because they are no longer diagonal. The other way to proceed is
to observe that the complexified homological equations have a unique (complex) solution. Thus, as
we are dealing with linear (differential) equations, it implies that the corresponding real homological
equations, written in terms of the variables (Q, P ), also have a unique (real) solution. Hence, as the
complexification (33) is canonical, it means that if we express the generating function S (see (40))
obtained as solution of the homological equations in the real variables (Q, P ), then we obtain a real
generating function (see remark 5.1 for more details). Consequently, the symmetries introduced by
the complexification are kept after any step of the iterative KAM process, and we can go back to a real
Hamiltonian by means of the inverse transformation of (33). Thus, for simplicity, we have preferred
to follow this second approach and to use complex variables.

In this way, the Hamiltonian H̆ in (20) casts into H
(0)
Λ = H

(0)
Λ (θ, x, I, y), with

H
(0)
Λ = φ(0)(Λ)+〈Ω(0)(Λ), I〉+ 1

2
〈z,B(Λ)z〉+ 1

2
〈I, C(0)(Λ)I〉+H̃(0)(x, I, y; Λ)+Ĥ(0)(θ, x, I, y; Λ). (34)

Here, H̃(0) holds the terms of order greater than two in (z, I), where z = (x, y), coming from the
normal form Z̆, i. e., [H̃(0)] = H̃(0) (see (4)), and Ĥ(0) is the transformed of the remainder R̆, whereas

φ(0)(Λ) = Z̆|
T

(0)
ζ

, Ω
(0)
1 (Λ) = ∂J1Z̆|

T
(0)

ζ

, Ω
(0)
2 (Λ) = Ω2, B(Λ) =

(
0 λ+

λ+ 0

)
, (35)

(see (23), (24), (26), (27), (28) and (30)) and the symmetric matrix C (0) is given by

C(0)
1,1(Λ) = ∂2

J1,J1
Z̆|

T
(0)

ζ

− 2ξ

µ2
(∂2

J1,qZ̆|
T

(0)
ζ

)2 = b + ∂2
2,2Z − 2ξ

µ2
(d + ∂2

1,2Z)2,

C(0)
1,2(Λ) = ∂2

J1,J2
Z̆|

T
(0)

ζ

− 2ξ

µ2
(∂2

J1,qZ̆|
T

(0)
ζ

)(∂2
J2,qZ̆|

T
(0)

ζ

) (36)

= f +
1

2
∂2

2,3Z − 2ξ

µ2
(d + ∂2

1,2Z)

(
−η

ξ
+ e +

1

2
∂2

1,3Z

)
,

C(0)
2,2(Λ) = ∂2

J2,J2
Z̆|

T
(0)

ζ

− 2ξ

µ2
(∂2

J2,qZ̆|
T

(0)
ζ

)2 =
1

2ξ
+ c +

1

4
∂2

3,3Z − 2ξ

µ2

(
−η

ξ
+ e +

1

2
∂2

1,3Z

)2

,

where the partial derivatives of Z above are evaluated at (ξ, I(ζ), ξη). If one skips the remainder Ĥ(0)

off, then I = 0, z = 0 corresponds to an invariant 2D-elliptic torus of H
(0)
Λ with basic frequency vector

Λ. The normal variational equations of this torus are given by the (complex) diagonal matrix J1B.

5.3 The iterative scheme

Now, we proceed to describe (here only formally) the KAM iterative procedure we use to construct
the elliptic two-dimensional tori. The underlying idea goes back to Kolmogorov in [29] and Arnol’d
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in [1, 2]. In what concerns low-dimensional tori, see references quoted in the introduction.

We perform a sequence of canonical changes on H
(0)
Λ (see (34)), depending on the parameter Λ,

obtaining thus a sequence of Hamiltonians {H (n)
Λ }n≥0, with a limit Hamiltonian H

(∞)
Λ having at the

origin a 2D-elliptic invariant torus, with Λ = (µ, Ω2) as vector of basic frequencies. Concretely, we

want H
(∞)
Λ to be of the form

H
(∞)
Λ (θ, x, I, y) = φ(∞)(Λ)+ 〈Ω(∞)(Λ), I〉+ 1

2
〈z,B(Λ)z〉+ 1

2
〈I, C(∞)(θ; Λ)I〉+H̃(∞)(θ, x, I, y; Λ), (37)

with [H̃(∞)] = H̃(∞), the matrix B given by (35) and the function Ω(∞)(Λ) = (Ω
(∞)
1 (Λ), Ω2). This

process is built as a Newton-like iterative method, yielding to “quadratic convergence” if we restrict
to the values of Λ for which suitable Diophantine conditions hold at any step. We point out that,
albeit C(0) and H̃(0) are independent of θ, this property is not kept by the iterative process.

To describe a generic step of this iterative scheme we consider a Hamiltonian of the form (see (4))

H = a(θ) + 〈b(θ), z〉 + 〈c(θ), I〉 +
1

2
〈z, B(θ)z〉 + 〈I, E(θ)z〉 +

1

2
〈I, C(θ)I〉 + Ξ(θ, x, I, y). (38)

Although we do not write this dependence explicitly, we suppose that H depends also on Λ (recall
that everything depends also on the prefixed R). Moreover, we also assume that if we replace the
“complex” variables (x, y) by (Q, P ) through (33), then H becomes a real analytic function. For any
Λ = (µ, Ω2) we define from (38)

H = 〈a〉θ + 〈Ω, I〉 +
1

2
〈z,Bz〉 +

1

2
〈I, C(θ)I〉 + Ξ(θ, x, I, y), (39)

and suppose that H −H is “small”. To fix ideas, of O(ε) with ε going to zero with the step. We point
out that if we start the iterative process with H (0) in (34), then ε = O(Ĥ(0)). The Hamiltonian H
looks like (37), which is the form we want for the limit Hamiltonian, with Ω = (Ω1, Ω2), for certain

Ω1 = Ω1(Λ) to be chosen iteratively (initially we take Ω1 = Ω
(0)
1 of (30)), and B(Λ) defined by (35) is

held fixed during the iterative process. Moreover, we also assume that the matrix C is close to C (0)(Λ)
defined by (36), but we do not ask for C to remain constant with the step.

Now, we perform a canonical change on H so that it squares the size of ε. Concretely, if we call

H(1) the transformed Hamiltonian, expand H (1) as H in (38) and define H
(1)

from H(1) as in (39),

we want (roughly speaking) the norm of H (1) − H
(1)

to be of O(ε2).
The canonical transformations we use are defined by the time-one flow of a suitable Hamiltonian

S = SΛ, the so-called generating function of the change, that we denote as ΨS
t=1 or simply ΨS

1 (see
section 2). Precisely, we look for S of the form (compare [3, 25, 26])

S(θ, x, I, y) = 〈χ, θ〉 + d(θ) + 〈e(θ), z〉 + 〈f(θ), I〉 +
1

2
〈z, G(θ)z〉 + 〈I, F(θ)z〉 , (40)

where χ ∈ C2, 〈d〉θ = 0, 〈f〉θ = 0 and G is a symmetric matrix with 〈G1,2〉θ = 〈G2,1〉θ = 0.

Remark 5.1. Conditions above guarantee the uniqueness of S as a solution of the homological equa-
tions (eq1)–(eq5). Furthermore, as we want to ensure that we have a real generating function after
applying the inverse of (33) to S, we have to require that χ ∈ R2 and that d(θ), S∗e(θ), f(θ), S∗G(θ)S
and F(θ)S are real functions, where S is the matrix of the inverse of the linear change (33). So, if we
set G(θ) = S∗G(θ)S, condition 〈G1,2〉θ = 0 reads, for the real matrix G, as 4ξ2〈G1,1〉θ + µ2〈G2,2〉θ = 0.
If we assume that these S-symmetries hold for H, then it is clear that they also hold for S.

Then we have,

H(1) := H ◦ ΨS
1 = H + {H, S} +

∫ 1

0
(1 − t){{H, S}, S} ◦ ΨS

t dt.
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By assuming a priori that S is small, of O(ε), we select S so that H + {H, S} takes the form:

H + {H, S} = φ(1) + 〈Ω(1), I〉 +
1

2
〈z,Bz〉 +

1

2
〈I, C(1)(θ)I〉 + H̃(1)(θ, x, I, y),

being Ω(1) = (Ω
(1)
1 , Ω2) with H̃(1) holding the terms of higher degree, i. e., H̃(1) = [H + {H, S}]. If

we write these conditions in terms of H and the generating function S, this leads to the following
homological equations (see (8)):

{a}θ − LΩd = 0, (eq1)

b − LΩe + BJ1e = 0, (eq2)

c − Ω(1) − LΩf − C (χ + (∂θd)∗) = 0, (eq3)

B̃ − B − LΩG + BJ1G − GJ1B = 0, (eq4)

Ẽ − LΩF − FJ1B = 0, (eq5)

where

Ω
(1)
1 := 〈c1〉θ − 〈C1,1 (χ1 + ∂θ1d)〉θ − 〈C1,2 (χ2 + ∂θ2d)〉θ , (41)

B̃ := B − [∂IΞ (χ + (∂θd)∗) − ∂zΞJ1e](z,z) , (42)

Ẽ := E − C (∂θe)
∗ − [∂IΞ (χ + (∂θd)∗) − ∂zΞJ1e](I,z) . (43)

Prior to solve completely these equations, we want to discuss the reason for the definition of Ω
(1)
1 and

how the constant vector χ is fixed, because these are the most involved issues when solving them. These
quantities are used to adjust the average of some components of the homological equations, ensuring

the compatibility of the full system when they are appropriately chosen. First, Ω
(1)
1 is defined so that

the average of the first component of the (vectorial) equation (eq3) is zero. Moreover, as one wants Ω2

and µ not to change from one iterate to another, χ must satisfy the linear system formed by the second
component of (eq3) and the first row second column component of the (matricial) equation (eq4) (or,
by symmetry, the second row first column of this equation). One obtains the linear system,

〈A〉θχ = −h, (44)

where

A(θ) =

(
C2,1(θ) C2,2(θ)

∂3
I1,x,yΞ(θ, 0) ∂3

I2,x,yΞ(θ, 0)

)
(45)

and the components of the right hand side term in (44) are

h1 := Ω2 − 〈c2〉θ + 〈C2,1∂θ1d〉θ + 〈C2,2∂θ2d〉θ , (46)

h2 := λ+ − 〈B1,2〉θ +
〈
∂3

I1,x,yΞ(θ, 0)∂θ1d
〉
θ
+
〈
∂3

I2,x,yΞ(θ, 0)∂θ2d
〉
θ

+
〈
∂3

x,y,yΞ(θ, 0)e1

〉
θ
−
〈
∂3

x,x,yΞ(θ, 0)e2

〉
θ
. (47)

Hence, to ensure the compatibility of the homological equations, it is necessary to see that the matrix
〈A〉θ is not singular and (in order to bound the solutions of the system (44) later on) to derive suitable
estimates for the norm of its inverse. This is the most important nondegeneracy condition to fulfill
in order to ensure that we made a good selection of basic frequencies to label the tori. Thus, next
section is devoted to the verification of this condition for the unperturbed tori of H (0) (see (34)).
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5.4 The nondegeneracy condition of the basic frequencies

Let us compute the matrix A associated with the “unperturbed” terms of the Hamiltonian H (0),
namely Ā(0). This matrix is defined by taking C = C(0) and Ξ = H̃(0) in (45) (see (34) and (36)).
We observe that Ā(0) does not depend on θ, but this property is not kept for the matrices A of the
iterative process. For H̃(0) we have (see (21) and (32)),

∂3
I1,x,yH̃

(0)(0, 0, 0) = − ξ

λ+
∂3

J1,q,qZ̆|
T

(0)
ζ

+ ∂2
J1,qZ̆|

T
(0)

ζ

(
1

λ+
− 2ξ2

λ3
+

∂3
q,q,qZ̆|

T
(0)

ζ

)

= − ξ

λ+
∂3

1,1,2Z + (d + ∂2
1,2Z)

(
1

λ+
+ 12

η2

λ3
+

− 2
ξ2

λ3
+

∂3
1,1,1Z

)
,

∂3
I2,x,yH̃

(0)(0, 0, 0) = − ξ

λ+
∂3

J2,q,qZ̆|
T

(0)
ζ

+ ∂2
J2,qZ̆|

T
(0)

ζ

(
1

λ+
− 2ξ2

λ3
+

∂3
q,q,qZ̆|

T
(0)

ζ

)

= − ξ

λ+

(
2

η

ξ2
+

1

2
∂3

1,1,3Z

)
+

(
−η

ξ
+ e +

1

2
∂2

1,3Z

)(
1

λ+
+ 12

η2

λ3
+

− 2
ξ2

λ3
+

∂3
1,1,1Z

)
,

where the partial derivatives of Z are evaluated at (ξ, I(ζ), ξη), i. e., at the unperturbed torus. Then,
simple (but tedious) computations show that

det Ā(0) = C(0)
2,1∂3

I2,x,yH̃
(0)(0, 0, 0) − C(0)

2,2∂3
I1,x,yH̃

(0)(0, 0, 0) =
1

λ3
+

(Ã(0) + Â(0)),

where

Ã(0) =
1

ξ

(
−(d + ∂2

1,2Z)

(
λ2

+

2
+ 2η2

)
−
(

f +
1

2
∂2

2,3Z

)
η(3λ2

+ + 12η2)

)
,

Â(0) = (ξλ2
+C

(0)
2,2)∂3

1,1,2Z +

(
f +

1

2
∂2

2,3Z

)(
2ξη∂3

1,1,1Z − ξλ2
+

2
∂3

1,1,3Z

)

+(λ2
+ + 12η2 − 2ξ2∂3

1,1,1Z)

((
f +

1

2
∂2

2,3Z

)(
e +

1

2
∂2

1,3Z

)
−
(

c +
1

4
∂2

3,3Z

)
(d + ∂2

1,2Z)

)

+(d + ∂2
1,2Z)

(
ξ∂3

1,1,1Z − 4η

(
e +

1

2
∂2

1,3Z

)
− ξ∂3

1,1,3Z

(
−η + eξ +

ξ

2
∂2

1,3Z

))
.

We remark that albeit C(0)
2,2 becomes singular when ξ = η = 0, the expression ξλ2

+C
(0)
2,2 goes to zero

when ζ = (ξ, η) does, and so does Â(0). Now, taking into account definition (27), we replace

λ2
+ = −4η2 − 2aξ − 2ξ∂2

1,1Z

in the expression of Ã(0). Then, some (nice) cancellations lead to the following expression

Ã(0) = ad + d∂2
1,1Z + (6fη + 3η∂2

2,3Z + ∂2
1,2Z)(a + ∂2

1,1Z).

As a summary, we have that det Ā(0) = (ad+ · · · )/λ3
+, where the terms denoted by dots vanish at the

critical periodic orbit ξ = η = 0. Then, as ad 6= 0, we have for small values of ζ that det Ā(0) 6= 0. See
section 5.7 for bounds on (Ā(0))−1.

5.5 The ultra-violet cut-off

Once we have fixed the way to compute χ, we discuss the solvability of the remaining part of the
homological equations (eq1)–(eq5). By expanding them in Fourier series, we compute the different
terms of S in (40) as solution of small divisors equations. The divisors appearing are those specified
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in (29), which are integer combinations of the intrinsic frequencies Ω = (Ω1, Ω2) and of the normal
one µ. For such divisors it is natural to ask for the following Diophantine conditions

|〈k, Ω〉 + `µ| ≥ γ̃|k|−τ
1 , (48)

for all k ∈ Z2 \ {0} and ` ∈ Z, with |`| ≤ 2, where τ > 1 is given by (12) and γ̃ > 0 (depending on R)
will be precised later (see (69)). As Ω1 will be dealt as function of Λ, we expect to have a Cantor set
of values of Λ for which (48) holds. Moreover, as the function Ω1 = Ω1(Λ) changes from one step to
another, this Cantor set also changes (shrinks) with the step.

