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SUMMARY

We present in this paper a pressure stabilized, finite element method for the numerical approxi-

mation of three-dimensional, non-hydrostatic mesoscale ocean flows. The model considered here

incorporates surface wind stress, bottom friction and Coriolis acceleration, and it is applicable

to irregular bottom topographies. An implicit unconditionally stable scheme is employed for

the time advancement and an anisotropic stabilization technique is used for the spatial finite

element discretization. The numerical results obtained on test cases demonstrate the robustness

and accuracy of the method proposed here. mycopyright
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1 INTRODUCTION

Improvements in computations have made numerical codes more and more useful in
Oceanographic Engineering and the idea of using unstructured grids for modelling mesoscale
ocean dynamics sounds very attractive given the high complexity of the ocean geometry.
Fine topographic features like narrow straits, steep continental slopes, islands, etc... are
of crucial importance and may control the circulation on mesoscale spatial scales, while
they can hardly be resolved with an affordable homogeneous spatial resolution. The finite
element method (FEM) offers a traceable tool to tackle this problem (see, e.g., [14]).

Attractiveness of the FEM for modelling ocean dynamics was demonstrated more at
the dawn of the age of ocean circulation modelling by Fix ([18]). Such nice properties
of the FEM as conservation of energy, which is common to all variational methods of
solving differential equations, natural treatment of boundary conditions and flexibility of
triangulation were complemented with availability of supercomputers. Having these in
mind, Le Provost ([25]) suggested this approach as an interesting alternative to the finite
difference method commonly used in ocean modelling.

Several simplified FEM numerical models have been derived from the hydrostatic
Navier-Stokes equations to study specific flow in a determinate scale. Thus, for example,
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the two-dimensional vertically averaged shallow water equations are commonly used to
study the circulation in well-mixed shallow estuaries, coastal seas and lakes (see, e.g., [15],
[16], [17], [26], [28], [29], [33]). Other frequently used hydrostatic models employ the so
called primitive equations of the ocean (see, e.g., [9], [14], [23]). However, the hydrostatic
approximation is not always valid in flows over rapidly varying slopes, such as littoral
areas (see [7]).

On the other hand, some non-hydrostatic numerical ocean models have also been
developed recently (see, e.g., [7], [24], [27], [30], [31], [32] and the references therein). All
of these models, however, use the finite difference method for the spatial approximation,
with a careful choice of the position of the velocity and pressure degrees of freedom on
different cell locations.

High resolution of ocean flows can certainly be obtained by solving numerically the
three-dimensional non-hydrostatic incompressible Navier-Stokes equations. This flow
problem, however, presents several numerical difficulties, the main one being associated
to possible pressure instabilities originated from the treatment of the incompressibility
condition. Moreover, if the finite element method is employed in a z-coordinate formu-
lation, the difference between the horizontal and the vertical scales in coastal seas may
result in highly anisotropic meshes, with elements having large aspect ratios.

We present in this paper a three-dimensional non-hydrostatic pressure-stabilized fi-
nite element ocean model, which incorporates a fully implicit time stepping scheme. An
anisotropic pressure stabilization technique is employed in our model. A diagnostic for-
mulation, in which the density is assumed to be known, is considered at the present stage
of development.

The outline of the paper is as follows: Section 2 introduces the hydrodynamical prob-
lem to approximate and some notation. In Section 3, the stabilized numerical method
used is described, first accounting for the time discretization procedure and then introduc-
ing the finite element spatial approximation. Numerical results are presented in Section
4, whereas in Section 5 conclusions are drawn.

2 HYDRODYNAMICAL MODEL

We consider the turbulent flow of a three-dimensional, incompressible fluid in a domain
Ω ⊂ IR3, expressed in a rotating Cartesian coordinate system and under the acceleration
due to gravity. Assuming the Boussinesq approximation, the fluid density is considered
constant except in the gravity acceleration term of the equations of motion, thus account-
ing for buoyancy effects. After averaging the Navier-Stokes equations over turbulent
time-scales, the momentum and continuity equations reflecting the physical principles of
conservation of momentum and mass become:
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Here, u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) are the fluid velocity components in the
horizontal x− and y− and vertical z−directions, respectively; t is the time, T being a given
final time; p(x, y, z, t) is the fluid kinematic pressure, that is, the pressure divided by the
reference density ρ0; f = 2ω sin(φ) is the Coriolis parameter, ω being the Earth’s angular
velocity and φ the latitude of the region of interest; g is the gravitational acceleration;
νH and νV are the horizontal and vertical turbulent eddy viscosities, respectively, which
are obtained from an appropriate turbulence closure model (a given constant value is
assumed here); finally, ρ(x, y, z, t) is the fluid density. A diagnostic model is considered at
the present stage of development of the model, in which ρ is a prescribed positive function
of the spatial coordinates.

