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Abstract

We study the set M of pairs (f, V ), defined by an endomorphism f of Fn and a d-
dimensional f–invariant subspace V . It is shown that this set is a smooth manifold that
defines a vector bundle on the Grassmann manifold. We apply this study to derive conditions
for the Lipschitz stability of invariant subspaces and determine versal deformations of the
elements of M with respect to a natural equivalence relation introduced on it.

1 Introduction

The set of d–dimensional invariant subspaces of a given linear endomorphism of a finite dimen-
sional vector space has been extensively studied by many authors. The starting point to our
investigation is [9], where an explicit stratification of the set into manifolds is constructed, that
are defined by fixing the Segre characteristic of the induced restriction of the linear operator to
the subspace. The singularities of the union of these strata constitute an obstruction for the
implementation of Arnold’s techniques in the study of local perturbations of invariant subspaces.
Partial results in this direction are obtained by [5].

Surprisingly, and in contrast to the presence of singularities in the set of invariant subspaces,
the set M of pairs, formed by an endomorphism together with an invariant subspace of fixed
dimension, turns out to be a smooth manifold. Moreover, natural projections both into the set of
invariant subspaces of a fixed endomorphism as well as into the set of endomorphisms that leave
a given subspace invariant, enable us to study these two situations simultaneously. Therefore,
the study of the local perturbations of the above pairs seems to be a natural approach to the
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study of local perturbations in the image of the above projections. In particular, it is possible
to obtain simple sufficient conditions for Lipschitz-stability of an invariant subspace.

In general, given a Lie group action on a smooth manifold M , versal and miniversal deformations
with regard to this action were first introduced by Arnold in [1] (see also [2]), and have been
subsequently studied in several areas of linear algebra related to local perturbation analysis.
In particular, Arnold’s technique for studying the versal deformations of a square matrix with
regard to the similarity group action, has been generalized to (A,B) pairs with regard to feed-
back equivalence ([4]), and to square matrices having a fixed zero block structure, with regard
to the restricted similarity equivalence ([3]). This last set of matrices corresponds with the set
of endomorphisms that keep invariant a fixed subspace. In this paper, we compute a miniver-
sal deformation of endomorphism/invariant subspace pairs with regard to a natural equivalent
relation defined on it. This allows us to construct in a rather straightforward way both versal
deformations of square matrices with a fixed zero block structure as well as versal deformations
of invariant subspaces for a fixed endomorphism.

The paper is organized as follows. In section 2 we prove that the set M of pairs formed by
an endomorphism and an invariant subspace of it of a fixed dimension, is a smooth manifold.
We compute the tangent spaces and construct explicit local coordinate charts of M. As an
application, we derive in section 3 sufficient conditions for the Lipschitz-stability of an invariant
subspace. In section 4 we construct miniversal deformations of elements in M with regard to
a natural Lie group action. In section 5 we derive from the above deformation a miniversal
deformation of endomorphisms with a given invariant subspace. We use the following notation.
F denotes both the sets of real and complex numbers, respectively. Mn,m denotes the set of
n×m matrices with entries in F, and M∗

n,m denotes the set of full rank ones. The set of square
n× n matrices is denoted by Mn. We denote the general linear group of n× n matrices by Gln.
Grd(X) is the Grassmann manifold formed by the set of all d-dimensional subspaces of X. If V
is a subspace of X, we say that a basis of X is adapted to V , if it is obtained by extending a
basis of V .

2 The manifold of pairs endomorphism-invariant subspace

We consider the set of pairs (f, V ) where f is an element of Mn and V is a d-dimensional
invariant subspace of f . We denote this set by M. It is clear that M ⊂ Mn × Grd(Fn). We
denote the last product by N . In this section we prove that M is a smooth submanifold of N
of dimension n2, and we give a local parameterization of it. The first step consists in identifying
the Grassmann manifold Grd(Fn) with the following set of selfadjoint projection operators

Pd = {P ∈ Mn(F)|P ∗ = P, P 2 = P, rankP = d}.

Let Md
n = {A ∈ Mn | rankA = d}. We make use of the following preliminary facts. For a proof

we refer to [7].