If at any step of the iterative scheme we restrict Λ to a Cantor set, then it makes difficult to control

the regularity with respect to Λ of the sequence of Hamiltonians H (n) = H
(n)
Λ , because the parameter

set has empty interior. The Λ-regularity is important, because it is used to control the (Lebesgue)
measure of the “bad” and “good” parameters Λ along the iterative process (see section 5.12). For
measure purposes, it is enough to use Lipschitz dependence (see for instance [23, 24, 25, 26]). In
this work we have preferred to follow the approach of Arnol’d in [1, 2] and to deal with analytic
dependence with respect to Λ. This forces us to consider a KAM process with an ultra-violet cut-off.
Concretely, we select a “big” integer N , depending on the step and going to infinity, and consider the
values of Λ for which (48) hold for any k ∈ Z2 \ {0} and |`| ≤ 2, but with 0 < |k|1 < 2N . This finite
number of conditions define an open set for Λ that only becomes Cantor at the limit. Hence, the limit
Hamiltonian is no longer analytic on Λ, but only C∞ in the sense of Whitney (see section A.3).

Let us resume the iterative scheme of section 5.3 and explain precisely how we introduce the ultra-
violet cut-off. After N is fixed appropriately, we decompose the actual Hamiltonian H as (see (7)),

H = H<N,θ + H≥N,θ. (49)

Next to that, H<N,θ is arranged as H in (38) and then we apply the iterative scheme described in
section 5.3 to H<N,θ instead of H. This means that we compute the generating function S = S<2N,θ

in (40), by solving the homological equations (eq1)–(eq5) with H<N,θ playing the rôle of H in (38),
and hence, with H<N,θ playing the rôle of H in (39). The solution of such equations is given by (44)
and by the following explicit formulas:

d =
∑

0<|k|1<N

ak

i〈k, Ω〉 exp (i〈k, θ〉) , (50)

ej =
∑

|k|1<N

bj;k

i〈k, Ω〉 + (−1)j+1λ+
exp (i〈k, θ〉) , (51)

fj =
∑

0<|k|1<2N

c̃j;k

i〈k, Ω〉 exp (i〈k, θ〉) , (52)

{Gj,l}θ =
∑

0<|k|1<2N

B̃j,l;k

i〈k, Ω〉 + 2(−1)j+1λ+δj,l
exp (i〈k, θ〉) , (53)

〈G1,1〉θ =
B̃1,1;0

2λ+
, 〈G2,2〉θ = − B̃2,2;0

2λ+
, (54)

Fj,l =
∑

|k|1<2N

Ẽj,l;k

i〈k, Ω〉 + (−1)l+1λ+
exp (i〈k, θ〉) , (55)

for j, l = 1, 2, where δj,l is Kronecker’s delta and

c̃ = {c}θ − {C(χ + (∂θd)∗)}θ. (56)
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Then, we can expand the new Hamiltonian H (1) := H ◦ ΨS
1 as

H(1) = φ(1) + 〈Ω(1), I〉 +
1

2
〈z,Bz〉 +

1

2
〈I, C(1)(θ)I〉 + H̃(1)(θ, x, I, y) + Ĥ(1)(θ, x, I, y),

where Ω
(1)
2 = Ω2 and Ω

(1)
1 is given by (41). Moreover (see section 2 for notations)

φ(1) = 〈a〉θ − 〈χ, Ω〉, C(1) = C + [{H<N,θ, S}]I,I , H̃(1) = Ξ + [{H<N,θ, S}], (57)

Ĥ(1) = {H<N,θ − H<N,θ, S} +

∫ 1

0
(1 − t){{H<N,θ, S}, S} ◦ ΨS

t dt + H≥N,θ ◦ ΨS
1 . (58)

In particular, using formulas above and S = S<2N,θ, we observe that C(1)
≥3N,θ = 0 and H̃

(1)
≥3N,θ = 0.

5.6 The parameters domain

In this section we fix the initial set of basic frequencies, Λ ∈ U = U(R) (see (64)), to which we wish
to apply the first step of the KAM process. As we want to work iteratively with analytic dependence
with respect to Λ = (µ, Ω2), we are forced to complexify µ, Ω2 and hence, the corresponding ξ, η. The
concrete set of real parameters in which we look for the persistence of 2D-tori, of the full system (34),
is the set V = V(R) on the statement of theorem 3.1 (see also (102)).

To do that, we require some quantitative information on the normal form Z̃ = Z̃(R)(x, I, y) of
theorem 4.1 (see (15)). From (18) we have that |Z̃(R)|0,R ≤ c̃R6, for some c̃ independent of R
(eventually it depends on ε and σ but they are kept fixed along the paper). By using lemma A.7,
we translate this estimate into a bound for the function Z = Z (R)(u1, u2, u3), defined by writing Z̃
in terms of (q, I, L/2), thus obtaining |Z|R2 ≤ c̃R6 (see section 2 for the definition of this weighted
norm). Then, we conclude that there exists c0 > 0, independent of R, such that

|Z|R2 ≤ c0R
6, |∂iZ|R2/2 ≤ c0R

4, |∂2
i,jZ|R2/2 ≤ c0R

2, |∂3
i,j,kZ|R2/2 ≤ c0, i, j, k = 1, 2, 3. (59)

To obtain these bounds we use Cauchy estimates over the norm | · |R2 . These estimates, together
with other properties of the weighted norms used, are shown in section A.1. Since all these properties
are completely analogous to those of the usual supremum norm, sometimes they are going to be used
along the proof without explicit mention.

The first application of bounds (59) is to size up the domain Γ of theorem 4.2.

Lemma 5.1. With the same hypotheses of theorem 4.2. Let 0 < c1 < min{1, |d|/(8(1 + a + 2|e|))}.
Then, for any R > 0 small enough, there is a real analytic function I = I(R)(ζ), defined on the set

Γ = Γ(R) :=
{
ζ = (ξ, η) ∈ C2 : |ξ| ≤ c1R

2, |η| ≤ c1R
}

, (60)

solving equation (22). Moreover, |I|Γ ≤ R2/4, |∂ξI|Γ ≤ 2a/|d| and |∂ηI|Γ ≤ 4c1R/|d|.

Proof. For a fixed ζ ∈ Γ, we consider the function

F(I; ζ) =
1

d
(η2 − aξ − 2eξη − ∂1Z(ξ, I, ξη)),

where ζ is dealt as a parameter. We are going to show that, for any R small enough, the function F(·; ζ)
is a contraction on the set {I ∈ C : |I| ≤ R2/4}, uniformly for any ζ ∈ Γ. Then, I(ζ) = F(I(ζ); ζ) is
the only fixed point of F(·; ζ), with analytic dependence on ζ. Indeed, using (59) we have

|F(I; ζ)| ≤ 1

|d|
(
c2
1R

2 + ac1R
2 + 2|e|c2

1R
3 + c0R

4
)
≤
(

1 + a + 2|e|
|d| c1 +

c0

|d|R
2

)
R2 ≤ 1

4
R2.
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To ensure the contractive character of F(·; ζ) we apply the mean value theorem. Thus, given ζ ∈ Γ
and |I|, |I ′| ≤ R2/4, we have

|F(I ′; ζ) −F(I; ζ)| =
|∂1Z1(ξ, I

′, ξη) − ∂1Z1(ξ, I, ξη)|
|d| ≤ c0

|d|R
2|I ′ − I| ≤ 1

2
|I ′ − I|.

To finish the proof we only have to control the partial derivatives of I. From the fixed point equation
verified by this function, we have

∂ξI =
−a − 2eη − ∂2

1,1Z − η∂2
1,3Z

d + ∂2
1,2Z

, ∂ηI =
2η − 2eξ − ξ∂2

1,3Z

d + ∂2
1,2Z

, (61)

with all the partial derivatives of Z evaluated at (ξ, I(ζ), ξη). Then, the bounds on the derivatives
follow straightforward.

Once we have parametrized the family of 2D-bifurcated tori of the normal form as function of
ζ = (ξ, η), we control the corresponding set of basic frequencies Λ = (µ, Ω2) as follows.

Lemma 5.2. With the same hypotheses of lemma 5.1. Let us also assume 0 < c1 < 4a/17 and
consider 0 < c2 < c1/2. Then, for any R > 0 small enough, there is a real analytic vector-function
h = h(R)(Λ), h = (h1, h2), defined on the set

U = U(R) := {Λ = (µ, Ω2) ∈ C2 : |µ| ≤ c2R, |Ω2 − ω2| ≤ c2R}, (62)

solving, with respect to ζ = (ξ, η), the equations Ω2 = Ω
(R)
2 (ζ) and µ = µ(R)(ζ) defined through (24),

(27) and (28), i. e., ξ = h1(Λ) and η = h2(Λ). Moreover, |h1|U ≤ c1R
2, |h2|U ≤ c1R, |∂µh1|U ≤

2c2R/a, |∂µh2|U ≤ 4(|e|/a + |f |/|d|)c2R, |∂Ω2h1|U ≤ 8c1R/a and |∂Ω2h2|U ≤ 2.

Proof. One proceeds analogously as in the proof of lemma 5.1. By taking into account formulas (24)
and (27) we define

G(ζ; Λ) =

(
µ2

2a
− 2η2

a
− ξ

a
∂2

1,1Z(ξ, I(ζ), ξη), Ω2 − ω2 − 2cξη − eξ − fI(ζ) − 1

2
∂3Z(ξ, I(ζ), ξη)

)
.

Unfortunately, the function G(·; Λ) is not contractive in general. Then, we introduce

F(ζ; Λ) = (G1(ζ; Λ),G2(G1(ζ; Λ), η; Λ)).

We are going to verify that the function F(·; Λ) is a contraction on Γ = Γ(R) (see (60)), uniformly on
Λ ∈ U . Then, h(Λ) = F(h(Λ); Λ) is the only fixed point of F(·; Λ). To do that, we make R as small
as necessary and use the bounds on Z, I and their partial derivatives given by (59) and lemma 5.1.
First, we have

|F1| ≤
1

a

(
c2
2

2
+ 2c2

1 + c0c1R
2

)
R2 ≤ c1R

2.

Next to that we apply this bound to F2, thus obtaining

|F2| ≤
(

c2 + 2|c|c2
1R

2 + |e|c1R +
|f |
4

R +
c0

2
R3

)
R ≤ c1R.
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Now, we check that F(·; Λ) is a contraction on Γ. For F1 we have

|F1(ζ
′; Λ) −F1(ζ; Λ)| ≤ 2

a
|(η′)2 − η2| + |ξ′ − ξ|

a
|∂2

1,1Z(ξ, I(ζ), ξη)|

+
|ξ|
a
|∂2

1,1Z(ξ′, I(ζ ′), ξ′η′) − ∂2
1,1Z(ξ, I(ζ), ξη)|

≤ 4c1

a
R|η′ − η| + c0

a
(1 + c1)R

2|ξ′ − ξ| + c0c1

a
R2(|I(ζ ′) − I(ζ)| + |ξ′η′ − ξη|)

≤
(

4c1

a
R +

c0c1

a
R3

(
4c1

|d| + c1R

))
|η′ − η|

+

(
c0

a
R2 +

c0c1

a
R2

(
1 +

2a

|d| + c1R

))
|ξ′ − ξ|

≤ min

{
1

2
,

|d|
8(|e||d| + 2a|f |)

}
|ζ ′ − ζ|. (63)

Similarly, we obtain the next bound for G2:

|G2(ζ
′; Λ) − G2(ζ; Λ)| ≤

(
2|c|c1R

2 +
4|f |c1

|d| R +
c0

2
R3

(
4c1

|d| + c1R

))
|η′ − η|

+

(
2|c|c1R + |e| + 2a|f |

|d| +
c0

2
R2

(
1 +

4a

|d| + c1R

))
|ξ′ − ξ|.

Hence, going back to the definition of F2 and using the inequality (63), we have

|F2(ζ
′; Λ) −F2(ζ; Λ)| ≤ 1

2
|ζ ′ − ζ|.

Finally, the bounds on the partial derivatives of h(Λ) follow at once by computing the derivatives of
the fixed point equation h(Λ) = G(h(Λ); Λ) (compare (61)).

At this point we can express the remaining intrinsic frequency Ω1 in terms of Λ. Next lemma
accounts for this dependence.

Lemma 5.3. With the same hypotheses of lemma 5.2. Let us define Ω
(0)
1 = Ω

(0,R)
1 (Λ) as the function

Ω1 = Ω
(R)
1 (ζ) of (23), when expressed in terms of Λ through the change ζ = h(R)(Λ) given by lemma 5.2

(see (30)). There exists a constant c3 > 0, independent of R, such that if R > 0 is small enough then:

|Ω(0)
1 − ω1|U ≤ c3R

2, |∂µΩ
(0)
1 |U ≤ c3R, |∂Ω2Ω

(0)
1 |U ≤ c3R, LipU (Ω

(0)
1 ) ≤ 2c3R,

where the set U = U (R) is defined in (62).

Proof. These bounds are straightforward from those of lemma 5.1 and lemma 5.2. We leave the details
for the reader. In particular, to derive the Lipschitz estimate we note that U is a convex set.

Now we introduce the initial set of (complex) parameters Λ = (µ, Ω2) ∈ U = U(R) we are going
to consider for the KAM scheme of sections 5.3 and 5.5. We define

U :=
{
Λ ∈ C2 : (M (0))α/2 ≤ Re µ, |Im µ| ≤ 2(M (0))α/2, |µ| ≤ c2R,

|Ω2 − ω2| ≤ c2R, |ImΩ2| ≤ 2(M (0))α/2, |h1(Λ)| ≥ (M (0))α/2
}

, (64)

where α, M (0) = M (0)(R) are thus on the statement of theorem 3.1 and c2, h = h(R) = (h
(R)
1 , h

(R)
2 )

are given by lemma 5.2.
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Remark 5.2. The set U is the restriction to R+×R of the set U provided by lemma 5.2, —i. e., the set
V of (102)— plus a small complex widening and small technical restrictions. We point out that U ⊂ U ,
for small R. In particular definition (64) implies that, if Λ ∈ U , then |µ| ≥ (M (0))α/2 —i. e., we are
“far” from parabolic tori given by µ = 0— and ζ = (ξ, η) = h(Λ) verifies (M (0))α/2 ≤ |ξ| ≤ c1R

2

—i. e., we are “far” from the stable periodic orbits of the family given by ξ = 0— and |η| ≤ c1R (see
lemma 5.1). See figure 1.

5.7 Domain of definition of the Λ-family of Hamiltonians

Next to that, we consider the “initial” family of Hamiltonian systems H
(0)
Λ (see (34)) and fix up their

domain of definition.
Taking into account the symplectic changes (19) and (32), one may write the normal form coordi-

nates (θ, x1, x2, I, y1, y2) of (14) as a function of (θ1, θ2, x, I1, I2, y), depending on the prefixed R and
the parameter Λ. Writing them up explicitly, we have

θ = θ1 +
ξ

λ+
(d + ∂2

1,2Z(ξ, I(ζ), ξη))

(
x

ξ
+

y

λ+

)
, I = I(ζ) + I1,

y1 =
√

2ξ(1 + q̂)

(
λ+

2ξ
x +

1

2
y

)
cosφ2 −

2ξη + I2√
2ξ(1 + q̂)

sin φ2, x1 =
√

2ξ(1 + q̂) cos φ2,

y2 = −
√

2ξ(1 + q̂)

(
λ+

2ξ
x +

1

2
y

)
sin φ2 −

2ξη + I2√
2ξ(1 + q̂)

cos φ2, x2 = −
√

2ξ(1 + q̂) sin φ2,

being

φ2 = θ2 +
1

λ+

(
−η + eξ +

ξ

2
∂2

1,3Z(ξ, I(ζ), ξη)

)(
x

ξ
+

y

λ+

)
,

q̂ =
x

ξ
− y

λ+
+

2

λ2
+

(d + ∂2
1,2Z(ξ, I(ζ), ξη))I1 +

2

ξλ2
+

(
−η + eξ +

ξ

2
∂2

1,3Z(ξ, I(ζ), ξη)

)
I2,

where λ+ = iµ and ζ = (ξ, η) are function of Λ through lemma 5.2. See also theorem 4.2 and lemma 5.1
for the definition and bounds on I.