It should be noted that the model just described is non-hydrostatic, in the sense that
the pressure is not assumed to vary linearly with depth, as opposed to extensively used
hydrostatic models such as shallow water or primitive equation models. The hydrostatic
approximation is not always valid in flows over rapidly varying slopes, such as those of
coastal areas.

The equation system (1)-(2)-(3)-(4)- can also be written in vector form as follows:
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∇ · u = 0 in Ω × (0, T ) (6)

where u = (u, v, w) is the three-dimensional velocity vector, ∇ = ( ∂
∂x

, ∂
∂y

, ∂
∂z

), k = (0, 0, 1)

and g = (0, 0, g). The domain Ω is defined by:

Ω = {(x, y, z) ∈ IR3 / (x, y) ∈ S, −H(x, y) < z < 0}

where S ⊂ IR2 is an open, bounded and polygonal domain (the fluid surface) and
H : S̄ → IR is a non-negative, smooth function representing the bottom topography. The
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boundary of Ω can be decomposed as ∂Ω = Γs ∪ Γb ∪ Γl, where:

Γs = S × 0 (surface)

Γb = {(x, y, z) ∈ IR3 / (x, y) ∈ S, −H(x, y) = z} (bottom)

Γl = {(x, y, z) ∈ IR3 / (x, y) ∈ ∂S, −H(x, y) ≤ z ≤ 0} (lateral boundary)

Moreover, Γl is also partitioned into an inflow and an outflow boundary:

Γl = Γin ∪ Γout

Boundary conditions have to supplied to (5)-(6) in order to have a well-posed problem.
At the bottom of the domain, no mass flux is imposed together with a linear bottom
friction formulation:
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where Cb is the linear bottom friction coefficient.
At the fluid surface, a rigid-lid approximation is assumed and prescribed tangent wind

stress is imposed:

w = 0 on Γs (9)
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where ρa is the air’s density, Cs the surface wind stress coefficient and (U10, V10) is the
horizontal wind velocity vector at a reference height of 10m above the surface at the point
(x, y, 0).

A prescribed value of the velocity is imposed at the inflow boundary, whereas a no
stress condition is considered at the outflow:
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where uI is a given inflow velocity and n = (nx, ny, nz) is the unit outward normal vector
to Γout.

An initial condition should also be specified for the velocity field:

u(x, y, z, 0) = u0(x, y, z), ∀(x, y, z) ∈ Ω

where u0 is a given three-dimensional, divergence-free initial velocity.
In order to obtain the weak form of (5), the test function ũ = (ũ, ṽ, w̃) is assumed to

vanish on Γin and be such that w̃ = 0 on Γs ∪ Γb. Multiplying (5) by ũ, integrating on Ω
and making use of Green’s formula and the boundary conditions (8), (10) and (12) yields:
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where (τx
b , τ y

b ) are given by (8) and (τx
s , τ y

s ) by (10).
The continuity equation (6) is also enforced weakly. In this case, a scalar test function

q is considered, so that multiplying (6) by q and integrating on Ω leads to:
∫

Ω

(∇ · u) q̃ dΩ = 0

3 NUMERICAL APPROXIMATION

We describe in this Section the numerical scheme that we employ for the approximation of
the hydrodynamical problem (5)-(6). We first introduce the time advancement algorithm
in a semidiscrete (continuous space) context and then we consider a spatial discretization
based on the finite element method.

3.1 Time stepping

It is common practice in non-hydrostatic ocean models to use a fractional-step method
as time integration scheme (see, e.g., [7], [24], [27]). In this kind of methods, each time
step is decomposed into a number of substeps, generally two (see, for instance, [3], [21],
[22]). This way, the hydrostatic flow is split from a non-hydrostatic pressure correction,
the computation of which being usually related to the projection of an intermediate, non-
divergence-free velocity field onto the space of solenoidal vector fields. However, a splitting
error is thus introduced. As an alternative and simpler approach, we employ an implicit
backward Euler monolithic method for the time integration of (5)-(6), in which the velocity
and the pressure are computed simultaneously. In this scheme, which is unconditionally
stable and first order accurate in the time step size, all the terms are treated implicitly
but for the convective (nonlinear) term, which is linearized using the value of the velocity
at the previous time step as convective velocity. Thus, given a time step size ∆t > 0, and
assuming a known approximation un of the velocity at time tn = n ∆t, a new velocity
un+1 and pressure pn+1 at tn+1 are obtained from:
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The weak form of the semidiscrete problem (13)-(14) consists in finding un+1 =
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3.2 Finite element spatial approximation