Proposition 2.1 With the above notation, we have that

(i) Md
n is a smooth submanifold of Mn of dimension n2 − (n− d)2.

(ii) Pd is a smooth submanifold of Md
n of dimension d(n− d).
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(iii) TPPd = {[P, Ω] |Ω = −Ω∗, Ω ∈ Mn}.
(iv) Pd and Grd(Fn) are diffeomorphic manifolds.

Thanks to the above proposition, we identify, from now on, the Grassmann manifold Grd(Fn)
with Pd. Since the condition f(ImP ) ⊂ ImP is equivalent to (I − P )fP = 0,

M = {(f, P ) ∈ N |(I − P )fP = 0}.

The main result of this section can now be stated as follows.

Theorem 2.2 With the above notation, M is a smooth, closed submanifold of N of dimension
n2 and the tangent space to an element (f, P ) ∈M is

T(f,P )M = {(g, [P, Ω])|g, Ω ∈ Mn(F), Ω = −Ω∗, (I − P )gP − [P, Ω]fP + (I − P )f [P, Ω] = 0}.

Proof. Note, that M is described as the solution set to a system of real polynomial equations
in N and therefore is a closed subset of N . We begin by constructing local coordinate charts
for M.

Given (f0, V0) ∈ N , we consider a basis of Fn such that V0 =Im
(
Id
0

)
. We identify each endomor-

phism of Fn with its matrix with regard to this basis. If f =
(

A C
D B

)
with A ∈ Md, C ∈ Md,n−d,

D ∈ Mn−d,d and B ∈ Mn−d, we denote the blocks A,C, D,B by f (1), f (2), f (3) and f (4), respec-
tively. Let N0 = {(f, V ) |f ∈ Mn, V = Im

(
Id
Q

)
, Q ∈ Mn−d,d}. It is clear that N0 is an open set

of N containing (f0, V0).

Obviously, the map γ : Fn2+d(n−d) −→ N0 defined by

γ(A,B, C, D, Q) =
((

A C
D B

)
, Im

(
Id

Q

))

is a local coordinate system of N with image N0. We now show that it also defines a coordinate
chart for M. Let M0 := M∩N0. From the above the following holds true.

Lemma 2.3 With the above notation,

M0 =
{((

A C
D B

)
, Im

(
Id

Q

))
with D = QA−BQ + QCQ

}
.

Let ψ : Fn2 −→ Fn2+d(n−d) be the map defined by

ψ(A, B,C, Q) = (A,B, C, QA−BQ + QCQ, Q).

We denote γ ◦ ψ by θ and we have the following proposition.

Proposition 2.4 θ is a local coordinate system of M with θ(Fn2
) = M0.
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Proof. From lemma 2.3, θ is injective and its image is M0.

It is clear that θ is differentiable. In order to prove that θ is a diffeomorphism it is sufficient to
prove that dψ(A,B,C,Q) is injective. This follows from the equality

dψ(A,B,C,Q)(Ȧ, Ḃ, Ċ, Q̇) = (Ȧ, Ḃ, Ċ, (QC −B)Q̇ + Q̇(A + CQ) + QȦ + QĊQ−BQ̇, Q̇)

This completes the construction of the coordinate charts. It is easily seen. although a bit
tedious to show, that these coordinates charts glue together to define an atlas on M. We
therefore proceed to verify the formula for the tangent spaces. M is the inverse image of zero
by the smooth map

ϕ : N −→ Mn

(f, P ) 7−→ (I − P )fP.

Now we prove that dϕ(f,P ) has constant rank. For this, we evaluate

dϕ(f,P )(ḟ , Ṗ ) = (I − P )ḟP − Ṗ fP + (I − P )fṖ .

Since Ṗ = [P, Ω] and Ω = −Ω∗, we have that

Im dϕ(f,P ) = {(I − P )ḟP − [P, Ω]fP + (I − P )f [P,Ω]| ḟ , Ω ∈ Mn, Ω = −Ω∗} ⊂ Mn.

In order to see that rank dϕ(f,P ) is constant we compute the dimension of the orthogonal of its
image in Mn. One has that L ∈ (Im dϕ(f,P ))⊥ if and only if

trace(L∗(I − P )ḟP − L∗[P, Ω]fP + L∗(I − P )f [P, Ω]) = 0 for all ḟ ,Ω ∈ Mn(F), Ω = −Ω∗.