In view of this coordinate transformation, we select (see theorem 4.1),

ρ(0) := min{σ−2ρ0/4, log(2)/2}, R(0) = R(0)(R) := (M (0)(R))α, (65)

and we want to show that the change (θ1, θ2, x, I1, I2, y) 7→ (θ, x1, x2, I, y1, y2) is well defined from
D2,1(ρ

(0), R(0)) to D1,2(σ
−2ρ0/2, R) (see (1)), for any Λ ∈ U , and controlled in terms of the weighted

norm | · |U ,ρ(0),R(0) —computed by expanding it in (θ1, θ2, x, I1, I2, y)—.

To do that, first of all we combine the definition of U in (64) (see also remark 5.2) with the
bounds (59) on the partial derivatives of Z = Z(R), to obtain, for any R small enough, the following
estimates (we recall that M (0)(R) goes to zero faster than any power of R)

∣∣∣∣
x

ξ
+

y

λ+

∣∣∣∣
U ,0,R(0)

≤ 2(M (0))α/2,

∣∣∣∣
λ+

2ξ
x +

1

2
y

∣∣∣∣
U ,0,R(0)

≤ c2R
(M (0))3α/4

√
|ξ|

,

|θ − θ1|U ,0,R(0) ≤ 2c1R
2(|d| + c0R

2) < σ−2ρ0/4,

|φ2 − θ2|U ,0,R(0) ≤ 2c1R + 2|e|c1R
2 + c0c1R

4 < log(2)/2,

|q̂|U ,0,R(0) ≤ 2(|d| + c0R
2)(M (0))α + (2 + 2c1R + 2|e|c1R

2 + c0c1R
4)(M (0))α/2 ≤ 3(M (0))α/2.

By assuming 3(M (0))α/2 ≤ 1/2, we use the estimate on q̂ and lemma A.6 to obtain

|
√

1 + q̂|U ,0,R(0) ≤ (4 −
√

2)/2, |(
√

1 + q̂)−1|U ,0,R(0) ≤
√

2.
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The estimate on φ2, combined with lemma A.2, gives

| sin φ2|U ,ρ(0),R(0) ≤ e
ρ(0)+|φ2−θ2|

U,0,R(0) ≤ elog(2) ≤ 2,

and the same holds for cosφ2. Moreover we also have, for small R, |2ξη + I2|U ,0,R(0) ≤ 3c1
√

c1R
2
√
|ξ|.

If we put these bounds all together we obtain, for j = 1, 2,

|I − I1|U ,0,R(0) ≤
R2

4
, |xj |U ,ρ(0),R(0) ≤ 2(2

√
2 − 1)

√
c1R, |yj |U ,ρ(0),R(0) ≤ 7c1

√
c1R

2.

Consequently, if R is small enough and c1 is such that 2(2
√

2 − 1)
√

c1 < 1, then we can ensure that
the transformation is controlled as we claimed.

Now, we are in conditions to bound the different elements of the initial system H (0) = H
(0)
Λ in (34)

in the domain D2,1(ρ
(0), R(0)). To do that we introduce a constant κ > 0, independent of R, defined so

that we achieve conditions below. Moreover, we take strong advantage on the use of weighted norms
in order to control any term of the decomposition (34) by the norm of the full system. We have (see
theorem 4.1):

|H(0)|U ,ρ(0),R(0) ≤ κ, |H̃(0)|U ,0,R(0) ≤ κ, |Ĥ(0)|U ,ρ(0),R(0) ≤ M (0). (66)

By using formulas (36) we also have

|C(0)
1,1 |U ≤ κ

(M (0))α
, |C(0)

1,2 |U ≤ κ

(M (0))α
, |C(0)

2,2 |U ≤ κ

(M (0))3α/2
, |C(0)|U ≤ κ

(M (0))3α/2
. (67)

Finally, we consider the matrix Ā(0) discussed in section 5.4, whose determinant defines the non-
degenerate character of the selected set of basic frequencies. For this matrix we have proved that
| det Ā(0)|U ≥ |ad|/(2|µ|3), for any R small enough. Then, using again the closed formulas (36) for

C(0)
1,2 , C(0)

2,2 and those on the partial derivatives on H̃(0) given in section 5.4, we have

|(Ā(0))−1|U ≤ κ

(M (0))α/2
. (68)

5.8 The Iterative Lemma

The purpose of this section is to give quantitative estimates on the effect of one step of the iterative
process described in sections 5.3 and 5.5. The result controlling this process is stated as follows.

Lemma 5.4 (Iterative Lemma). We consider a family of Hamiltonian systems H = HΛ(θ, x, I, y)
defined in D2,1(ρ̄, R̄) for any Λ = (µ, Ω2) ∈ Ē ⊂ C2, for some ρ̄, R̄ ∈ (0, 1), with analytic dependence
in all variables and parameters. The Hamiltonian H takes the form (with everything depending on Λ),

H = φ + 〈Ω, I〉 +
1

2
〈z,Bz〉 +

1

2
〈I, C(θ)I〉 + H̃(θ, x, I, y) + Ĥ(θ, x, I, y),

where B is defined in (35), being λ+ = iµ, the function H̃ contains “higher order terms”, i. e., H̃ = [H̃]
(see (4)) and (abusing notation) Ω(Λ) = (Ω1(Λ), Ω2). We suppose that there is an integer N̄ ≥ 1,
and real quantities τ > 1, 0 < α < 1, κ > 0, 0 < M̄ ≤ M (0) < 1 so that (M (0))α/2 ≤ R̄ ≤ (M (0))α

and, for any Λ = (µ, Ω2) ∈ Ē, we have (H − Ĥ)≥N̄,θ = 0, |µ| ≥ (M (0))α/2,

|〈k, Ω〉 + `µ| ≥ (M (0))α/2|k|−τ
1 , k ∈ Z2, 0 < |k|1 < 2N̄ , ` ∈ {0, 1, 2}, (69)

and the following bounds:

|H|Ē,ρ̄,R̄ ≤ κ, |H̃|Ē,ρ̄,R̄ ≤ 2κ, |Ĥ|Ē,ρ̄,R̄ ≤ M̄, |C|Ē,ρ̄,0 ≤ 2κ

(M (0))3α/2
, |(〈Ā〉θ)−1|Ē ≤ 2κ

(M (0))α/2
,

25



where Ā denotes the matrix A defined in (45) by setting Ξ = H̃ and C = C.
Under these conditions, given 0 < ρ(∞) < ρ̄, there is a constant κ̄ ≥ 1, depending only on κ, τ and

ρ(∞), such that if for certain 0 < δ̄ < 1/2 we have ρ̄(1) := ρ̄ − 6δ̄ ≥ ρ(∞) and

κ̄M̄

δ̄2τ+3(M (0))14α
≤ 1, (70)

then for any Λ ∈ Ē there exists a canonical transformation Ψ = ΨΛ(θ, x, I, y), with analytic dependence
in all variables and parameters, acting as Ψ : D2,1(ρ̄

(1), R̄(1)) → D2,1(ρ̄ − 5δ̄, R̄ exp(−2δ̄)), being
R̄(1) := R̄ exp(−3δ̄). If Ψ− Id = (Θ,X , I,Y), then all the components are 2π-periodic in θ and verify

|Θ|Ē,ρ̄(1),R̄(1) ≤ κ̄M̄

δ̄2τ+1(M (0))19α/2
≤ δ̄, (71)

|I|Ē,ρ̄(1),R̄(1) ≤ κ̄M̄

δ̄2τ+2(M (0))15α/2
≤ (R̄ exp(−2δ̄))2 − (R̄ exp(−3δ̄))2, (72)

|Z|Ē,ρ̄(1),R̄(1) ≤ κ̄M̄

δ̄2τ+1(M (0))17α/2
≤ R̄ exp(−2δ̄) − R̄ exp(−3δ̄), (73)

being Z = (X ,Y). This canonical transformation is defined so that we can expand the transformed

Hamiltonian H by the action of Ψ, H (1) = H
(1)
Λ (θ, x, I, y), as

H(1) := H ◦ Ψ = φ(1) + 〈Ω(1), I〉 +
1

2
〈z,Bz〉 +

1

2
〈I, C(1)(θ)I〉 + H̃(1)(θ, x, I, y) + Ĥ(1)(θ, x, I, y),

with everything depending on Λ, where Ω
(1)
2 (Λ) = Ω2, [H̃(1)] = H̃(1), (H(1) − Ĥ(1))≥3N̄,θ = 0 and

|Ω(1)
1 − Ω1|Ē ≤ κ̄M̄

δ̄τ (M (0))13α/2
, |H̃(1) − H̃|Ē,ρ̄(1),R̄(1) ≤ κ̄M̄

δ̄2τ+3(M (0))19α/2
,

|C(1) − C|Ē,ρ̄(1),0 ≤ κ̄M̄

δ̄2τ+3(M (0))27α/2
, |(〈Ā(1)〉θ)−1 − (〈Ā〉θ)−1|Ē ≤ κ̄M̄

δ̄2τ+3(M (0))29α/2
,

|H(1)|Ē,ρ̄(1),R̄(1) ≤ κ, |Ĥ(1)|Ē,ρ̄(1),R̄(1) ≤ κ̄M̄2

δ̄4τ+6(M (0))19α
+ M̄ exp(−δ̄N̄),

where Ā(1) is defined analogously as Ā.

Remark 5.3. It is not difficult to realize that if the (complex) analytic Hamiltonian H of the statement
verifies the symmetries due to the complexification (33), then the same holds for H (1) (see section 5.2
and remark 5.1 for more details).

Proof. Our plan is to give only a sketch of the proof. Full details can be easily developed by hand
by the interested reader. During the proof, and abusing notation, the constant κ̄ will be re-defined
several times in order to meet a finite number of conditions. The constant κ̄ of the statement is the
final one. Moreover, we will use some technical lemmas given in section A.1 in order to control the
weighted norms of the derivatives (Cauchy estimates), composition of functions and solutions of small
divisors equations, without explicit mention. Finally, the analytic dependence of ΨΛ on Λ, and so of

H
(1)
Λ , follows straightforward from the way in which this canonical transformation is generated.

We start by decomposing H = H<N̄,θ +H≥N̄,θ as in (49), expanding H<N̄,θ as in (38) and defining

H<N̄,θ from H<N̄,θ as in (39). After that, we compute the generating function S = SΛ(θ, x, I, y)
of (40), defined by solving the homological equations (eq1)–(eq5). Then, we define the canonical
transformation Ψ = ΨΛ as the time one flow of the Hamiltonian system S, i. e., Ψ = ΨS

t=1. We recall

that the condition (H(1) − Ĥ(1))≥3N̄,θ = 0 follows at once using (57), (58) and S = S<2N,θ.
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Next to that, we perform the quantitative part of the lemma. First of all, we have the following
bounds for the terms of the decomposition (38) of H<N̄,θ and for H≥N̄,θ = Ĥ≥N̄,θ,

|a − φ|Ē,ρ̄,0 ≤ M̄, |b|Ē,ρ̄,0 ≤ M̄

R̄
, |c − Ω|Ē,ρ̄,0 ≤ M̄

R̄2
, |B − B|Ē,ρ̄,0 ≤ 8

M̄

R̄2
,

|C − C|Ē,ρ̄,0 ≤ 8
M̄

R̄4
, |E|Ē,ρ̄,0 ≤ 2

M̄

R̄3
, |Ξ − H̃|Ē,ρ̄,R̄ ≤ M̄, |H≥N̄,θ|Ē,ρ̄−δ̄,R̄ ≤ M̄ exp(−δ̄N̄).

By assuming κ̄M̄/(M (0))5α/2 ≤ 1 we also have

|C|Ē,ρ̄,0 ≤ 4κ

(M (0))3α/2
, |Ξ|Ē,ρ̄,R̄ ≤ 4κ.

Furthermore, we need to control the norm of (〈A〉θ)−1, where A is defined in (45). We observe that

(〈A〉θ)−1 − (〈Ā〉θ)−1 = −
(
Id + (〈Ā〉θ)−1(〈A〉θ − 〈Ā〉θ)

)−1
(〈Ā〉θ)−1(〈A〉θ − 〈Ā〉θ)(〈Ā〉θ)−1. (74)

If we also assume κ̄M̄/(M (0))9α/2 ≤ 1, then we have

|A − Ā|Ē,ρ̄,0 ≤ 16
M̄

R̄4
, |(〈Ā〉θ)−1|Ē |〈A〉θ − 〈Ā〉θ|Ē ≤ 1

2
,

|(〈A〉θ)−1 − (〈Ā〉θ)−1|Ē ≤ κ̄M̄

(M (0))5α
, |(〈A〉θ)−1|Ē ≤ 4κ

(M (0))α/2
.

(75)

Remark 5.4. To estimate the difference A − Ā, we take into account that the partial derivatives of
Ξ − H̃ are evaluated at z = 0 and I = 0 when bounding them by means of Cauchy estimates.

Now we bound the solutions of the homological equations, which are displayed explicitly from (50)
to (55) (see also the compatibility equation (44)). For instance, we have the following bound for d
(see (69) and lemma A.4):

|d|Ē,ρ̄−δ̄,0 ≤
(

τ

δ̄ exp(1)

)τ |{a}θ|Ē,ρ̄,0

(M (0))α/2
≤
(

τ

δ̄ exp(1)

)τ |a − φ|Ē,ρ̄,0

(M (0))α/2
≤ κ̄M̄

δ̄τ (M (0))α/2
.

Similarly, we bound (recursively) the remaining ingredients involved in the resolution of these equations
(see (41), (42), (43), (46), (47) and (56)), thus obtaining

|e|Ē,ρ̄−δ̄,0 ≤ κ̄M̄

δ̄τ (M (0))3α/2
, |h1|Ē ≤ κ̄M̄

δ̄τ (M (0))2α
, |h2|Ē ≤ κ̄M̄

δ̄τ (M (0))9α/2
,

|χ|Ē ≤ κ̄M̄

δ̄τ (M (0))5α
, |Ω(1)

1 − Ω1|Ē ≤ κ̄M̄

δ̄τ (M (0))13α/2
, |̃c|Ē,ρ̄−2δ̄,0 ≤ κ̄M̄

δ̄τ+1(M (0))13α/2
,

|f|Ē,ρ̄−3δ̄,0 ≤ κ̄M̄

δ̄2τ+1(M (0))7α
, |B̃ − B|Ē,ρ̄−2δ̄,0 ≤ κ̄M̄

δ̄τ+1(M (0))9α
, |〈G〉θ|Ē ≤ κ̄M̄

δ̄τ+1(M (0))19α/2
,

|G|Ē,ρ̄−3δ̄,0 ≤ κ̄M̄

δ̄2τ+1(M (0))19α/2
, |Ẽ|Ē,ρ̄−2δ̄,0 ≤ κ̄M̄

δ̄τ+1(M (0))10α
, |F|Ē,ρ̄−3δ̄,0 ≤ κ̄M̄

δ̄2τ+1(M (0))21α/2
.

Remark 5.5. Besides the trick pointed in remark 5.4, we have also used a similar idea to bound the av-
erage 〈·〉θ of any expression containing derivatives with respect to θ, i. e., |〈∂θ(·)〉θ| ≤ | · |ρ,0/(ρ exp(1)).