3.2.1 Finite element approximation

The semidiscrete problem (13)-(14) is further discretized in space by the finite element
method. Let Ωh be a partition of Ω, of size h > 0, into tetrahedral or hexahedral ele-
ments. We assume that all elements K ∈ Ωh are the image of a reference element K̂ by
a polynomial mapping FK which is affine for tetrahedra and trilinear for hexahedra. The
unknowns of the problem are approximated by finite element functions, which are contin-
uous across interelement boundaries and polynomial within each element when expressed
in reference variables. We will focus our attention on the case of equal interpolation for
the velocity and the pressure, in which both variables are approximated on the same mesh
by polynomials of the same degree.

The standard Galerkin approximation to (13)-(14) consists in finding finite element
functions un+1
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h ) (satisfying (7), (9) and (11)) and pn+1
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h ) q̃h dΩ = 0 (16)

3.2.2 Stabilization

The numerical method given by (15)-(16) may suffer from different sources of instability.
The main ones are the following:

• The convective-diffusive character of the equations may lead to the well-known
oscillations that appear in advection-diffusion problems (see [6]), specially in convection

dominated flows with large values of the Reynolds number Re=
L V

ν
(L is a characteristic

lenght of the flow and V a characteristic velocity). Several techniques have been designed
to overcome these oscillations; however, the flows of interest in oceanography generally
develop at ranges of turbulent eddy viscosities for which stabilization of convection is
unnecessary.

• The presence of the Coriolis term arising from a rotating coordinate system may

also introduce instabilities for large values of the Ekman number Ek=
ν

ωL2
. Techniques

have also been studied to avoid these instabilities (see [13]), but once again, at the scales
of motion which we consider stabilization of rotation is also unnecessary.

6



• Finally, the incompressibility constrain (16) on the velocity field poses a severe prob-
lem on the treatment of the pressure. It is well known that in standard approximations of
incompressible flow problems, the approximating spaces for the velocity and the pressure
have to satisfy a compatibility condition, known as LBB or inf-sup condition, in order
to yield a stable and convergent method (see [5]). It has to be said that equal order
interpolations do not satisfy this compatibility condition. Several combinations of finite
element spaces for the velocity and the pressure have been developed which do satisfy it,
but stabilized formulations ([1], [4], [8], [19], [20]) which do not require a compatibility
condition have proven to be more efficient than stable mixed pairs. In this alternative
approach, some terms are added to the discrete problem which enhance its stability.

A stabilized, finite element formulation for incompressible flow problems was also de-
veloped and analyzed in [10] and [11] (see also [2] and [12]). The main idea of this method
consists in introducing a new unknown of the problem which is the orthogonal projection
of the gradient of the discrete pressure onto the space of finite element functions. The
continuity equation is then modified in a consistent way by the addition of a suitable
multiple of the divergence of the difference between the pressure gradient and its pro-
jection. The method we actually employ here for the stabilization of the pressure is an
anisotropic pressure-gradient-projection method, which is specially designed to be used
on finite element meshes with large element aspect ratios, like those frequently employed
in ocean dynamics. The anisotropically stabilized discrete problem consists in finding
un+1

h = (un+1
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h ), pn+1
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1 , rn+1
2 , rn+1

3 ) such that, for all test func-
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Here, the stability coefficients αK,i are computed in terms of the size of element K in the
i-th direction, hK,i, and a characteristic value of the velocity in element K in the i-th
direction, VK,i, according to the following expression, which is similar to the ones usually
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employed in other stabilized formulations:

αK,i =
(

c1
νi

h2
K,i

+ c2
VK,i

hK,i
+

1

∆t

)−1
, ∀i = 1, 2, 3, ∀K ∈ Ωh

where c1 and c2 are given constants, ν1 = ν2 = νH and ν3 = νV .

4 NUMERICAL RESULTS

We present in this Section some numerical results obtained with the model just described
on two test cases: the classical Ekman’s spiral problem and a real-life application to the
study of the flow in the vicinity of the Ebro river delta.