This is equivalent to the conditions

trace(PL∗(I − P )ḟ) = 0 for all ḟ ∈ Mn

and
trace(L∗(I − P )f [P, Ω]− L∗[P, Ω]fP ) = 0 for all Ω ∈ Mn, Ω = −Ω∗.

These conditions in turn are equivalent to

(1)PL∗(I − P ) = 0

(2) trace(−L∗(I − P )fΩP − L∗PΩfP + L∗ΩfP ) = 0.

Notice that trace(−PL∗(I−P )fΩ+ΩfPL∗(I−P )) = 0, and therefore (1) implies (2). Therefore,

(Im dϕ(f,P ))
⊥ = {L ∈ Mn(F) |(I − P )LP = 0}.

In order to compute the dimension of Imdϕ(f,P ), we consider a basis of Fn, so that P =(
Id 0
0 0

)
, then decomposing L according to the blocks of P , the equation (I − P )LP = 0

is

0 =
(

0 0
0 In−d

)(
L1 L2

L3 L4

)(
Id 0
0 0

)
=

(
0 0
L3 0

)

which is equivalent to L3 = 0.
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This implies that rank dϕ(f,P ) = d(n − d) and, therefore, since M is a smooth manifold of
dimension n2, we conclude that

dimM = dimN − rank dϕ(f,P ) = (n2 + nd− d2)− d(n− d) = n2.

Using the rank formula we conclude that dim ker dϕ(f,P ) = dimTM and therefore the tangent
space formula holds.

3 Stability of invariant subspaces

We keep the notation of the previous section. Consider the following diagram

M π1→ Mk

π2 ↓
Grd(Fn)

where π1 and π2 are the natural projection operators. In the sequel we will study an amplification
of the concept of stable invariant subspaces, introduced by [6]. Let Θ(V, V ′) denote the gap
distance between two linear subspaces.

Definition 3.1 Let (f, V ) ∈ M. Then V is called stable, if for any ε > 0 there exists δ > 0
such that ‖f ′ − f‖ < δ implies that exists an f ′-invariant subspace V ′ with Θ(V ′, V ) < ε. The
subspace V is called locally Lipschitz-continuous, if, locally around (f, V ), there exists L > 0
such that Θ(V ′, V ) ≤ L‖f ′ − f‖ .

Obviously, the concept of Lipschitz stability is stronger than the purely topological notion of
stability. In [6], stable invariant subspaces are extensively studied. In particular, necessary and
sufficient conditions that characterize stable invariant subspaces are derived. In this section we
show how through an analysis of the smooth projection maps π1 and π2 one can derive a simple
sufficient condition also for the Lipschitz-stability of an invariant subspace.

Proposition 3.2 Let (f, V ) ∈M. If dπ1,(f,V ) is bijective, then V is Lipschitz-stable.

Proof. Let us denote dπ1,(f,V ) by α. If α is bijective, from the inverse function theorem, there
exist open sets U and V with (f, V ) ∈ U ⊂ M and f ∈ V ⊂ Mn(F) such that α : U −→ V is a
diffeomorphism. We consider the composition

V α−1−→ U π2−→ Grd(Fn)
f ′ 7−→ (f ′, V ′) 7−→ V ′

Taking into account that α−1 and π2 are smooth and hence Lipschitz-continuous maps, the
result follows.

Next we prove necessary and sufficient conditions for the bijectivity of dπ1,(f,V ) which, thanks
to the above proposition, yield sufficient conditions for the Lipschitz-stability of V .
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Proposition 3.3 Let (f, V ) ∈M, and P be the selfadjoint projection operator representing the
subspace V . Let

(
A0 C0

0 B0

)
denote the matrix of f in any basis adapted to V , and Ω ∈ Mn. Then,

the following statements are equivalent:

(i) dπ1,(f,V ) is bijective.

(ii) A0 and B0 have disjoint sets of eigenvalues.

(iii) −PΩfP + ΩfP − fΩP + PfΩP = 0, with Ω = −Ω∗ implies PΩ = ΩP .