From here we have (see (40)),

|∇θS|Ē,ρ̄−4δ̄,R̄ ≤ κ̄M̄

δ̄2τ+2(M (0))15α/2
, |∇IS|Ē,ρ̄−3δ̄,R̄ ≤ κ̄M̄

δ̄2τ+1(M (0))19α/2
,

|∇zS|Ē,ρ̄−3δ̄,R̄ ≤ κ̄M̄

δ̄2τ+1(M (0))17α/2
.
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Now, we apply lemma A.3 to obtain the leftmost part of estimates (71), (72) and (73) on the compo-
nents of the canonical change Ψ = ΨS

1 . Then, the rightmost part of these estimates follows at once.
For instance, for (72) we have

|I|Ē,ρ̄(1),R̄(1)

(R̄ exp(−2δ̄))2 − (R̄ exp(−3δ̄))2
=

exp(4δ̄)|I|Ē,ρ̄(1),R̄(1)

R̄2(1 − exp(−2δ̄))
≤ 4 exp(2)κ̄M̄

δ̄2τ+3(M (0))19α/2
≤ 1, (76)

which is guaranteed by (70). Here, we have used that R̄ ≥ (M (0))α/2, 0 < δ̄ ≤ 1/2 and the bound
(1− exp(−x))−1 ≤ 2/x, whenever 0 < x ≤ 1. Similarly we obtain the rightmost part of (71) and (73).

To finish the proof it only remains to bound the transformed system H (1). Concretely, we have to
focus on formulas (57) and (58). First we observe that,

|H<N̄,θ|Ē,ρ̄,R̄ ≤ |H<N̄,θ|Ē,ρ̄,R̄ = |H−Ĥ≥N̄,θ|Ē,ρ̄,R̄ ≤ κ+M̄ ≤ 2κ, |H<N̄,θ−H<N̄,θ|Ē,ρ̄,R̄ ≤ |Ĥ|Ē,ρ̄,R̄ ≤ M̄

and hence

|{H<N̄,θ, S}|Ē,ρ̄−4δ̄,R̄ exp(−δ̄) ≤ κ̄M̄

δ̄2τ+3(M (0))19α/2
,

|{{H<N̄,θ, S}, S}|Ē,ρ̄−5δ̄,R̄ exp(−2δ̄) ≤ κ̄M̄2

δ̄4τ+6(M (0))19α
,

|{H<N̄,θ − H<N̄,θ, S}|Ē,ρ̄−4δ̄,R̄ exp(−δ̄) ≤ κ̄M̄2

δ̄2τ+3(M (0))19α/2
.

From these bounds we easily derive the estimates for H (1) on the statement, for a suitable κ̄. The
only one that is not immediate is thus on (〈Ā(1)〉θ)−1 − (〈Ā〉θ)−1. To obtain this bound we proceed
as in (74) and (75). Indeed,

|Ā(1) − Ā|Ē,ρ̄(1),0 ≤ κ̄M̄

δ̄2τ+3(M (0))27α/2
, |(〈Ā〉θ)−1|Ē |〈Ā(1)〉θ − 〈Ā〉θ|Ē ≤ κ̄M̄

δ̄2τ+3(M (0))14α
,

|
(
Id + (〈Ā〉θ)−1(〈Ā(1)〉θ − 〈Ā〉θ)

)−1 |Ē ≤ 2, |(〈Ā(1)〉θ)−1 − (〈Ā〉θ)−1|Ē ≤ κ̄M̄

δ̄2τ+3(M (0))29α/2
.

The control of the expressions above induces the the strongest restriction when defining condition (70).

5.9 Convergence of the iterative scheme

Now, we have all the ingredients needed to prove the convergence of the iterative (KAM) scheme of

sections 5.3 and 5.5. Concretely, we consider the sequence of transformed Hamiltonians H (n) = H
(n)
Λ

—starting with H
(0)
Λ of (34)— and we want this sequence to converge to the “normalized” Hamiltonian

H(∞) = H
(∞)
Λ of (37) if Λ = (µ, Ω2) belongs to a suitable (Cantor) set Ē(∞) (see (82)). This limit

Hamiltonian has, for any Λ ∈ Ē(∞) ∩ R2, an invariant 2D-torus with vector of basic frequencies Λ.
To construct this sequence we apply iteratively lemma 5.4, so that we define H (n+1) = H(n) ◦Ψ(n),

where Ψ(n) = Ψ
(n)
Λ is the canonical transformation provided by the lemma. Of course, all this process

depends on the value of R we have fixed at the beginning of section 5 and, at any step, everything is
analytic on Λ, in a (complex) set Ē(n) shrinking with n (see (81)). Therefore, to ensure the inductive
applicability of lemma 5.4 we have to control, at every step, the conditions of the statement.

First of all we observe that the constants τ , α and the function M (0) = M (0)(R) (see (17)) have
been clearly set during the paper, whilst the constant κ (independent of R) is the one introduced at
the end of section 5.7.
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Now we select a fixed 0 < δ̄(0) < 1/2 (independent of R) and introduce (see (65))

ρ(∞) := ρ(0) − 13δ̄(0), R(∞) = R(∞)(R) := R(0)(R) exp(−7δ̄(0)). (77)

We also assume δ̄(0) small enough so that ρ(∞) > 0 and exp(7δ̄(0)) ≤ 2. Hence, R(∞) ≥ (M (0))α/2.
We use δ̄(0) to define, recursively,

δ̄(n) := δ̄(0)/2n, ρ̄(n+1) := ρ̄(n) − 6δ̄(n), R̄(n+1) := R̄(n) exp(−3δ̄(n)), n ≥ 0, (78)

starting with ρ̄(0) := ρ(0) and R̄(0) := R(0). Hence, R̄(n) depends on the prefixed R. Our purpose is to
apply lemma 5.4 to H(n) with ρ̄ = ρ̄(n) and δ̄ = δ̄(n).

Next to that we set the value of N̄ at the n step of the iterative process. To do that, we consider the
bound for the size of the “error term” Ĥ(1) of the transformed Hamiltonian provided by the iterative
lemma. Then, this expression suggests to select N̄ = N̄ (n)(R) ∈ N so that

M̄ (n) exp(−δ̄(n)N̄ (n)) ≤ κ̄(M̄ (n))2

(δ̄(n))4τ+6(M (0))19α
. (79)

This implies that we can define after this n-stage

M̄ (n+1) =
2κ̄(M̄ (n))2

(δ̄(n))4τ+6(M (0))19α
, (80)

so that |Ĥ(n+1)|Ē(n),ρ̄(n+1),R̄(n+1) ≤ M̄ (n+1), starting with M̄ (0) := M (0).

Moreover, we also notice that to define N̄ (n) we have to take care of the inductive condition
(H(n) − Ĥ(n))≥N̄(n),θ = 0. Assuming it true at the n-step and using that the transformed Hamiltonian

verifies (H(n+1) − Ĥ(n+1))≥3N̄(n),θ = 0, then, to keep track of it, we only need to ensure that N̄ (n+1) >

3N̄ (n) (see (85) and comments below).
Finally, we introduce the set Ē = Ē(n)(R) we dealt with at any step. This set is defined recursively

from U(R) (see (64)), by taking into account the Diophantine conditions (69). Concretely, we first
introduce, for convenience, Ē(−1) = U and, for each n ≥ 0,

Ē(n) := {Λ ∈ Ē(n−1) : |〈k, Ω(n)(Λ)〉 + `µ| ≥ an(M (0))α/2|k|−τ
1 , 0 < |k|1 < 2N̄ (n), ` ∈ {0, 1, 2}}, (81)

being an = 1 + 2−n, where Ω
(n)
1 (Λ) is defined recursively (starting with Ω

(0)
1 (Λ) given by lemma 5.3)

and Ω
(n)
2 (Λ) = Ω2. In particular, we recall that Λ ∈ U implies |µ| ≥ (M (0))α/2. Moreover, we also

point out that an ≥ 1, so that conditions (69) are fulfilled for any n.
As we are dealing with a finite number of Diophantine conditions, then Ē(n)(R) is a set with

non-empty interior, for each n ≥ 0. Therefore, at the limit n → +∞ it becomes a Cantor set,

Ē(∞) :=
⋂

n≥0

Ē(n). (82)

We point out that, a priori, we cannot guarantee that Ē(∞) is non-empty. Moreover, we also recall
that we are only interested in real basic frequencies, but that Ē(∞) can be a complex set. These two
topics are discussed in section 5.12.

Our purpose now is to ensure that if M (0) is small enough —i. e., if R is small enough— then all
the requirements needed to apply lemma 5.4 to H (n) are fulfilled for any Λ ∈ Ē(n) and n ≥ 0. We
begin by assuming a priori that we can iterate indefinitely. If this were possible, using (78) and (80)
we establish the following expression for M̄ (n):

M̄ (n) =
(δ̄(0))4τ+6(M (0))19α

2κ̄
2−(n+1)(4τ+6)(κ̄(0))2

n

, (83)
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where

κ̄(0) :=
24τ+7κ̄(M (0))1−19α

(δ̄(0))4τ+6
. (84)

We point out that, as 0 < α < 1/19, we can make κ̄(0) as small as required by simply taking R small
enough. In particular, if we suppose κ̄(0) ≤ 1/2, then the size of the “error term” goes to zero with
the step. Next consequence is that the inductive condition (70), formulated at the n-step, reads now
as

2−(n+2)(2τ+3)−1(δ̄(0))2τ+3(M (0))5α(κ̄(0))2
n ≤ 1,

and clearly holds if κ̄(0) ≤ 1/2 and M (0) is small enough.
Moreover, using (83) we can also give the explicit expression of the value N̄ = N̄ (n)(R) we select

for the ultra-violet cut-off. Thus, from condition (79) it is natural to take N̄ (n) := bN̂ (n)c + 1, with

N̂ (n) := − 1

δ(n)
log

(
κ̄(M̄ (n))

(δ̄(n))4τ+6(M (0))19α

)
=

22n

δ̄(0)
log

(
1

κ̄(0)

)
+

2n(4τ + 7)

δ̄(0)
log(2). (85)

From this definition one clearly conclude limn→+∞ N̄ (n) = +∞. In addition, if we also assume

κ̄(0) ≤ 2−4τ−7e−δ̄(0)
, then N̂ (n+1) ≥ 3N̂ (n) + 3, and hence the iterative condition N̄ (n+1) > 3N̄ (n) is

also fulfilled. Finally, to simplify the control of N̄ (n) we observe that

22n

δ̄(0)
log

(
1

κ̄(0)

)
≤ N̄ (n) ≤ 22n+1

δ̄(0)
log

(
1

κ̄(0)

)
. (86)

To finish ensuring the inductive applicability of the iterative lemma, we have to guarantee that the

size of Ω
(n)
1 , C(n), H̃(n) and (〈Ā(n)〉θ)−1 are controlled, for each n ≥ 0, as required in the statement. We

do not plan to give full details and we only illustrate this process in terms of (〈Ā(n)〉θ)−1, which turns
out to be the term giving worst estimates. First, we recall that we have bound (68) for (〈Ā(0)〉θ)−1.
Moreover, the iterative application of the lemma gives

|(〈Ā(n+1)〉θ)−1 − (〈Ā(n)〉θ)−1|Ē(n) ≤ κ̄M̄ (n)

(δ̄(n))2τ+3(M (0))29α/2
.

Then, it is natural to study the convergence of the following sum,

∞∑

n=0

κ̄M̄ (n)

(δ̄(n))2τ+3(M (0))29α/2
=

∞∑

n=0

(δ̄(0))2τ+3(M (0))9α/2 (κ̄(0))2
n

2(n+2)(2τ+3)+1
≤ 2κ̄

(M (0))1−29α/2

(δ̄(0))2τ+3
, (87)

where we have used that 2n ≥ n + 1 to bound the sum in terms of a geometrical progression of ratio
2−(2τ+3)κ̄(0) ≤ 1/2. By performing similar computations for the other terms, we obtain, for any n ≥ 1,

|(〈Ā(n)〉θ)−1 − (〈Ā(0)〉θ)−1|Ē(n−1) ≤ 2κ̄
(M (0))1−29α/2

(δ̄(0))2τ+3
, |Ω(n)

1 − Ω
(0)
1 |Ē(n−1) ≤ 2κ̄

(M (0))1−13α/2

(δ̄(0))τ
,

|H̃(n) − H̃(0)|Ē(n−1),ρ̄(n),R̄(n) ≤ 2κ̄
(M (0))1−19α/2

(δ̄(0))2τ+3
, |C(n) − C(0)|Ē(n−1),ρ̄(n),0 ≤ 2κ̄

(M (0))1−27α/2

(δ̄(0))2τ+3
.

We also have the direct bound |H (n)|Ē(n−1),ρ̄(n),R̄(n) ≤ κ (whenever it only involves compositions of

functions). Then, the estimates on H̃(n), (〈Ā(n)〉θ)−1 and C(n) needed on the statement of lemma 5.4
hold if κ̄(0) ≤ κ (use definition of κ̄(0) and bounds on the zero stage in (66), (67) and (68)). Of course,
if we take n → +∞, then the same bounds hold for the limit Hamiltonian H (∞) in (37).
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5.10 Convergence of the change of variables

To finish the proof of the convergence of the iterative scheme, it only remains to check the convergence

of the composition of the sequence of canonical transformations {Ψ(n)
Λ }n≥0. Concretely, we introduce

Ψ̃(n) = Ψ̃
(n)
Λ defined as

Ψ̃(n) := Ψ(0) ◦ · · · ◦ Ψ(n), (88)

and we are going to prove that, for any Λ ∈ Ē(∞), there exists Ψ̃(∞) = limn→+∞ Ψ̃(n), giving an
analytic canonical transformation defined as Ψ̃(∞) : D2,1(ρ

(∞), R(∞)) → D2,1(ρ
(0), R(0)).

Remark 5.6. Of course, the dependence of Ψ̃(∞) on Λ ∈ Ē(∞) is no longer analytic but, as we are
going to discuss in section 5.14, this transformation admits a Whitney-C∞ extension. Moreover, Ψ̃(∞)

is not real analytic but, as discussed in remark 5.3, it can be realified (see section 5.13 for details).

To prove convergence of Ψ̃(∞) and to bound it we use lemma A.5. First, we note that from the
iterative application of lemma 5.4 we have that Ψ(n) : D2,1(ρ̄

(n+1), R̄(n+1)) → D2,1(ρ̄
(n), R̄(n)), with

|Θ(n)|Ē(n),ρ̄(n+1),R̄(n+1) ≤ κ̄M̄ (n)

(δ̄(n))2τ+1(M (0))19α/2
≤ (δ̄(0))2τ+5(M (0))19α/22−(n+2)(2τ+5)+3(κ̄(0))2

n

,

|I(n)|Ē(n),ρ̄(n+1),R̄(n+1) ≤ κ̄M̄ (n)

(δ̄(n))2τ+2(M (0))15α/2
≤ (δ̄(0))2τ+4(M (0))23α/22−(n+2)(2τ+4)+1(κ̄(0))2

n

,

|Z(n)|Ē(n),ρ̄(n+1),R̄(n+1) ≤ κ̄M̄ (n)

(δ̄(n))2τ+5(M (0))21α/2
≤ (δ̄(0))2τ+5(M (0))21α/22−(n+2)(2τ+5)+3(κ̄(0))2

n

.