4.1 Ekman’s flow

As a first test case, we considered the well-known problem of the flow of a viscous in-
compressible fluid driven by a steady wind (blowing in the direction of the y axes) and
subject to the Coriolis force. For an ocean of infinite depth, an analytical solution of this
problem is available, in which the flow is horizontal and varies only with depth according
to:

u = u0 e(πz/D) cos(
π

4
+

πz

D
) (17)

v = u0 e(πz/D) sin(
π

4
+

πz

D
) (18)

In (17)-(18), u0 =
T D√
2π νV

is the fluid velocity at the surface, T being the wind stress

(given by (10)), and the Ekman (or friction) depth D is defined as D = π

√

2 νV

f
and

is characterized by the fact that at the current at z = −D has the same direction but
opposite sense to that at the surface. The solution (17)-(18) exhibits some other surprising
features such as a drift of 45◦ to the right (in the Northern hemisphere) in the current
at the surface with respect to the wind direction, or the way the velocity vector turns
right as depth is increased while it decreases exponentially in norm at the same time, thus
forming the so called Ekman’s spiral. In fact, the fluid velocity at z = −D is 4.32% that
at the surface.

We solved this problem on a cubic domain of side 100m, with the following values
of the different constants: ρ = 1025.34 kg/m3, ω = 7.292 · 10−5 s−1, φ = 45◦ (so that
f = 1.03124 · 10−4 s−1), νH = 100 m2/s, νV = 1.4 · 10−2 m2/s, g = 0, ρa = 1.3 kg/m3,
Cs = 1.4 · 10−3 and (U10, V10) = (0, 10) m/s (so that T = 1.775 · 10−4 m2/s2). The surface
current is then u0 = 0.1477 m/s and the Ekman depth is D = 51.76 m, so that the domain
of frictional influence lies within the computational domain. In this sense, both at the
lateral boundaries and at the bottom an open boundary condition was imposed.

A non-uniform mesh of hexahedral elements with 4 × 4 × 30 elements was employed,
which is equally spaced in the horizontal directions and refined vertically near the surface
and the bottom. The steady state results obtained for the column of water at the center
of the domain are shown in Figure 1, where we plot the vertical profile of the velocity in
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Figure 1: Vertical profile of the horizontal velocity in Ekman’s flow for an ocean of infinite
depth: numerical results (◦) versus analytical solution (solid line).

the (u, v) plane; an exact agreement with the analytical solution (17)-(18) is observed.
Figure 2 shows a perspective view of the vertical profile of the velocity vector.

When an ocean of finite depth H is considered and the solution is assumed to vanish
at z = −H, an analytical solution also exists, but it is rather more complicated than
(17)-(18). This time, the angle of veering of the velocity vector at the surface to the right
of the wind direction is highly dependent on the ratio H/D. We solved this problem again
but now imposing zero velocity in all directions at the bottom for three different values of
the depth corresponding to H = 100m, D/2 and D/3, respectively. The vertical profiles
of the velocity for these three cases are shown in Figure 3, where an exact agreement with
the analytical solutions can again be observed.

4.2 The Ebro river delta

This application test case consists of simulating the wind driven circulation at the conti-
nental shelf around the Ebro delta. The Ebro delta is located at the transition between a
(northern) narrow shelf stretch (10 km wide) and a (southern) broader shelf area (50-60
km wide). Such a topographic setting constitutes an ideal test case on complex coastlines
and bathymetry for the model.

The domain considered in this study extends from Cape Salou to the Columbretas
Islands off the northeastern Spanish coast and is limited by the coastline, the 600 m
isobath, a northern cross-shore transect off Cape Salou and a southern cross-shore transect
at the latitude of the Columbretes Islands (see Figure 4 for a satellite image of the region
of interest and Figure 5 for a location map and the bathymetry of the area). The 3D
unstructured computational mesh used consists of 46,963 tetrahedral elements and 12,252
nodes, whose size fits nicely to the complicated boundaries (Figure 6).

Since the focus of this numerical test is on the wind-induced circulation, the Ebro
discharge was taken null, and therefore the density field plays no role and has been
considered homogeneous with a value of 1025.34 kg/m3. The wind stress forcing has been
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Figure 2: Perspective view of the vertical profile of the velocity vector in Ekman’s flow
for an ocean of infinite depth.
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Figure 3: Vertical profile of the horizontal velocity in Ekman’s flow for an ocean of finite
depth H: H = 100m (�), H = D/2 (4) and H = D/3 (�) versus the analytical solution
in each case (solid lines).

evaluated by using the conventional quadratic parameterization type given by (10), with
an air density ρ0 = 1.3 kg/m3, a dimensionless drag coefficient Cs = 0.0014 and utilizing
an average wind velocity vector of 10 m/s from the East.