Proof. In a basis adapted to V , we may assume that V =Im
(
Id
0

)
, so that the coordinates of

(f, V ) in the local coordinate system θ given in proposition 2.4 are (A,B,C, Q). It is easily
checked that in this coordinate system, the map π1, denoted by π̇1, is given by

π̇1(A,B, C,Q) = (A,B, C, QA−BQ + QCQ).

Since dπ̇1(A0,B0,C0,0)(Ȧ, Ḃ, Ċ, Q̇) = (Ȧ, Ḃ, Ċ, Q̇A0 − B0Q̇), it is clear that dπ̇1(A0,B0,C0,0) is bi-
jective if and only if the map D 7→ DA0 − B0D is bijective. By a well-known result about
injectivity of Sylvester operators this is equivalent to A0 and B0 having disjoint spectrum.
This completes the proof of the equivalence between (i) and (ii). From the description of M
and T(f,P )M given in the previous section, we conclude that dπ(f,P ) is bijective if and only if
−[P, Ω]fP + (I − P )f [P, Ω] = 0 implies [P, Ω] = 0. This shows the equivalence between (i) and
(ii). The result follows.

The above result characterizes the critical points of the projection map onto the first factor. In
contrast, the projection map onto the second factor has better geometric properties, as it has
no critical points.

Proposition 3.4 With the above notation, for every (f, V ) ∈M, rank dπ2,(f,V ) = d(n− d).

Proof. As in the proof of proposition 3.3 we can assume that the coordinates of (f, V ) are
(A,B, C, Q) and that the projection operator π2 is given in its local coordinate system of
M and the corresponding coordinate system of Grd(Fn), by π̇2(A,B, C,Q) = Q. Hence,
dπ̇2(Ȧ, Ḃ, Ċ0, Q̇) = Q̇ so that rankdπ2,(f,V ) = d(n− d).

Corollary 3.5 The map π2 induces a submersion M −→ Grd(Fn). Moreover, π2 defines a
smooth vector bundle on the Grassmannian.

From this corollary, we derive the following proposition. Roughly speaking, it states that any
map f is ‘stable’ with regard to an invariant subspace V of it.

Proposition 3.6 Given (f, V ) ∈ M, for every ε > 0 there exists δ > 0 such that for any
V ′ ∈ Grd(Fn) with Θ(V, V ′) < δ, there exists f ′ with (f ′, V ′) ∈M and ‖f ′ − f‖ < ε.

Proof. Let σ : V →M be a local section of π2 in a neighbourhood of V . Then, the proposition
follows from the continuity of the map π1 ◦ σ.
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4 Miniversal deformations

Given a smooth manifold M and a Lie group G acting on it, versal and miniversal deformations
of an element x ∈ M with regard to this action, are concepts introduced by Arnold in order to
study local perturbations of x.

Definition 4.1 A versal deformation of x with regard to the action defined by G is a smooth
map ϕ : U → M where U is an open neighborhood of 0 in Rl and ϕ(0) = x, such that for any
map ψ : V → M of the same kind, there exist a smooth map α : V ′ → U with V ′ ⊂ V, 0 ∈ V ′,
α(0) = 0 and a map h : V ′ → G with h(0) = id, such that ψ(t) = h(t) ∗ϕ(h(t)) (the action of G
on M is denoted by ∗). If l is minimal, ϕ is called miniversal.

We refer the reader to [1] for preliminaries relevant for our purposes. In this section, we make
use of the following result. We denote by O(x) the orbit of x with regard the considered action.

Theorem 4.2 [1] A versal deformation of x ∈ M is a parameterization of any manifold N
transversal to O(x) at x, that is to say, a manifold N such that

Tx(N) + TxO(x) = Tx(M).

Furthermore, this versal deformation is miniversal if and only if the above sum is direct. In this
case dimO(x) = dimM − dimN.

We consider here the action of Gln on N defined by

σ(S, (f, V )) = (SfS−1, S(V )).

Notice that f(V ) ⊂ V implies (SfS−1)(S(V )) ⊂ S(V ) and therefore, σ can be restricted to an
action on M denoted also by σ. We denote the orbit σ(Gln, (f, V )) by O(f, V ).