Then, according to lemma A.5, we have to consider the sum with respect to n of each of these bounds.
Indeed (compare (87)),

+∞∑

n=0

|Θ(n)|Ē(n),ρ̄(n+1),R̄(n+1) ≤ 2κ̄

(δ̄(0))2τ+1
(M (0))1−19α/2 := A. (89)

Similarly, from the sum of the bounds on I(n) and Z(n) we can define, respectively,

B :=
2κ̄

(δ̄(0))2τ+2
(M (0))1−15α/2, C :=

2κ̄

(δ̄(0))2τ+1
(M (0))1−17α/2. (90)

Next, we introduce ρ̄
(n)
− := ρ̄(n)−δ̄(0) and R̄

(n)
− := R̄(n) exp(−δ̄(0)). It is clear that limn→+∞(ρ̄

(n)
− , R̄

(n)
− ) =

(ρ(∞), R(∞)) (see (77) and (78)). Moreover, if we proceed analogously as in (76) and use condition
κ̄(0) ≤ 1/2 (recall also that R(n) ≥ R(∞) ≥ (M (0))α/2), we also have

|Θ(n)|
Ē(n),ρ̄

(n+1)
−

,R̄
(n+1)
−

≤ ρ̄
(n)
− − ρ̄

(n+1)
− , |I(n)|

Ē(n),ρ̄
(n+1)
−

,R̄
(n+1)
−

≤ (R̄
(n)
− )2 − (R̄

(n+1)
− )2,

|Z(n)|
Ē(n),ρ̄

(n+1)
−

,R̄
(n+1)
−

≤ R̄
(n)
− − R̄

(n+1)
− .

Then, under conditions above we guarantee the applicability of lemma A.5. Consequently, from the
point (ii) of the lemma, we have the following bounds for the components of Ψ̃(∞) − Id (see (5))

|Θ̃(∞)|Ē(∞),ρ(∞),R(∞) ≤ A, |Ĩ(∞)|Ē(∞),ρ(∞),R(∞) ≤ B, |Z̃(∞)|Ē(∞),ρ(∞),R(∞) ≤ C. (91)

Finally, we use point (iii) of lemma A.5 to bound the difference between the components of Ψ̃(n) and
Ψ̃(n−1). Thus, we define for each n ≥ 1,

Πn :=
1

δ̄(0)

(
2|Θ(n)|Ē(n),ρ̄(n+1),R̄(n+1)

exp(1)
+

2|I(n)|Ē(n),ρ̄(n+1),R̄(n+1)

(R(∞))2
+

4|Z(n)|Ē(n),ρ̄(n+1),R̄(n+1)

R(∞)

)

≤ (δ̄(0))2τ+3(M (0))19α/22−(n+2)(2τ+4)+5(κ̄(0))2
n

,
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and we have, for R small enough,

|Θ̃(n) − Θ̃(n−1)|
Ē(n),ρ̄

(n+1)
−

,R̄
(n+1)
−

≤ |Θ(n)|Ē(n),ρ̄(n+1),R̄(n+1) + AΠn

≤ (δ̄(0))2τ+5(M (0))19α/22−(n+2)(2τ+4)+1(κ̄(0))2
n

.

Similarly, we establish similar bounds for the other components:

|Ĩ(n) − Ĩ(n−1)|
Ē(n),ρ̄

(n+1)
−

,R̄
(n+1)
−

≤ (δ̄(0))2τ+4(M (0))23α/22−(n+2)(2τ+4)+2(κ̄(0))2
n

,

|Z̃(n) − Z̃(n−1)|
Ē(n),ρ̄

(n+1)
−

,R̄
(n+1)
−

≤ (δ̄(0))2τ+5(M (0))21α/22−(n+2)(2τ+4)+1(κ̄(0))2
n

.

5.11 Bound on the Lipschitz constant of Ω
(n)
1

Once we have proved full convergence of the KAM iterative process, actually we have that, for any
Λ = (µ, Ω2) ∈ Ē(∞) ∩ R2 (see (82)), there is an invariant torus of the non-integrable Hamiltonian

system H in (10), with normal frequency µ and intrinsic frequencies Ω(∞)(Λ) = (Ω
(∞)
1 (Λ), Ω2), where

Ω
(∞)
1 = limn→+∞ Ω

(n)
1 . However, the mere convergence of the sequence Ω

(n)
1 is not enough in order

to build measure estimates along the iterative process. We also require some additional information

about the Lipschitz constant of Ω
(n)
1 , which can be derived from the control of their partial derivatives.

As we know, by construction, that Ω
(n)
1 (Λ) depends analytically on Λ ∈ Ē(n−1) (see (81)), this process

can be done by means of Cauchy estimates. To do that, we need to control the distance to the
boundary of the points inside the set Ē(n) of “admissible” basic frequencies at the n-step.

For this purpose, we introduce the following sequence of sets. First, we define Û = Û(R) as
(compare U in (64))

Û :=
{
Λ ∈ C2 : 2(M (0))α/2 ≤ Re µ, |Imµ| ≤ (M (0))α/2, |µ| ≤ c2R − (M (0))α/2, (92)

|Ω2 − ω2| ≤ c2R − (M (0))α/2, |Im Ω2| ≤ (M (0))α/2, |h1(Λ)| ≥ 2(M (0))α/2
}

,

and thus, in analogy with (81), we set Ê(−1) = Û and, for any n ≥ 0,

Ê(n) := {Λ ∈ Ê(n−1) : |〈k, Ω(n)(Λ)〉 + `µ| ≥ bn(M (0))α/2|k|−τ
1 , 0 < |k|1 < 2N̄ (n), ` ∈ {0, 1, 2}}, (93)

being now bn = 1 + 2−n+1. It is clear that, by construction, we always have Ê(n) ⊂ Ē(n) (observe that
bn > an). Next to that, we introduce the sequence of positive numbers ν(n) = ν(n)(R) > 0 given by
ν(−1) := (M (0))α/2/3 and

ν(n) := 2−n−τ−3 (M (0))α/2

(N̄ (n))τ+1
, n ≥ 0. (94)

For further uses, we observe that (86) implies the lower bound

ν(n) ≥ (δ̄(0))τ+1(M (0))α/2

22τ+4

(
log

(
1

κ̄(0)

))−τ−1

2−n(2τ+3), n ≥ 0. (95)

Our objective is to show that, if R is small enough, then Ê(n) +3ν(n) ⊂ Ē(n), for each n ≥ −1 (see (9)).

Using this inclusion we can control the partial derivatives of Ω
(n+1)
1 in Ê(n) + 2ν(n) and its Lipschitz

constant in Ê(n) + ν(n).
We start with n = −1. In this case we have to prove that Û + (M (0))α/2 ⊂ U . This means that, if

we take an arbitrary Λ ∈ Û and Λ′ is such that |Λ′ − Λ| ≤ (M (0))α/2, then Λ′ ∈ U . This is clear from
the definition of both sets, except for what concerns the lower bound on |h1(Λ)|. But using lemma 5.2
we have,

|h1(Λ
′)| ≥ |h1(Λ)| − |h1(Λ

′) − h1(Λ)| ≥ 2(M (0))α/2 − 2c2R

a
|µ′ − µ| − 8c1R

a
|Ω′

2 − Ω2| ≥ (M (0))α/2,
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provided that R is small enough.
Next to that we proceed by induction with respect to n. Concretely, we want to prove that, for

any n ≥ 0, the following properties hold,

|∂µΩ
(n)
1 |Ê(n−1)+2ν(n−1) ≤ 2c3R, |∂Ω2Ω

(n)
1 |Ê(n−1)+2ν(n−1) ≤ 2c3R, (96)

Ê(n−1) + 3ν(n−1) ⊂ Ē(n−1), LipÊ(n−1)+ν(n−1)(Ω
(n)
1 ) ≤ 4c3R. (97)

From the discussions above and lemma 5.3 it is clear that (96) and (97) hold when n = 0 (recall that
Û ⊂ U ⊂ U). Let us suppose them true for a given n ≥ 0 and we verify them for the next case.

We first prove that Ê(n)+3ν(n) ⊂ Ē(n). Let Λ ∈ Ê(n) be fixed and take Λ′ such that |Λ′−Λ| ≤ 3ν(n).
As the set Ê(n) is defined from Ê(n−1) and 3ν(n) ≤ ν(n−1), it is clear that both Λ, Λ′ ∈ Ê(n−1) + ν(n−1),

so that we can use the Lipschitz estimate (97) on Ω
(n)
1 . To check that Λ′ ∈ Ē(n) we compute, for any

k ∈ Z2 with 0 < |k|1 < 2N̄ (n) and ` ∈ {0, 1, 2} (recall that Ω(n)(Λ) = (Ω
(n)
1 (Λ), Ω2)),

|〈k, Ω(n)(Λ′)〉 + `µ′| ≥ |〈k, Ω(n)(Λ)〉 + `µ| − |k1||Ω(n)
1 (Λ′) − Ω

(n)
1 (Λ)| − |k2||Ω′

2 − Ω2| − |`||µ′ − µ|
≥ bn(M (0))α/2|k|−τ

1 − 4c3R|k1||Λ′ − Λ| − |k2||Ω′
2 − Ω2| − 2|µ′ − µ|

≥
(
bn(M (0))α/2 − 4ν(n)(2N̄ (n))τ+1

)
|k|−τ

1

≥ an(M (0))α/2|k|−τ
1 ,

if R is small enough (condition depending only on c3). Here, we use definition (94) and bn−an = 2−n.

The following step is to control the partial derivatives of Ω
(n+1)
1 in Ê(n) +2ν(n). From the iterative

application of lemma 5.4, we can define the analytic function Ω
(j+1)
1 in the complex set Ē(j), with

|Ω(j+1)
1 − Ω

(j)
1 |Ē(j) ≤ κ̄M̄ (j)

(δ̄(j))τ (M (0))13α/2
, j ≥ 0. (98)

Using standard Cauchy estimates and the inductive inclusion Ê(j) + 3ν(j) ⊂ Ē(j), for j = 0, . . . , n, we
obtain (in order to bound the sum below compare (87) and recall (84)),

|∂µ(Ω
(n+1)
1 − Ω

(0)
1 )|Ê(n)+2ν(n) ≤

n∑

j=0

|Ω(j+1)
1 − Ω

(j)
1 |Ē(j)

ν(j)

≤
∞∑

j=0

2−(j+2)(τ+3)+3(δ̄(0))2τ+5(M (0))12α

(
log

(
1

κ̄(0)

))τ+1

(κ̄(0))2
j

≤ 22τ+5κ̄
(M (0))1−7α

(δ̄(0))2τ+1

(
log

(
1

κ̄(0)

))τ+1

. (99)

If we require R small enough so that (99) is bounded by c3R, then we have (see lemma 5.3)

|∂µΩ
(n+1)
1 |Ê(n)+2ν(n) ≤ |∂µΩ

(0)
1 |U + |∂µ(Ω

(n+1)
1 − Ω

(0)
1 )|Ê(n)+2ν(n) ≤ 2c3R. (100)

The same works for the other partial derivative, ∂Ω2(Ω
(n+1)
1 ), so that (96) holds for any n ≥ 0.

Finally, we discuss the Lipschitz constant of Ω
(n+1)
1 in Ê(n) + ν(n). Clearly, this Lipschitz constant

can be locally bounded in terms of the partial derivatives by 4c3R. But it only holds for points
such that their union segment is contained inside the domain Ê(n) + 2ν(n). However, the sequence
of Diophantine conditions we have imposed to the original (convex) domain of basic frequencies U
(see (62)), have created multiple holes in the set Ê(n). Thus, we can only guarantee linear connectivity
inside Ê(n) + 2ν(n) for points Λ, Λ′ ∈ Ê(n) + ν(n) so that |Λ′ − Λ| ≤ ν(n). But if we pick up points so
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that |Λ′ − Λ| ≥ ν(n), we can alternatively control their “Lipschitz constant” using the norm of the
function and the lower bound on their separation. Concretely,

|(Ω(n+1)
1 (Λ′) − Ω

(n)
1 (Λ′)) − (Ω

(n+1)
1 (Λ) − Ω

(n)
1 (Λ))| ≤ 2|Ω(n+1)

1 − Ω
(n)
1 |Ē(n)

ν(n)
|Λ′ − Λ|,

which is the same bound that we obtain in the “local case” using Cauchy estimates. Then, taking into
account this methodology for controlling the “Lipschitz constant” for “separated points”, we can adapt

the procedure used in (99) and (100) in order to control |Ω(n+1)
1 (Λ′)−Ω

(n+1)
1 (Λ)| for Λ, Λ′ ∈ Ê(n)+ν(n),

independently of their distance. We leave the details to the reader.

5.12 Measure estimates

Now, we have at hand all the ingredients needed to discuss the Lebesgue measure of the set of basic
frequencies giving an invariant torus linked to the Hopf bifurcation. But, as we are only interested in
real basic frequencies, we first introduce the following sets:

Ê(∞)(R) :=
⋂

n≥0

Ê(n)(R), E(∞)(R) := Ê(∞) ∩ R2, E(n)(R) := Ê(n)(R) ∩ R2, n ≥ −1, (101)

and (see (62))

V(R) := U(R) ∩ (R+ × R) = {Λ = (µ, Ω2) ∈ R2 : 0 < µ ≤ c2R, |Ω2 − ω2| ≤ c2R}. (102)

In few words, V = V(R) is the initial set of real basic frequencies in which we look for invariant
tori and E (∞) = E(∞)(R) is the corresponding subset in which we have proved convergence of the
KAM process. To size up the holes between invariant tori, we have to control the Lebesgue measure
meas (V \ E (∞)). For this purpose we write:

V \ E (∞) =
(
V \ E (−1)

)⋃

⋃

n≥0

(E(n−1) \ E(n))


 . (103)

We start by controlling meas (V \ E (−1)). From the definition of Ê(−1) = Û (see (92)), we have

E(−1) =
{
Λ ∈ R2 : 2(M (0))α/2 ≤ µ ≤ c2R − (M (0))α/2, |Ω2 − ω2| ≤ c2R − (M (0))α/2,

|h1(Λ)| ≥ 2(M (0))α/2
}

.

So, if we get rid off the lower bound |h1(Λ)| ≥ 2(M (0))α/2, then we clearly obtain an estimate of
O((M (0))α/2) for this measure. Unfortunately, this estimate is worsened when adding the condition on
h1. We recall that the vector-function h(R) = (h1, h2), depending on R, and so on the selected normal
form order, has been introduced in lemma 5.2. Concretely, h denotes the inverse of the transformation
ζ = (ξ, η) 7→ Λ = (µ, Ω2), defined by the parametrization in terms of ζ of the bifurcated invariant
tori of the normal form (see theorem 4.2), i. e., ξ = h1(Λ). For further uses, and to prevent from
possible confusions with the basic frequencies itself, we denote by Υ = Υ(R)(ζ) the vector-function
having as components Υ1 = µ(ζ) and Υ2 = Ω2(ζ), defined by the R-depending parametrizations (24),
(27) and (28). Therefore, due to the square root of the definition of µ in (28), we have to be very
careful to select the domain for the vector-function Υ.