Homogeneous Neumann conditions have been imposed for the flow on the northern and
southern boundaries and a no-slip condition has been adopted for the coastal contour. The
normal velocity was imposed equal to zero at the bottom and a linear relationship between
the bottom stress and the near-bottom velocity has been considered to parameterize the
bottom friction (equation 8), with a homogeneous bottom friction coefficient Cb = 0.001
kg/m2s.

The horizontal and vertical eddy viscosity coefficients chosen for this case were νH =
1.0e + 03 and νV = 1.4e− 01. The following other physical constants were used: latitude
41oN, Earth’s angular velocity 7.292e − 05 s−1, so that the Coriolis parameter is f =
9.568e − 05 s−1; finally, the gravity force was set equal to zero.

As a way to reproduce numerically the presence of a slope jet off the shelf edge, 1,434
time steps were performed specifying only an along-slope flow of 0.1 m/s as a boundary
condition on the open sea, until a steady state was reached with a tolerance of 1.0e-
05. In the first 4 steps, a direct method (LDU decomposition with skyline storage) was
employed to solve the velocity-pressure matrix system, and then the next 1,430 iterations
were made utilizing a fast iterative method (FGMRES with preconditioning strategy Left
ILU). Finally, after adding the wind stress forcing over the free surface, 1,130 iterations
were done until a new steady state was reached. In all the simulations, a time step of 10
seconds was employed and the pressure gradient matrix system was lumped to save CPU
time and RAM memory.

Plotted in Figure 7 are the computed velocities at the sea surface. As can be seen, the
surface marine currents are driven mainly by wind from East to West over the continental
shelf, in shallow water, while along the slope the current flow follows the isobaths towards
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Figure 4: The Ebro river delta: satellite image of the region of interest.
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Figure 5: The Ebro river delta: location map and bathymetry.
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Figure 6: The Ebro river delta: 3D computational mesh of tetrahedral finite elements.
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Figure 7: Velocity vectors at the sea surface.

S-SW.
Figure 8 depicts the isosurfaces of the velocity module, which attain their maximum at

the open sea boundary and decrease towards the coastline. Figure 9 shows the trajectories
of some selected points; as can be seen, those starting in the slope area follow closely the
bathymetry, while those starting in the shelf area are more influenced by the wind drag.
In Figures 6, 8 and 9, the vertical scale factor was magnified 50 times for visualization
purposes.

5 CONCLUSIONS

An implicit finite element model for 3D non-hydrostatic mesoscale ocean flows has been
described and applied successfully. Computationally, the conservative numerical scheme
is suitable for the simulation of three-dimensional non-hydrostatic flows using fine spa-
tial resolution and relatively large time steps. The non-hydrostatic approximation has a
significant role on rapidly varying slopes and convective dominant flows. An anisotropic
pressure-gradient projection method was used here to stabilize the pressure which is spe-
cially designed to be used on finite element meshes with large element aspect ratios like
those frequently employed in coastal dynamics.

The combined use of finite element methods and unstructured meshes provides a great
flexibility for fitting boundaries, local mesh refinements and the application of appropriate
boundary condition. The numerical results obtained on the test cases presented demon-
strate the robustness and accuracy of the method proposed. This model can be used
efficiently for both Ocean and Coastal Engineering. It can be foreseen that finite element

15



Figure 8: Isosurfaces of the velocity modulus.
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Figure 9: Some particle trajectories.

methods will supersede traditional models and will play an important role in future ocean
modelling.
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the Ebro delta, NW Mediterranean: a numerical study. Jour. of Marine Systems 1998;
16: 235–251.

[18] G.J. Fix. Finite element model for ocean circulation problems. SIAM Journal on

Applied Mathematics 1975; 29: 371–387.

[19] L.P. Franca and S.L. Frey. Stabilized finite element methods: II. The incompressible
Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering

1992; 99: 209–233.

18



[20] L.P. Franca and T.J.R. Hughes. Convergence analyses of Galerkin least-squares meth-
ods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-
Stokes equations. Computer Methods in Applied Mechanics and Engineering 1993;
105: 285–298.

[21] P.M. Gresho. On the theory of semi-implicit projection methods for viscous incom-
pressible flow and its implementation via a finite element method that also introduces a
nearly consistent mass matrix. International Journal for Numerical Methods in Fluids

1990; 11: 587–620.

[22] J.L. Guermond and L. Quartapelle. On stability and convergence of projection meth-
ods based on pressure Poisson equation. International Journal for Numerical Methods

in Fluids 1998; 26: 1039–1053.
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