In order to compute a miniversal deformation of an element of M with regard to the above
group action, we make use of the local description of M (or N ) given en section 2. Following
the notation introduced there, we first compute the coordinates of the tangent space of O(f0, V0)
in (f0, V0). Since the map (f, V ) 7→ (SfS−1, S(V )) is a diffeomorphism for all S ∈ Gln, we can
compute, with out loss of generality, the miniversal deformation in a particular element of the
orbit of (f0, V0) ∈ M. So, for simplicity, we take V0 =Im

(
I
0

)
and f0 =

(
A0C0

0 B0

)
. We prove the

following proposition.

Proposition 4.3 With the above notation, T(A0,B0,C0,0)(θ−1(O(f0, V0)) ∩M0)) is the set

{(Ṡ1A0 −A0Ṡ1 − C0Ṡ3, Ṡ3C0 + Ṡ4B0 −B0Ṡ4, Ṡ1C0 + Ṡ2B0 −A0Ṡ2 − C0Ṡ4, Ṡ3)}

where Ṡ1 ∈ Md, Ṡ2 ∈ Md,n−d, Ṡ3 ∈ Mn−d,d, Ṡ4 ∈ Mn−d.

Proof. For continuity, the action σ restricts to a map, denoted also by σ, σ : G0 × N ′
0 −→

N0 where G0 and N ′
0 are open neighborhoods of In in Gln and of (f0, V0) in N , respectively.

Analogously, σ defines a map, denoted also by σ, σ : G0 ×M′
0 −→M0, where M′

0 = N ′
0 ∩M.
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Notice that if
(
S1 S2

S3 S4

) ∈ G0,
(
S1 S2

S3 S4

)(
Id
0

) ∈ N0 implies that S1 is invertible.

Denoting α = θ−1 ◦ σ ◦ (Id, θ), we have that α(G0, (A0, B0, C0, 0)) is an open neighborhood of
(A0, B0, C0, 0) in θ−1(O(f0, V0)) ∩M0).

Moreover, if S =
(
S1 S2

S3 S4

) ∈ G0, we have that

α(S, (A0, B0, C0, 0)) = ((Sf0S
−1)(1), (Sf0S

−1)(4), (Sf0S
−1)(2), S3S

−1
1 ).

Computing the image of the differential of the map S 7→ α(S, (A0, B0, C0, 0)), the proposition
follows.

The main result of this section is given by the following theorem.

Theorem 4.4 With the above notation, a miniversal deformation of (f0, V0) is given by the set
of pairs ((

A0 + X C0 + Z
0 B0 + Y

)
, Im

(
Id

0

))

where X,Y ,Z verify the conditions

(1) A∗0Z − ZB∗
0 = 0

(2) [A∗0, X]− ZC∗
0 = 0

(3) [Y, B∗
0 ]− C∗

0Z = 0

Proof. For simplicity, in this proof we denote A0, B0 and C0 by A,B and C, respectively. Let S
be the subspace of Fn2

formed by the elements (X, Y, Z, 0) verifying conditions (1),(2),(3). We
claim that S is a supplementary subspace of T(A,B,C,0)(θ−1(O(f0, V0))∩M0)). In order to prove
this, we make use of the following lemma.

Lemma 4.5 T(A,B,C,0)(θ−1(O(f0, V0))∩M0))⊥ is the set of matrices (X,Y, Z, T ) verifying con-
ditions (1),(2),(3) and T = C∗X − Y C∗.

Proof. (X,Y, Z, T ) ∈ T(A,B,C,0)(θ−1(O(f0, V0)) ∩M0))⊥ if and only if

trace(X∗(S1A−AS1−CS3)+Y ∗(S3C−S4B−BS4)+Z∗(S1C−S2B−AS2−CS4)+T ∗S3) = 0,

for all
(
S1 S2

S3 S4

) ∈ Mn.