According to lemma 5.1, the function I = I(R) is analytic in the (complex) domain Γ = Γ(R)
(see (60)) and so is Ω2(ζ) (see (24)). Thus, it is natural to consider the following (real) domain for Υ
(see remark 4.3 for more details):

Γ∗ = Γ∗(R) := {ζ ∈ Γ ∩ R2 : 4η2 + 2aξ + 2ξ∂2
1,1Z(ξ, I(ξ, η), ξη) > 0}.
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Moreover, we consider the auxiliar sets A = A(R) and B = B(R) given by

A := {Λ ∈ R2 : 0 < µ ≤ c2R, |Ω2 − ω2| ≤ c2R, |h1(Λ)| ≤ 2(M (0))α/2},
B := {ζ ∈ Γ∗ : |ξ| ≤ 2(M (0))α/2, |η| ≤ c1R},

where c1 has been introduced in lemma 5.1. We stress that the restriction ζ ∈ Γ∗ in the definition of
B also implies that Υ1(ζ) > 0. It is clear that by bounding meas (A) we control the effect of the lower
bound |h1(Λ)| ≥ 2(M (0))α/2 on meas (V \ E (−1)). Then, the important thing is that A ⊂ Υ(B), so
that bounding meas (A) can be done by bounding the Jacobian of Υ in B. From the expressions (24),
(27), (28), the bounds in (59) on the partial derivatives of Z = Z (R) and of lemma 5.1 on I = I(R), we
have that, for any ζ ∈ Γ∗ and R small enough,

|∂ξΥ1(ζ)| =
∂ξ(Υ

2
1(ζ))

2Υ1(ζ)
, |∂ηΥ1(ζ)| ≤ 8c1R

Υ1(ζ)
, |∂ξΥ2(ζ)| ≤ 2|e| + 4

a|f |
|d| , |∂ηΥ2(ζ)| ≤ 2,

where we take special care on making explicit the effect on the derivatives of the square root defining
Υ1 = µ. From here, we can bound the Jacobian of Υ by

|det(∂ζΥ)(ζ)| ≤ 3

2

∂ξ(Υ
2
1(ζ))

Υ1(ζ)
,

where the key point is that ∂ξ(Υ
2
1(ζ)) ≥ a > 0, if R is small enough. Then, we have

meas (A) =

∫ ∫

A
dµ dΩ2 ≤

∫ ∫

Υ(B)
dµ dΩ2 ≤

∫ ∫

B

3

2

∂ξ(Υ
2
1(ζ))

Υ1(ζ)
dξ dη.

The integral with respect to ξ on the right hand side can be computed explicitly, giving an expression
of the form 3(Υ1(ξ

′, η)−Υ1(ξ, η)), for certain ξ = ξ(η) and ξ′ = ξ′(η). On its turn, this expression has
to be integrated with respect to η. In order to avoid the square root defining Υ1 we recall the Hölder
bound

|√x −√
y| ≤ |x − y|1/2, x, y > 0.

Hence we have, for small R and (ξ, η), (ξ′, η) ∈ B,

|Υ1(ξ
′, η) − Υ1(ξ, η)| ≤ |Υ2

1(ξ
′, η) − Υ2

1(ξ, η)|1/2

= |2a(ξ′ − ξ) + 2ξ′∂2
1,1Z(ξ′, I(ξ′, η), ξ′η) − 2ξ∂2

1,1Z(ξ, I(ξ, η), ξη)|1/2

≤ 4
√

a(M (0))α/4,

which finally gives
meas (A) ≤ 24

√
ac1R(M (0))α/4.

To obtain this estimate, apart from the explicit expression of Υ1 = µ, we use the bounds on the partial
derivatives of Z and the definition of the set B.

As a conclusion, we have established the following bound

meas (V \ E (−1)) ≤ c4(M
(0))α/4, (104)

for certain c4 > 0 independent of R.
Next step is to bound meas (E (n−1) \ E(n)) for any n ≥ 0. This is a standard process (compare for

instance [25]) which only requires of suitable transversality conditions in order to deal with the Dio-
phantine conditions defining the sets at hand. In the present context, these transversality conditions
are immediate from the bifurcation scenario we are discussing and our “adequate” choice of the basic
frequencies (see (31)). We consider the following decomposition,

E(n−1) \ E(n) =
⋃

`∈{0,1,2}

⋃

0<|k|1<2N̄(n)

R(n)
`,k ,
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where R(n)
`,k contains the basic frequencies for which one of the Diophantine conditions defining E (n)

fails (see (93) and (101)). Concretely,

R(n)
`,k = {Λ ∈ E (n−1) : |〈k, Ω(n)(Λ)〉 + `µ| < bn(M (0))α/2|k|−τ

1 }.

To control meas (R(n)
`,k ), we suppose first that (`, k2) 6= (0, 0) and take a couple Λ, Λ′ ∈ R(n)

`,k such that
Λ − Λ′ is parallel to the vector (`, k2). Then we have

|Λ − Λ′|2 =
1

|(`, k2)|2
|〈Λ − Λ′, (`, k2)〉| =

1

|(`, k2)|2
|(k2Ω2 + `µ) − (k2Ω

′
2 + `µ′)|

≤ 1

|(`, k2)|2

(
2bn(M (0))α/2|k|−τ

1 + |k1||Ω(n)
1 (Λ) − Ω

(n)
1 (Λ′)|

)

≤ 1

|(`, k2)|2

(
6(M (0))α/2|k|−τ

1 + 4c3R|k1||Λ − Λ′|
)

,

where we recall that bn ≤ 3 and that LipÊ(n−1)(Ω
(n)
1 ) ≤ 4c3R (see (97)). So, we obtain

(
1 − 4c3R

|k1|
|(`, k2)|2

)
|Λ − Λ′| ≤ 6(M (0))α/2 |k|−τ

1

|(`, k2)|2
.

If we assume, for the moment, that 4c3R|k1|/|(`, k2)|2 ≤ 1/2, then we finally end with the estimate

|Λ − Λ′| ≤ 12(M (0))α/2 |k|−τ
1

|(`, k2)|2
. (105)

To ensure this assumption, we study for which values of k1 it could be R(n)
`,k 6= ∅. Thus, let us suppose

that Λ = (µ, Ω2) belongs to R(n)
`,k . If we set R small enough so that max{|Ω2|, µ} ≤ 2|ω2|, we have

|k1||Ω(n)
1 (Λ)| ≤ |〈k, Ω(n)(Λ)〉 + `µ| + |k2||Ω2| + |`||µ| ≤ 3(M (0))α/2|k|−τ

1 + 4|ω2||(`, k2)|2.

If we also assume R small enough such that |Ω(n)
1 (Λ)| ≥ |ω1|/2, then

|k1| ≤
6

|ω1|
(M (0))α/2|k|−τ

1 + 8
|ω2|
|ω1|

|(`, k2)|2,

which clearly implies 4c3R|k1|/|(`, k2)|2 ≤ 1/2, for R small. Moreover, if (`, k2) 6= (0, 0), we also
deduce, for small R,

|k|1 = |k1| + |k2| ≤
6

|ω1|
(M (0))α/2|k|−τ

1 +

(
1 + 8

|ω2|
|ω1|

)
|(`, k2)|2 ≤ 2

(
1 + 4

|ω2|
|ω1|

)
|(`, k2)|2.

From here, we can rewrite (105) as

|Λ − Λ′| ≤ 24

(
1 + 4

|ω2|
|ω1|

)
(M (0))α/2 1

|k|τ+1
1

.

Once we have bounded the width of R(n)
`,k , in the direction given by the vector (`, k2), then, by taking

into account the diameter of the set V (see (102)), we obtain the following estimate for its measure,

meas (R(n)
`,k ) ≤ 24

√
5

(
1 + 4

|ω2|
|ω1|

)
c2R(M (0))α/2 1

|k|τ+1
1

. (106)
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It remains to control this measure when (`, k2) = (0, 0). However, these cases can be omitted because

R(n)
0,(k1,0) = ∅ if k1 6= 0. Indeed,

|〈k, Ω(n)(Λ)〉 + `µ| = |k1||Ω(n)
1 (Λ)| ≥ |ω1|/2.

Then, using decomposition (103), we have

meas


⋃

n≥0

(E(n−1) \ E(n))


 =

∞∑

n=0

meas (E (n−1) \ E(n)) ≤
∞∑

n=0

∑

`∈{0,1,2}

∑

0<|k|1<2N̄(n)

meas (R(n)
`,k ).

Unfortunately, this expression diverges if we just use the estimate (106), because it does not depend
on the index n. Nevertheless, we will show below that, for any (`, k) ∈ {0, 1, 2} × (Z2 \ {0}), there is

at most one n = n∗(|k|1) so that R(n)
`,k is non-empty. Assuming this assertion true, we have

meas


⋃

n≥0

(E(n−1) \ E(n))


 ≤

∑

`∈{0,1,2}

∑

0<|k|1<2N̄(n)

meas (R(n∗(|k|1))
`,k )

≤ 288
√

5

(
1 + 4

|ω2|
|ω1|

)
c2R(M (0))α/2

∞∑

j=1

1

jτ

≤ 288
√

5
τ

τ − 1

(
1 + 4

|ω2|
|ω1|

)
c2R(M (0))α/2, (107)

where we use that #{k ∈ Z2 : |k|1 = j} = 4j and
∑+∞

j=1 j−τ ≤ 1 +
∫∞
1 x−τdx (recall τ > 1).

Let us prove the assertion above. To be precise, given a fixed k ∈ Z2 \ {0}, we denote by n∗ =

n∗(|k|1) ≥ 0 the first index so that |k|1 < 2N̄ (n∗). Then, we are going to show that R(n)
`,k = ∅ for any

n 6= n∗(|k|1) and ` ∈ {0, 1, 2}. In few words, this means that being n∗ the first index n for which the
small divisor of order (`, k) is taken into account in the definition of the set of valid basic frequencies

E(n) (see (93) and (101)), then the “resonant zone” R(n∗)
`,k determines completely the values of Λ for

which the Diophantine condition of order (`, k) can fail at any step. Thus, if the required Diophantine
condition of order (`, k) is fulfilled for certain Λ at the step n∗(|k|1), then this basic frequency cannot

fall into a resonant zone R(n)
`,k for any n > n∗. We prove this property as follows.

Let n ≥ 1 and Λ ∈ E (n−1). This means that Ω
(n−1)
1 (Λ) verifies

|〈k, Ω(n−1)(Λ)〉 + `µ| ≥ bn−1(M
(0))α/2|k|−τ

1 , 0 < |k|1 < 2N̄ (n−1), ` ∈ {0, 1, 2}.

Then, we want to show that the following Diophantine conditions on Ω
(n)
1 (Λ) are verified automatically,

|〈k, Ω(n)(Λ)〉 + `µ| ≥ bn(M (0))α/2|k|−τ
1 , 0 < |k|1 < 2N̄ (n−1), ` ∈ {0, 1, 2}. (108)

Thus, bounds (108) imply that to define E (n) we only have to worry about the Diophantine conditions

on Ω
(n)
1 (Λ) of order 2N̄ (n−1) ≤ |k|1 < 2N̄ (n). Indeed,

|〈k, Ω(n)(Λ)〉 + `µ| ≥ |〈k, Ω(n−1)(Λ)〉 + `µ| − |k1||Ω(n)
1 − Ω

(n−1)
1 |Ē(n−1)

≥
(

bn−1 −
(2N̄ (n−1))τ+1

(M (0))α/2
|Ω(n)

1 − Ω
(n−1)
1 |Ē(n−1)

)
(M (0))α/2|k|−τ

1 .

On the other hand, using (83), (86), (98) and that κ̄(0) ≤ 1, we have, for any n ≥ 1,

(2N̄ (n−1))τ+1

(M (0))α/2
|Ω(n)

1 − Ω
(n−1)
1 |Ē(n−1) ≤ 2−n(4+τ)−τ−1(δ̄(0))2τ+5(M (0))12α

(
log

(
1

κ̄(0)

))τ+1

(κ̄(0))2
n−1

≤ 2−n+1 = bn−1 − bn,
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provided that M (0) is small enough (i. e., R small enough). Hence, we conclude that (108) holds.
Finally, if we put estimate (104) together with (107), we obtain the measure estimates of (13)

meas (V(R) \ E (∞)(R)) ≤ c5(M
(0)(R))α/4,

for certain c5 > 0 independent of R.

5.13 Real invariant tori

Now, it is time to return to the original system of coordinates of the problem, and to discuss which
of the tori we have obtained are real tori when expressed in such coordinates. We recall that we
have settled H in (10) to be our initial Hamiltonian. This system is written in a canonical set of
(real) coordinates, namely (θ, x1, x2, I, y1, y2), that have been introduced with the requirement that
the normal variational equations of the critical periodic orbit are of constants coefficients. Later on,
we have modified those original coordinates through the paper, according to the different steps of the
proof of theorem 3.1. Let us summarize here this sequence of changes.

(i) We have applied to H the R-depending normal form transformation Ψ̂(R) given by theorem 4.1.

(ii) We have introduced action–angle–like coordinates to this (partially) normalized system through
the (R-independent) change (19). This transformation is not properly a complexification, but
we need q > 0 in order to have real tori.

(iii) We have considered the Λ-depending coordinate change (32), that moves to the “origin” the
unperturbed bifurcated torus having vector of basic frequencies Λ and arranges its variational
equations. This transformation involves the complex “diagonalizing” change (33) but, as we
have discussed in section 5.2, all the invariant tori we compute are real when written in the
action–angle coordinates (19). Then, we only have to worry about the condition q > 0.

(iv) Finally, we have performed the KAM process. Then, we have to compose all these coordinate

changes with the limit KAM transformation Ψ̃(∞) = Ψ̃
(∞)
Λ (θ1, θ2, x, I1, I2, y) (see section 5.10),

that is well-defined for any Λ ∈ E (∞) (see (101)).

The most important property of the KAM transformation Ψ̃(∞) = Id + (Θ̃(∞), X̃ (∞), Ĩ(∞), Ỹ(∞)) is
that if we set x = y = I1 = I2 = 0, then we obtain the parametrization, as function of θ = (θ1, θ2),

of the corresponding Λ-invariant torus of the “full” system H
(0)
Λ in (34). After composition of this

parametrization with the transformations described above, we obtain the invariant tori of the initial
system (written in the original variables). If we want to detect which of these tori are real, we have
to study the sign of the variable q evaluated on any of them. Thus, abusing notation, we denote by
q(∞)(θ, Λ) this coordinate-function, which is obtained by replacing in (32) the variables (x, y, I1, I2)
by the parametrization of the tori. Indeed,

q(∞)(θ, Λ) := ξ + X̃ (∞) − ξ

λ+
Ỹ(∞) − 2ξ

µ2
(∂2

J1,qZ̆|
T

(0)
ζ

)Ĩ(∞)
1 − 2ξ

µ2
(∂2

J2,qZ̆|
T

(0)
ζ

)Ĩ(∞)
2 , (109)

where the components of the KAM transformation Ψ̃(∞) above are evaluated at x = y = I1 = I2 = 0.
To help in the understanding of this expression, we recall that, given a vector of basic frequencies
Λ = (µ, Ω2), the values of ζ = (ξ, η) in (109) are related with Λ through the R-depending vector-
function h = h(R) introduced in lemma 5.2, i. e., ζ = h(Λ). Then, using the estimates provided by this
lemma, the lower bounds |µ| = |λ+| ≥ (M (0))α/2 and |ξ| = |h1(Λ)| ≥ (M (0))α/2, the explicit expression
of Z̆ in (21), the bounds (59) on the partial derivatives of Z and those of (89), (90) and (91) on the
components of Ψ̃(∞), we easily obtain an estimate of the form

|q(∞) − ξ|Ē(∞),ρ(∞),0 ≤ c6(M
(0))1−9α, (110)
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This motivates to introduce the real set Ĕ(∞) = Ĕ(∞)(R) defined as (see (101))

Ĕ(∞) := {Λ ∈ E (∞) : ξ = h1(Λ) ≥ (M (0))α/2}.

It is clear that if Λ ∈ Ĕ(∞) then we have a real analytic invariant torus of the initial system (10).
Additionally, we introduce the R-depending function Φ(∞)(θ, Λ),

Φ(∞) : T2 × Ĕ(∞) → T × R2 × R × R2, (111)

giving the parametrization (in the original phase space) of the 4D-Cantor manifold of 2D-bifurcated
elliptic tori. This parametrization is defined through the composition of the changes (i) − (iv) above
evaluated at x = y = I1 = I2 = 0.

Remark 5.7. We recall that the curves in the Λ-space defined by the condition ξ = 0, giving he
(stable) periodic orbits of the family, do not change with the selected order of the normal form. This
implies that the “boundary” ξ = 0 of the set Ĕ(∞)(R) does not change with R. See remark 4.2.

5.14 Whitney-smoothness of the surviving tori

After showing the persistence of a Cantor family of 2D-real bifurcated invariant tori of H, labelled
by Λ ∈ Ĕ(∞), in this section we are going to prove the Whitney-C∞ regularity of this construction.

More precisely, we show that the function Ω
(∞)
1 (Λ), giving the first component of the vector of intrinsic

frequencies of these tori, and the vector-function Φ(∞), giving their parametrization, admit a Whitney-
C∞ extension. Albeit Whitney-smoothness is a very classical subject, in section A.3 we include a brief
summary with the main definitions and results we require.

In order to achieve these results, we apply the Inverse Approximation Lemma A.9 to Ω
(∞)
1 as a

limit of {Ω(n)
1 }n≥0 (see section 5.11) and Φ(∞) as a limit of {Φ(n)}n≥0 (see below). In what follows.

we discuss the application of the lemma to Φ(∞) (this is the most involved case), but leave the details

for Ω
(∞)
1 to the reader.

The sequence of (analytic) “approximate” parametrizations {Φ(n)}n≥0 is constructed in terms

of the sequence of canonical transformation {Ψ̃(n)}n≥0 (see (88)) provided by the KAM iterative
procedure. Thus, to define Φ(n) we proceed analogously as we did for Φ(∞) in (111). Concretely, we
have to compose Ψ̃(n), evaluated at x = y = I1 = I2 = 0, with the changes (i) − (iv) summarized in
section 5.13.

We first consider the coordinate change (32) and, performing the same abuse of notation as in (109),
we define, for each n ≥ 0,

φ
(n)
j (θ, Λ) := θj + Θ̃

(n)
j − 2ξ

µ2
(∂2

Jj ,qZ̆|
T

(0)
ζ

)

(
λ+

2ξ
X̃ (n) +

1

2
Ỹ(n)

)
, j = 1, 2,

q(n)(θ, Λ) := ξ + X̃ (n) − ξ

λ+
Ỹ(n) − 2ξ

µ2
(∂2

J1,qZ̆|
T

(0)
ζ

)Ĩ(n)
1 − 2ξ

µ2
(∂2

J2,qZ̆|
T

(0)
ζ

)Ĩ(n)
2 , (112)

J
(n)
1 (θ, Λ) := I(ζ) + Ĩ(n)

1 , J
(n)
2 (θ, Λ) := 2ξη + Ĩ(n)

2 , p(n)(θ, Λ) :=
λ+

2ξ
X̃ (n) +

1

2
Ỹ(n),

with all the components of Ψ̃(n) evaluated at x = y = I1 = I2 = 0 (see comments following (109) for a
better understanding of these expressions). Moreover, for convenience, we also extend these definitions
to the case n = −1 by setting Ψ̃(−1) := 0. By using the bounds of section 5.10 on the transformations
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Ψ̃(n) (see also the comments linked to (110)) it is not difficult to obtain the following estimates,

|φ(n)
j − φ

(n−1)
j |

Ē(n),ρ̄
(n+1)
−

,0
≤ c7(M

(0))19α/22−n(2τ+4)(κ̄(0))2
n

, (113)

|q(n) − q(n−1)|
Ē(n),ρ̄

(n+1)
−

,0
≤ c7(M

(0))10α2−n(2τ+4)(κ̄(0))2
n

,

|J (n)
j − J

(n−1)
j |

Ē(n),ρ̄
(n+1)
−

,0
≤ c7(M

(0))23α/22−n(2τ+4)(κ̄(0))2
n

, (114)

|p(n) − p(n−1)|
Ē(n),ρ̄

(n+1)
−

,0
≤ c7(M

(0))10α2−n(2τ+4)(κ̄(0))2
n

,

for j = 1, 2, n ≥ 0 and R small enough, being c7 > 0 independent of R.
Next to that, we apply change (19) to the parametrizations (112). Thus, the coordinates φ1 and

J1 remain unchanged and for the other ones we have, for n ≥ −1,

x
(n)
1 (θ, Λ) :=

√
2q(n) cos φ

(n)
2 , y

(n)
1 (θ, Λ) := − J

(n)
2√
2q(n)

sin φ
(n)
2 + p(n)

√
2q(n) cos φ

(n)
2 ,

x
(n)
2 (θ, Λ) := −

√
2q(n) sin φ

(n)
2 , y

(n)
2 (θ, Λ) := − J

(n)
2√
2q(n)

cos φ
(n)
2 − p(n)

√
2q(n) sin φ

(n)
2 .

Then, using bounds above on the parametrizations (112) we obtain, for j = 1, 2 and n ≥ 0,

|x(n)
j − x

(n−1)
j |

Ē(n),ρ̄
(n+1)
−

,0
≤ c8(M

(0))19α/22−n(2τ+4)(κ̄(0))2
n

, (115)

|y(n)
j − y

(n−1)
j |

Ē(n),ρ̄
(n+1)
−

,0
≤ c8(M

(0))37α/42−n(2τ+4)(κ̄(0))2
n

, (116)

for certain c8 > 0 independent of R. Among the technical results on the weighted norm we have used
here, we stress the mean value theorem of lemma A.2, combined with the lower bound |q(n)|

Ē(n),ρ̄
(n+1)
−

,0
≥

(M (0))α/2/2, which follows in a completely analogous way as done for q(∞) in (109).
Finally, we apply the (partial) normal form transformation Ψ̂ = Ψ̂(R) to the components of the

parametrizations obtained after change (19) and we end with the desired (R-depending) sequence
Φ(n). In particular, we point out that

Φ(−1)(θ, Λ) = Ψ̂(θ1,
√

2ξ cos θ2,−
√

2ξ sin θ2, I(ζ),−η
√

2ξ sin θ2,−η
√

2ξ cos θ2),

where we recall that ζ = (ξ, η) = h(Λ). To bound Φ(n) − Φ(n−1) we rely on the mean value theorem
of lemma A.2. Hence, we use Cauchy estimates on the bounds of point (ii) of theorem 4.1 in order to
control the size the partial derivatives of Ψ̂. According to the bounds of section 5.7 on the adapted
system of coordinates, we observe that the Cauchy estimates on these partial derivatives can be done
in such a way that the worst of them involves, at most, a denominator of order R2 —but not any
power of M (0)(R) at all—. Then, if we combine them with (113), (114), (115) and (116), we can easily
establish the following bound,

|Φ(n) − Φ(n−1)|
Ē(n),ρ̄

(n+1)
−

,0
≤ c9R

−2(M (0))37α/42−n(2τ+4)(κ̄(0))2
n

, (117)

for some c9 > 0 independent of R.
Once we have bounded the “convergence speed” of Φ(n), now we have to control, in geometric

form, the width of the complex widening of the set Ĕ(∞) to which we can apply the n-step of the
KAM process. Thus, we introduce the sequence of complex sets {W (n)}n≥0, W (n) ⊂ C2, given by
W (n) := Ĕ(∞) + r(n), where the R-depending quantities r(n) = r(n)(R) are defined as

r(n) := r(0)χn, r(0) :=
(δ̄(0))τ+1(M (0))α/2

22τ+4

(
log

(
1

κ̄(0)

))−τ−1

, χ := 2−3−2τ .
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We notice that (95) implies that ν(n) ≥ r(n), so that W (n) ⊂ Ê(n) + ν(n) ⊂ Ē(n).
At this point, we start verifying the conditions of the Inverse Approximation Lemma A.9 for Φ(∞)

as a limit of Φ(n). We remark that besides the Λ-dependence, that is the only one taken into account
for the Whitney part, the sequence Φ(n) also depends in analytic and periodic way in the variables
θ ∈ ∆2(ρ

(∞)) (see (6) and (77)). Then, according to remark A.1, both, the analytic and periodic
dependence, are preserved by the Whitney-extension by simply dealing with θ as a parameter. Thus,
we define U (n)(θ, Λ) := Φ(n−1)−Φ(−1), for n ≥ 0. By definition we have that U (0) = 0 and, using (117),

|U (n) − U (n−1)|∆2(ρ(∞))×W (n−1) ≤ c9R
−2(M (0))37α/42−(n−1)(2τ+4)(κ̄(0))2

n−1
, n ≥ 0. (118)

Our purpose is to show that, for any β > 0, there is S = S(β) > 0 (also depending on R) so that (118)
is bounded by S(r(n−1))β . Indeed, we have the following conditions on S:

S ≥ 22τ+4+βc9(δ̄
(0))−β(τ+1)R−2(M (0))37α/4−αβ/2

(
log

(
1

κ̄(0)

))β(τ+1)

2n(β−1)(2τ+4)(κ̄(0))2
n−1

, n ≥ 1.

Due to the super-exponential term (κ̄(0))2
n−1

—compared with the geometric growth of r(n−1)— it is
easy to realize of the existence of such S. Hence, lemma A.9 ensures that the limit vector-function
U (∞) = Φ(∞) − Φ(−1) is of class Whitney-Cβ with respect to Λ ∈ Ĕ(∞), for any β > 0, and so is Φ(∞)

(observe that Φ(−1) is analytic in Λ). Consequently, using the Whitney Extension Theorem A.10, the
function Φ(∞) can be extended to a C∞-function of Λ in the whole R2. Abusing notation, we keep
the name Φ(∞) for this extension. As pointed before, it keeps the analytic and periodic dependence
with respect to θ ∈ ∆2(ρ

(∞)).
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or more degrees of freedom (S’Agaró, 1995), volume 533 of NATO Adv. Sci. Inst. Ser. C Math.
Phys. Sci., pages 518–522. Kluwer Acad. Publ., Dordrecht, 1999.

[39] D. Pfenniger. Numerical study of complex instability I. Mappings. Astronom. and Astrophys.,
150:97–111, 1985.

[40] D. Pfenniger. Numerical study of complex instability II. Barred galaxy bulges. Astronom. and As-
trophys., 150:112–128, 1985.
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A Appendix

In this final section we have compiled those contents that, in our opinion, are necessary for the self-
containment of the article, but that we have preferred not to include in the body of the paper in order
to facilitate its readability. Concretely, in section A.1 we present the technical results on weighted
norms we use to prove theorem 3.1. In section A.2 we prove a technical bound concerning the statement
of theorem 4.1. Finally, in section A.3 we present a brief introduction to Whitney-smoothness.

A.1 Basic properties of the weighted norm

The following lemmas review some properties of the weighted norm | · |ρ,R introduced in (3). These
properties are completely analogous to those for the usual supremum norm.

In lemmas from A.1 to A.4 we discuss the bounds in terms of this weighted norm for the product of
functions, partial derivatives (Cauchy estimates), composition of functions, the mean value theorem,
estimates on Hamiltonian flows and on small divisors. In lemma A.5 we discuss the convergence of
an infinite composition of canonical transformations. In lemma A.6 we give a technical result on the
norm of the square root and, finally, in lemma A.7 we give another technical result referring to the
norm | · |R introduced at the end of section 2.

For most of these results we omit the proof, because it can be done simply by expanding the
functions in Taylor-Fourier series (2) and then bounding the resulting expressions. For full details
we refer to [28]. Along this section we use the notations introduced in section 2, sometimes without
explicit mention.

Lemma A.1. Let f = f(θ, x, I, y) and g = g(θ, x, I, y) be analytic functions defined in Dr,s(ρ, R) with
2π-periodic dependence in θ. Then we have:

(i) |f · g|ρ,R ≤ |f |ρ,R · |g|ρ,R.

(ii) For any 0 < δ ≤ R, 0 ≤ χ < 1, i = 1, . . . , r and j = 1, . . . , 2r we have:

|∂θi
f |ρ−δ,R ≤ |f |ρ,R

δ exp(1)
, |∂Ii

f |ρ,Rχ ≤ |f |ρ,R

(1 − χ2)R2
, |∂zj

f |ρ,Rχ ≤ |f |ρ,R

(1 − χ)R
,

being z = (x, y). All these bounds can be extended to the case in which f and g take values in Cn or
Mn1,n2(C) (assuming the matrix product of (i) defined).
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Lemma A.2. Let us take 0 < ρ0 < ρ and 0 < R0 < R, and consider analytic vector-functions Θ(i),
I(i), X (i) and Y(i) defined for (θ, x, I, y) ∈ Dr,m(ρ0, R0), 2π-periodic in θ and taking values in Cr′ ,
Cr′ , Cm′

and Cm′

, respectively, for i = 0, 1. We assume that |Θ(i)|ρ0,R0 ≤ ρ − ρ0, |I(i)|ρ0,R0 ≤ R2

and that |Z(i)|ρ0,R0 ≤ R, for i = 0, 1, where Z(i) = (X (i),Y(i)). Let f(θ′, x′, I ′, y′) be a given analytic
function defined in Dr′,m′(ρ, R) and 2π-periodic in θ′. We introduce:

F (i)(θ, x, I, y) = f(θ + Θ(i),X (i), I(i),Y(i)), G(θ, x, I, y) = F (1) − F (0).

Then, we have:

(i) |F (i)|ρ0,R0 ≤ |f |ρ,R, i = 0, 1.

(ii) |G|ρ0,R0 ≤ r′|∂θf |ρ,R|Θ(1)−Θ(0)|ρ0,R0 +r′|∂If |ρ,R|I(1)−I(0)|ρ0,R0 +2m′|∂zf |ρ,R|Z(1)−Z(0)|ρ0,R0.

Lemma A.3. Let S = S(θ, x, I, y) be a function such that ∇S is analytic in Dr,m(ρ, R) and 2π-periodic
in θ. We also assume that

|∇θS|ρ,R ≤ R2(1 − χ2), |∇IS|ρ,R ≤ δ, |∇zS|ρ,R ≤ R(1 − χ),

for certain 0 < χ < 1 and 0 < δ < ρ, being z = (x, y). If we denote by ΨS
t the flow time t of the

Hamiltonian system S, then it is defined as ΨS
t : Dr,m(ρ− δ, Rχ) → Dr,m(ρ, R), for every −1 ≤ t ≤ 1.

Moreover, if we write ΨS
t − Id = (ΘS

t ,X S
t , IS

t ,YS
t ) and ZS

t = (X S
t ,YS

t ), then all these components are
2π-periodic in θ and the following bounds hold for any −1 ≤ t ≤ 1,

|ΘS
t |ρ−δ,Rχ ≤ |t||∇IS|ρ,R, |IS

t |ρ−δ,Rχ ≤ |t||∇θS|ρ,R, |ZS
t |ρ−δ,Rχ ≤ |t||∇zS|ρ,R.

Lemma A.4. Let f = f(θ) be an analytic and 2π-periodic function in the r-dimensional complex
strip ∆r(ρ), for some ρ > 0, and {dk}k∈Zr\{0} ⊂ C∗ with |dk| ≥ γ/|k|τ1, for some γ > 0 and τ > 0.
We expand f in Fourier series, f =

∑
k∈Zr fk exp(i〈k, θ〉), and assume that the average of f is zero,

i. e., 〈f〉θ = f0 = 0. Then, for any 0 < δ ≤ ρ, we have that the function g defined as

g(θ) =
∑

k∈Zr\{0}

fk

dk
exp(i〈k, θ〉),

satisfies the bound

|g|ρ−δ,0 ≤
(

τ

δ exp(1)

)τ |f |ρ,0

γ
.

Lemma A.5. We consider strictly decreasing sequences of positive numbers ρ(n), R(n), an, bn and
cn, defined for n ≥ 0, and such that the series A =

∑
n≥0 an, B =

∑
n≥0 bn and C =

∑
n≥0 cn are

convergent. Additionally, for a given 0 < δ ≤ 1/2, we define ρ
(n)
− = ρ(n) − δ, R

(n)
− = R(n) exp(−δ) and

suppose that limn→+∞ ρ
(n)
− = ρ(∞) and limn→+∞ R

(n)
− = R(∞) are both positive and that

an ≤ ρ
(n)
− − ρ

(n+1)
− , bn ≤ (R

(n)
− )2 − (R

(n+1)
− )2, cn ≤ R

(n)
− − R

(n+1)
− . (119)

Let Ψ(n) : Dr,s(ρ
(n+1), R(n+1)) → Dr,s(ρ

(n), R(n)) be a sequence of analytic canonical transformations
with the following bounds for the components of Ψ(n) − Id:

|Θ(n)|ρ(n+1),R(n+1) ≤ an, |I(n)|ρ(n+1),R(n+1) ≤ bn, |Z(n)|ρ(n+1),R(n+1) ≤ cn.