Since the trace is invariant by circular permutations of the matrices, the above condition is
equivalent to

trace(AX∗S1 −X∗AS1 −X∗CS3 + CY ∗S3 + BY ∗S4 − Y ∗BS4+

+Z∗S1 + BZ∗S2 − Z∗AS2 − Z∗CS4 + T ∗S3) = 0,

or, equivalently, trace((AX∗ − X∗A − CZ∗)S1 + (BZ∗ − Z∗A)S2) + (−X∗C − CY ∗ + T )S3+
+(BY ∗ − Y ∗B − Z∗C)S4) = 0, which is equivalent to the conditions given in this lemma.
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Thanks to the above lemma, the map (X, Y, Z, 0) 7→ (X, Y, Z, C∗X − Y C∗) defines an isomor-
phism between S and T(A,B,C,0)(θ−1(O(f0, V0)) ∩M0))⊥. Moreover, since

< (X,Y, Z, 0), (X, Y, Z, C∗X − Y C∗) >= trace(X∗X + Y ∗Y + Z∗Z),

we have that S ∩ T(A,B,C,0)(θ−1(O(f0, V0)) ∩M0)) = {0} and S is as we have claimed.

Then, since θ is a diffeomorphism, θ(S) is a submanifold transversal to T(f0,V0)O(f0,V0) and,
applying theorem 4.2 the theorem follows.

In the manifold N , we can reproduce the same reasoning than for M with γ instead of θ and
with Fn2+d(n−d) instead of Fn2

. Then, it follows a similar result.

Theorem 4.6 A miniversal deformation of (f0, V0) ∈ N is given by the set of pairs
((

A0 + X C0 + Z
V B0 + Y

)
, Im

(
Id

0

))

where X,Y ,Z verify conditions (1), (2), (3) given in theorem 4.4.

We now apply the above miniversal deformations in order to compute the dimension of the orbit
of a pair (f, V ). We remark that the codimension of an orbit in M or in N differ in d(n − d)
(the number of parameters of V ). We prove the following proposition.

Proposition 4.7 Let M be the matrix



Id ⊗At −A⊗ Id 0 −C̄ ⊗ Id

0 In−d ⊗Bt −B ⊗ In−d In−d ⊗ C∗

0 0 In−d ⊗At −B ⊗ Id


 .

Then,
dimO(f, V ) = rankM + d(n− d).

Proof. We recall that the vec-operator of a matrix space is the isomorphism

vec : Mp,q −→ Mpq,1

X 7−→ (x11, . . . , x1q, . . . , xp1, . . . , xpq)t.

The proposition follows by checking that conditions (1),(2) and (3) in theorem 4.4 are equivalent

to




vec(X)
vec(Y )
vec(Z)


 ∈ kerM.

Finally, we obtain lower and upper bounds for the dimension of the orbit of a pair (f, V ) ∈ M
depending on the Segre characteristics of the restriction and the quotient. We can reduce the
problem to the case where f has only one eigenvalue. Thus, we can assume that f is nilpotent.
We prove the following theorem.

Theorem 4.8 Let Mγ,β be the set of pairs (f, V ) ∈ M with f nilpotent and γ, β the Segre
characteristics of the restriction and the quotient induced map defined by f in V and Fn/V ,
respectively. Then,
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(i) max
(f,V )∈Mγ,β

{codimO(f, V )} =
∑

1≤i,j≤r

min(γi, γj)+
∑

1≤i,j≤s

min(βi, βj)+
∑

1≤i≤r,1≤j≤s

min(γi, βj).

(ii) min
(f,V )∈Mγ,β

{codimO(f, V )} =
∑

1≤i,j≤r

min(γi, γj) +
∑

1≤i,j≤s

min(βi, βj).

Proof. We make use of the following lemmas.

Lemma 4.9 Let N =




0
1 0

. . . . . .
1 0


 ∈ Mγ and D =




N t

−I N t

. . . . . .
−I N t


 ∈ Mγβ.

Then,
rankD = γβ −min(γ, β).

Proof. Let n(1) be the number of elements of the matrix D equal to 1 and n(−1) the number
of elements of this matrix equal to −1. Then, we have

n(1) = (γ − 1)β = γβ − β,

n(−1) = γ(β − 1) = γβ − γ.

Hence, rankD ≥ max(n(1), n(−1)) = γβ −min(γ, β).

We distinguish the cases:

(a) β ≥ γ

rankD = γ(β − 1) = γβ − γ = γβ −min(γ, β),
which can be proved by transformations of rows that make the γ first rows zero.

(b) β ≤ γ

rankD = β(γ − 1) = γβ − β = γβ −min(γ, β),
which can be proved by transformations of rows and columns that make the matrices −I
zero.

Lemma 4.10 Let A ∈ Ml and B ∈ Mq be Jordan nilpotent matrices, with γ = (γ1, γ2, . . . , γr)
the Segre characteristic of A and β = (β1, . . . , βs) the Segre characteristic of B. Then,

rank(Iq ⊗At −B ⊗ Il) = lq −
∑

1≤i≤r,1≤j≤s

min(γi, βj).

Proof. Since l =
∑

1≤i≤r γi and q =
∑

1≤j≤s βj , the formula that we have to prove is equivalent
to

rank(Iq ⊗At −B ⊗ Il) =
∑

1≤i≤r

∑

1≤j≤s

[γiβj −min(γi, βj)],

where
Iq ⊗At = diag(At, . . . , At) ∈ Mlq
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B ⊗ Il = diag(B1 ⊗ Il, . . . , Bs ⊗ Il) ∈ Mlq, Bj ⊗ Il ∈ Mlβj
.

Hence, Iq ⊗ At − B ⊗ Il is a block diagonal matrix, with blocks of sizes β1l, . . . , βsl. Moreover,
the j block has the form

Cj =




At

−Il At

. . . . . .
−Il At


 ∈ Mlβj .

Then, rank(Iq ⊗At −B ⊗ Il) =
∑

1≤j≤s rankCj .

By permutations of rows and columns, the matrix Cj is equivalent to a matrix diag(Dj1, . . . , Djr)
with

Dji =




At
i

−Iγi At
i

. . . . . .
−Iγi At

i


 ∈ Mγiβj .

Hence, rank(Iq ⊗ At − B ⊗ Il) =
∑

1≤i≤r

∑
1≤j≤s rankDji, and from lemma 4.9 we have the

stated result.

Next, we prove theorem 4.8.

Proof of (i). From the structure of M we have that

rankM ≥ rank(Id ⊗At −A⊗ Id) + rank(In−d ⊗Bt −B ⊗ In−d) + rank(In−d ⊗At −B ⊗ Id).

It is obvious that condition (i) is verified when the matrix C = 0. So, from proposition 4.7 and
lemma 4.10, condition (i) follows immediately.

Proof of (ii): Analogously, from the structure of M we have that

rankM ≤ rank(Id ⊗At −A⊗ Id) + rank(In−d ⊗Bt −B ⊗ In−d) + d(n− d).

We begin studying the case where A and B have only one block, that is to say, γ = d and
β = n− d.

We will see that a matrix C with a 1 placed in the first row and last column verifies the condition
of maximum rank.

By transformations of columns, we eliminate the last γ columns of Id ⊗ At − A ⊗ Id and the
last β columns of In−d ⊗ Bt − B ⊗ In−d. And by transformations of rows, we make the first γ
rows of Id ⊗At −A⊗ Id zero. Notice that the matrix −Iγ of −C̄ ⊗ Id is not modified with this
operation.

Then, considering the linearly independent rows and by permutations of rows, we will have
an upper triangular block matrix with identity matrices in the diagonal and rank equal to
γ2 − γ + β2 − β + γβ. So, in this case, the theorem is proved.

It can be seen that, to prove the cases with more than one block in the matrices A and B,
the same technique can be used considering a matrix C = [Ci,j ] ∈ Md,n−d with Cii = Nγi,βi if
i ≤min(r, s) and Ci,j = 0 if i 6= j, where Nγi,βi

is the γi × βi matrix with a 1 placed in the first
row and last column. Therefore, the theorem holds in the general.
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Corollary 4.11 For all (f, V ) ∈ M, codimO(f, V ) > 0. In particular, any pair of M is not
structurally stable with regard to the considered equivalence relation. (We take here the definition
of structurally stable given by Willems in [10], that is to say, x ∈ M is said to be structurally
stable if M/ ∼ contains an open neighborhood of x).