If we define the composition Ψ̃(n) = Ψ(0) ◦ · · · ◦ Ψ(n), for any n ≥ 0, then we have that Ψ̃(∞) =
limn→+∞ Ψ̃(n) defines an analytic canonical transformation verifying

(i) Ψ̃(∞) : Dr,s(ρ
(∞), R(∞)) → Dr,s(ρ

(0), R(0)).
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(ii) The components of Ψ̃(∞) − Id verify

|Θ̃(∞)|ρ(∞),R(∞) ≤ A, |Ĩ(∞)|ρ(∞),R(∞) ≤ B, |Z̃(∞)|ρ(∞),R(∞) ≤ C.

(iii) If we define, for each n ≥ 0,

Πn =
1

δ

(
ran

exp(1)
+

rbn

(R(∞))2
+

4scn

R(∞)

)
,

then the components of Ψ̃(n) − Id satisfy:

|Θ̃(n) − Θ̃(n−1)|
ρ
(n+1)
−

,R
(n+1)
−

≤ an + AΠn, |Ĩ(n) − Ĩ(n−1)|
ρ
(n+1)
−

,R
(n+1)
−

≤ bn + BΠn,

|Z̃(n) − Z̃(n−1)|
ρ
(n+1)
−

,R
(n+1)
−

≤ cn + CΠn.

Proof. Along the proof we use the results on the weighted norm stated in lemmas A.1 and A.2. To
prove convergence of Ψ̃(n) we write

Ψ̃(n) − Id =
n∑

j=1

(Ψ̃(j) − Ψ̃(j−1)) + (Ψ̃(0) − Id),

and study the absolute convergence of this sum, when n → +∞, by using the norm | · |ρ(∞),R(∞) . To

do that, first we control the components of Ψ̃(n) − Id. We observe that

Ψ̃(n) − Id = Ψ(n) − Id + (Ψ̃(n−1) − Id) ◦ Ψ(n)

= Ψ(n) − Id + (Ψ(n−1) − Id) ◦ Ψ(n) + (Ψ̃(n−2) − Id) ◦ Ψ(n−1) ◦ Ψ(n).

Hence, reading this expression by components and proceeding by induction, we obtain the estimate

|Θ̃(n)|ρ(n+1),R(n+1) ≤
n∑

l=0

|Θ(l)|ρ(l+1),R(l+1) ≤
n∑

l=0

al ≤ A.

Similarly, we also have |Ĩ(n)|ρ(n+1),R(n+1) ≤ B and |Z̃(n)|ρ(n+1),R(n+1) ≤ C. At this point, if we assume

a priori convergence of Ψ̃(n), we clearly obtain the bounds in (ii) for Ψ̃(∞). Next to that, we write

Ψ̃(j) − Ψ̃(j−1) = Ψ̃(j−1) ◦ Ψ(j) − Ψ̃(j−1) = Ψ(j) − Id + (Ψ̃(j−1) − Id) ◦ Ψ(j) − (Ψ̃(j−1) − Id),

and consider this expression by components. For instance,

Θ̃(j) − Θ̃(j−1) = Θ(j) + Θ̃(j−1) ◦ Ψ(j) − Θ̃(j−1).

Then, using the previous bound on Ψ̃(j−1), Cauchy estimates and the mean value theorem, we obtain

|Θ̃(j) − Θ̃(j−1)|
ρ
(j+1)
−

,R
(j+1)
−

≤ |Θ(j)|ρ(j+1),R(j+1) + |Θ̃(j−1)|ρ(j),R(j)

(
r
|Θ(j)|ρ(j+1),R(j+1)

exp(1)(ρ(j) − ρ
(j)
− )

+ r
|I(j)|ρ(j+1),R(j+1)

(R(j))2 − (R
(j)
− )2

+ 2s
|Z(j)|ρ(j+1),R(j+1)

R(j) − R
(j)
−

)

≤ aj + A

(
raj

δ exp(1)
+

rbj

(R(j))2(1 − exp(−2δ))
+

2scj

R(j)(1 − exp(−δ))

)

≤ aj + AΠj ,

for any j ≥ 1. To be more precise, we have bounded the partial derivatives of Θ̃(j−1) in the domain

Dr,s(ρ
(j)
− , R

(j)
− ), and then we have used hypothesis (119) to guarantee that Ψ(j)(Dr,s(ρ

(j+1)
− , R

(j+1)
− )) ⊂

Dr,s(ρ
(j)
− , R

(j)
− ). Finally, we have also used that R(j) ≥ R(∞) and that (1−exp(−x))−1 ≤ 2/x, whenever

0 < x ≤ 1. Analogously, we can derive bounds in (iii) for the remaining components. Finally, the
convergence of

∑
j≥1 |Ψ̃(j) − Ψ̃(j−1)|ρ(∞),R(∞) follows immediately using these bounds.
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Lemma A.6. Let f(θ, x, I, y) be an analytic function defined in Dr,m(ρ, R), 2π-periodic in θ and such
that |f |ρ,R ≤ L < 1. Let g(θ, x, I, y) and h(θ, x, I, y) be given by

g(θ, x, I, y) =
√

1 + f(θ, x, I, y), h(θ, x, I, y) = (
√

1 + f(θ, x, I, y))−1.

Then, one has |g|ρ,R ≤ 2 −
√

1 − L and |h|ρ,R ≤ 1/
√

1 − L.

Proof. To prove both inequalities, we simply develop the square roots using the binomial expansion,

|g|ρ,R ≤
∑

j≥0

∣∣∣∣
(

1/2

j

)∣∣∣∣L
j = 2 −

√
1 − L, |h|ρ,R ≤

∑

j≥0

∣∣∣∣
(−1/2

j

)∣∣∣∣L
j =

1√
1 − L

.

The next relation between norms is used to establish the bounds on |Z|R2 in (59) and in section A.2.

Lemma A.7. Let f(u, v) be an analytic function around the origin and F (x, y) the same function
written in terms of (x, y) through the changes u = (x2

1 + x2
2)/2 and v = (y1x2 − x1y2)/2, i. e.,

F (x, y) = f(u, v). Then, for any R > 0 we have |f |R2 = |F |R.

Proof. We consider the following expansion for f(u, v),

f(u, v) =
∑

k̄∈Z
2
+

ak̄2
|k̄|1uk̄1vk̄2 ,

for certain coefficients ak̄. By definition, |f |R2 =
∑

k̄ 2|k̄|1 |ak̄|R2|k̄|1 . Then, we can write F as

F (x, y) =
∑

k∈Z
4
+

(−1)k4

(
k1 + k2

k1

)(
k3 + k4

k3

)
a(k1+k2,k3+k4)x

2k1
1 x2k2

2 (y1x2)
k3(y2x1)

k4 .

We point out that all the monomials in the sum above are different for different k, so that

|F |R =
∑

k∈Z
4
+

(
k1 + k2

k1

)(
k3 + k4

k3

)
|a(k1+k2,k3+k4)|R2|k|1 = |f |R2 .

A.2 Bound on the term Z̃
(R) of the normal form

As we pointed out at the end of section 4.1, the estimate |Z̃(R)|0,R ≤ c̃R6 on the statement of
theorem 4.1 is not explicitly contained in [36]. In this section we show how this bound can be derived
from the estimate |Z(R)|0,R ≤ |H|ρ0,R0 and the special structure of the normal form.

To establish this estimate on Z̃(R) we take advantage on the fact that the normal form can
be expanded in powers of (q, I, L/2), where q = (x2

1 + x2
2)/2 and L = y1x2 − x1y2. Concretely,

Z̃(R)(x, I, y) = Z(R)(q, I, L/2), with Z(R)(u) starting at degree three in u = (u1, u2, u3). We refer to
point (iii) of theorem 4.1 for more details. Then, our purpose now is to bound the norm |Z (R)|R2 ,
which corresponds to the weighted norm for the expansion of Z (R)(u) in powers of u. Then, using
lemma A.7 we can relate the norms |Z̃(R)|0,R = |Z(R)|R2 .

Once we have fixed the value of ε > 0, we take any 0 < R ≤ R∗ and consider the following
decomposition:

Z(R) = Z̆ + Ẑ(R),

where Z̆ is independent on R and contains the affine terms in u1 and u3 of the normal form Z(R) as
described in point (iii) of theorem 4.1 (see also the comments following the statement of the theorem).
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The term Ẑ(R) is a polynomial on u, but Z̆ allows generic (analytic) dependence on u2. But due to
the fact that Z̆ is independent of R, we easily have that there is Ă (independent of R) such that
|Z̆|R2 ≤ ĂR6 for any R small enough. For the remaining terms we only have |Ẑ(R)|R2 ≤ A, with
A := |H|ρ0,R0 also independent of R. In this case, we know that Ẑ(R) is a polynomial of degree less
than or equal to bropt(R)/2c, where ropt(R) depends on ε (see (16)). Let us assume that R is small
enough such that this degree is bigger than three and expand

Ẑ(R) =

bropt(R)/2c∑

p=3

Ẑp,

where Ẑp = Ẑp(u) contains the terms of degree p in u of the normal form, except those included in

Z̆. We remark that the particular expression of the homogeneous polynomials Ẑp is independent of
R. By using Cauchy estimates we have the following bound for these terms

|Ẑp|R2 ≤ A
R2p

R2p
p

,

where Rp = Rp(ε) denotes the first value of R for which bropt(R)/2c ≥ p. Concretely, we observe that

p =

⌊
1 +

1

2
exp

(
W

(
log

(
1

Rα
p

)))⌋
,

where α = 1/(τ + 1 + ε). By skipping the integer part, we obtain the bounds

1

2
exp

(
W

(
log

(
1

Rα
p

)))
≤ p ≤ 1 +

1

2
exp

(
W

(
log

(
1

Rα
p

)))
.

Then, simple computations show that (2(p − 1))2(p−1)/α ≤ R−1
p ≤ (2p)2p/α. As a consequence, we

obtain the following ε-depending bound

|Ẑp|R2 ≤ A(2p)4p2/αR2p.

If we let ε → 0+, then we obtain a ε-independent bound. Then, we have:

|Ẑ|R2 ≤
bropt(R)/2c∑

p=3

A(2p)4(τ+1)p2
R2p = AR6

bropt(R)/2c∑

p=3

(2p)4(τ+1)p2
R2p−6.

In order to bound this last sum by an expression independent of R, we remark that, once we have fixed
the value of R, then for all the indexes p appearing in the sum above we have R ≤ Rp. Consequently,
by using the upper bound for Rp previously derived we obtain

|Ẑ|R2 ≤ AR6
∑

p≥3

(2p)4(τ+1)p2

(2(p − 1))2(p−1)(2p−6)(τ+1+ε)
≤ AR6

∑

p≥3

e6(τ+1)p

(2(p − 1))4εp2+(12−16p)(τ+1+ε)
= ÂR6,

where we have used that (p/(p − 1))p ≤ e3/2. Therefore the convergence of Â = Â(ε) is clear, for any
ε > 0, and then we define c̃ = c̃(ε) := Ă + Â.

A.3 Whitney-smoothness

In this section we review the main definitions about Whitney-smoothness and the basic results on the
topic we have used in section 5.14. See appendix 6 in [9] for a straightforward survey on the subject.
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Definition A.8. Let A ⊂ Rn be a closed set and β > 0 with β 6∈ N. A Whitney-Cβ function u on A
—we shall write u ∈ Cβ

Wh(A)—, consists of a collection u = {uq}0≤|q|1≤k, with k = bβc and q ∈ Zn
+,

of functions defined on A satisfying the following property: there exists γ̂ > 0 such that,

|uq(x)| ≤ γ̂, |uq(x) − Pq(x, y)| ≤ γ̂|x − y|β−|q|1 , ∀x, y ∈ A, ∀q ∈ Zn
+, 0 ≤ |q|1 ≤ k, (120)

where Pq(x, y) is the analogous of the (k − |q|1)-th order Taylor polynomial of uq. More precisely,

Pq(x, y) =

k−|q|1∑

j=0

∑

|l|1=j

1

l!
uq+l(y)(x − y)l, l ∈ Zn

+,

with the multi-index notation l! =
∏n

i=1 li! and (x − y)l =
∏n

i=1(xi − yi)
li . The norm ‖u‖

Cβ
Wh

(A)
is

defined as the smallest γ̂ for which (120) holds. If u ∈ Cβ
Wh(A) for all β 6∈ N, we will refer to u as a

Whitney-C∞ function —we shall write u ∈ C∞
Wh(A)—.

Of course, conditions (120) are not easy to fulfill for a given function defined on an arbitrary closed
set A. However, in case it is constructed as a limit of analytic functions, next result provides a way
to verify those properties (see [48] for a proof).

Lemma A.9 (Inverse Approximation Lemma). Take a geometric sequence rj = r0χ
j, with r0 > 0

and 0 < χ < 1. Let A ⊂ Rn be an open or closed set and define Wj = A + rj, j ∈ Z+ (see (9)).
Consider a sequence of real analytic functions {U (j)}j∈Z+ , with U (0) = 0, such that U (j) is defined in
Wj−1 and

|U (j) − U (j−1)|Wj−1 ≤ Srβ
j−1, j ∈ N,

for some constants S ≥ 0 and β > 0, with β 6∈ N. Then, there exists a unique function U (∞), defined
on A, which is of class Whitney-Cβ and such that,

‖U (∞)‖
Cβ

Wh
(A)

≤ cχ,β,nS, lim
j→+∞

‖U (∞) − U (j)‖Cα
Wh

(A) = 0,

for all α < β, where the constant cχ,β,n > 0 does not depend on A.

The following result states the classical Whitney Extension Theorem, claiming that Whitney-Cβ

functions defined on closed subsets of Rn can be extended to Cβ functions on the whole space Rn.
See [46, 47].

Theorem A.10 (Whitney Extension Theorem). For any β > 0, β /∈ N, and any closed set

A ⊂ Rn there exists a (non-unique) linear extension operator Fβ : Cβ
Wh(A) → Cβ(Rn), such that for

each u = {uq}q ∈ Cβ
Wh(A) and U = Fβ(u), we have, for all 0 ≤ |q|1 ≤ bβc,

DqU |A = uq, ‖U‖Cβ(Rn) ≤ cβ,n‖u‖Cβ
Wh

(A)
,

where cβ,n does not depend on A. The norm in Cβ(Rn) is the usual Hölder one, i. e., if k = bβc then

‖U‖Cβ(Rn) = sup
q ∈ Zn

+, |q|1 ≤ k
x ∈ Rn

{|DqU(x)|} + sup
q ∈ Zn

+, |q|1 = k
x, y ∈ Rn, x 6= y

{ |DqU(x) − DqU(y)|
|x − y|β−k

}
.

If β = +∞, then there is a (non-unique) linear extension operator F : C∞
Wh(A) → C∞(Rn), such that

if U = F(u) then for all the derivatives —in the sense of Whitney— of u, DqU |A = uq.

Remark A.1. It is worth remarking that the functions U (j), j ∈ Z+, and the limit function U (∞) of
lemma A.9 may depend in analytic, smooth or periodic way on other variables. In such case, these
other variables must be thought of as parameters. Moreover, one can choose extension operators Fβ

and F preserving the analyticity (respectively smoothness), as well as periodicity with respect to these
parameters. See [9].
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