5 Endomorphisms having a fixed invariant subspace

In this section, we consider in the set of matrices of the form
(
A C
0 B

)
the equivalence relation

defined by the similarity action of the subgroup of Gln formed by matrices of the form
(
S1 S2

0 S4

)
.

Although the obtention of an explicit miniversal deformation in this context is an open problem,
significant progress for its solution is made in [3]. Here, we give an alternative approach to this
problem, based in theorem 4.4.

This approach is based on the fact that the matrices of the form
(

A C
0 B

)
, are those of Mn that

keep invariant the subspace Im
(
Id
0

)
. Let V0 =Im

(
Id
0

)
. We define M0 = {f | (f, V0) ∈ M}, which

is the vector space of dimension n2− d(n− d) formed by the matrices of the form
(
A C
0 B

)
, and we

consider the injective map
i : M0 −→M
i(f) = (f, V0).

Given a smooth map ϕ : U →M with U an open set of Fk, we denote ϕi := πi◦ϕ, i = 1, 2, where
we recall that π1 and π2 are the natural projections of M on Mn and Grd(Fn), respectively. We
make use of the following lemma.

Lemma 5.1 If U is a neighborhood of the origin of Fk, for every smooth map ϕ : U →M with
ϕ(0) = (f0, V0), there exists a smooth map ϕ∗ : U → Gln with ϕ∗(0) = In such that

ϕ∗(λ)[ϕ2(λ)] = V0

for all λ in an open neighborhood of the origin of U .

Proof. In a neighborhood of the origin of U , ϕ2(t) = Im
( Id
Q(λ)

)
with Q(0) = 0.

Defining ϕ∗(λ) =
(

Id 0
−Qλ In−d

)
, the lemma holds.

Next proposition shows how a deformation in M0 can be obtained through a deformation in M.

Proposition 5.2 Let ϕ : U −→M be a versal deformation of (f0, V0) with regard to the action
of Gln. Then, the map ϕ̄ : U −→ M0, defined by ϕ̄(λ) = ϕ∗(λ) ◦ ϕ1(λ) ◦ ϕ∗(λ)−1 is a versal
deformation of f0 with regard to the similarity action defined by the group {g ∈ Gln|g(V0) = V0}.

Proof. We first prove that ϕ̄(λ) ∈ M0 for all λ ∈ U . In fact, from lemma 5.1

ϕ̄(λ)V0 = (ϕ∗(λ) ◦ ϕ1(λ))(ϕ2(λ)) ⊂ ϕ∗(λ)(ϕ2(λ))
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and, again from lemma 5.1, we have that ϕ̄(λ)V0 ⊂ V0 and so, ϕ̄(λ) ∈ M0.

Let ψ̄ : V → M0 a smooth map with ψ(0) = f0.

For being ϕ versal, there exist V ′ ⊂ V (neighbourhood of the origin), α : V ′ −→ U with α(0) = 0
and β : V ′ −→ Gln with β(0) = In, being α, β smooth maps, such that ψ(µ) = β(µ) ∗ ϕ(α(µ)),
and then,

(ψ̄(µ), V0) = (β(µ)ϕ1(α(µ))β(µ)−1, β(µ)[ϕ2(α(µ))]).

Hence, according to the definition of ϕ∗ we have that

ψ̄(µ) = β(µ) ◦ ϕ∗(α(µ))−1 ◦ ϕ̄(α(µ)) ◦ ϕ∗(α(µ)) ◦ β(µ)−1 = (β(µ) ◦ ϕ∗(α(µ))−1 ∗ ϕ̄(α(µ)).

Defining
ε(µ) := β(µ) ◦ ϕ∗(α(µ))−1

we have that ε(0) = β(0) ◦ ϕ∗(0)−1 = In, ε(0)V0 = V0 and one can check that

ψ̄(µ) = ε(µ) ∗ ϕ̄(α(µ)).

So, according to definition 4.1 we have that ϕ̄ is versal.

We conclude that a versal deformation of
(
A C
0 B

)
with regard to the similarity action of matrices

of the same type, is given in terms of the versal deformation of the pair (
(
A C
0 B

)
,Im

(
Id
0

)
) described

in theorem 4.4.
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