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Abstract

The Darbouxian theory of integraity allows to determine when a pghomial differential system

in C2 has a first integral of the kin(f{\1 ---f;p exp(g/h) where f;, ¢ andh are polynomials in
Clx,y], andA; e Cfori =1,..., p. The functions of this form are called Darbouxian functions.
Here, we solve the inverse problem, i.e. we characterize the polynomial vector fié]ash'mving a
given Darbouxian function as a first integral.

On the other hand, using information about the degree of the invariant algebraic curves of a
polynomial vector field, we improve the conditiong the existence of an integrating factor in the
Darbouxian theory of integrability.
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1. Introduction and statement of the main results

By definition aplanar polynomial differential systeiw a differential system of the form

dx dy
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where P and Q are polynomials in the variables and y. Moreover, the dependent
variablesx andy, the independent variable(called thetime), and the coefficients of
the polynomialsP and Q are complex.

Associated to the polynomial differential system (1fifithere is thgpolynomial vector
field

d ]
X=P(x,y)a—+Q(x,y)— (2)
by ay
in C2. Sometimes, the polynomial vector fiekiwill be denoted simply by P, Q).

The degreem of the polynomial differential system (1) or of the polynomial vector
field X is the maximum of the degrees of the polynomi&lsand Q. The degree of a
polynomial P is denoted bys P. The degree of a rational functioR/Q is defined as
§(P/Q)=maxsP,50)}.

If the polynomialsP and Q are not coprime, leR be the greatest common divisor Bf
and Q. Then, the change in the independent varialderen byds = R dt transforms the
polynomial vector field (2) into the polynomial vector fielé®/R, Q/R) with P/R and
Q/R coprime. Since iflP/R, Q/R) has a first integral, we also have a first integral for
(P, Q), in what follows we shall work with polynomial vector field®, Q) with P andQ

coprime.
A Darbouxian function can be written into the form
by e 8
H(x,y)=f* ppexp(ﬁ)9 3)
fl o fp

where f1, ..., f, are irreducible polynomials i€[x, yl, A1,...,4, € C, n1,...,n, €
NU {0} (i.e. then; are non-negative integers) and the polynorgiaff C[x, y] is coprime
with f; if n; #£0.

First we want to characterize when a polynomial vector fi#gdin C? has the
Darbouxian functiorH (x, y) as a first integral; i.e. wheH is constant on the trajectories
of X contained in the domain of definitidii of H, or equivalently whed H /dt = XH =
PAH/dx + QdH /3y =0, onU.

Given a polynomial vector fieldl the Darbouxian theory ointegrability provides
sufficient conditions in order that has a Darbouxian first integral, see for more details
Section 2. This theory started with Darboux [10] in 1878. For more details and results on
the Darbouxian theory of integpbility for planar polynomial vector fields, see [1,3,4,6,12,
14-19]. Here, we study the inverse problem. Our main results on the inverse problem are
summarized in what follows.

Theorem 1. Let H(x,y) = fflmf,f” expg/(f1t- - ,’fp)) be a Darbouxian function
with f1, ..., f, irreducible polynomials irC[x, y1, A1,...,A, € C, n1,...,n, e NU {0}
and the polynomia¢ of C[x, y] is coprime withf; if n; # 0. We denote by the degree of
the rational functiorg/(ffl e f,'f”). Then,H is a first integral for the polynomial vector
field X = (P, Q) of degreen with P and Q coprimes if and only if

@ 1+Y" 8fi=m+1and
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p p p
X:(Hf;”) }\i( l_[ fj)Xf
=1 1 j=1, j#i
p p P
—ani( I1 fj)xf+(1"[fj>xg, 4)
i=1 J=1, j#i j=1
whereX ;. is the Hamiltonian vector field- f;y, fix).
Moreover, the vector field given I¢§) has the integrating factor

Ri=(fr- fofi* ) n

(b) I + Z{':l(Sfi >m + 1 and X is as in(4) dividing its components by their greatest
common divisor D. MoreoveB) R is a rational integrating factor o¥X.

Theorem 1 will be proved in Section 3. Also in that section we shall show that the
second part of statement (a) cannot be extended to the integrating factors of the form (3)
with g # 0. In Section 4 we provide examples of all statements of Theorem 1.

Corollary 2. Under the assumptions of Theoreif (3) is a first integral for the
polynomial vector fieldY = (P, Q) of degreem with P and Q coprimes, thern +
P 8fizm+ 1.

Corollary 2 follows directly from Theorem 1. Note that Corollary 2 says that the degree
of a polynomial vector field having the first integral (3) is not independent of the degrees
of the polynomials appearing in (3).

Prelle and Singer in [15] proved the following result.

Theorem 3. If a polynomial vector field{ has a first integral of the fornH (x, y) =

ffl . f,',\” expg/(fit- - f,',z”)) wherefi, ..., f, are irreducible polynomials i€[x, y],
A, ..., kp €C, ny,...,n, e NU{0} and the polynomiat of C[x, y] is coprime withf;
if n; # 0, then the vector field has an integrating factor of the form

(a(x,y))%
b(x,y)

with a, b € C[x, y] and N an integer.

We improve Theorem 3 as follows.

Corollary 4. We assume that the polynomial vector fi&ldhas a first integral of the form
H(x,y)=f;*- ,f” expg/(fi*--- f,")) wherefi, ..., f, are ireducible polynomials
in Clx, yl, A1,...,A, €C, n1,...,n, e NU {0} and the polynomiag of C[x, y] is
coprime with ; if n; # 0. We denote by=58(g/(f;* -~ £,").

(@) If 1+ Y7, 8f; = m + 1 then the inverse of the polynomigi - - f,, f'* - -- f;,”’ is an
integrating factor.
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(b) Otherwise, a function of the fora(x, y)/(f1--- fp f1* - ;,p) witha € C[x, y] is an
integrating factor.

The results of Corollary 4 are strongly reddtwith Proposition 3.2 and Corollary 3.3 of
Walcher [20].

Other aspects of the inverse problem of the Darbouxian theory of integrability have
been studied, see for more details Theorem 10 (due to Christoph&ofabek [21] and
Christopher, Llibre, Pantazi and Ziang]J&nd Proposition 12 (due to Christopher and
Kooij [5]) in Section 2. In fact, the next result improves statement (b) of Theorem 10 and
Proposition 12.

Theorem 5. Let X = (P, Q) be a polynomial vector field withP and Q coprime
having f1 =0, ..., f, = 0 asirreducible invariant algebraic curves satisfying the generic
conditions

(i) There are no points at whicl and its first derivatives are all vanish.
(i) The highest order terms gf have no repeated factors.
(iii) If two curves intersect at a point in the finite plane, they are transversal at this point.
(iv) There are no more than two curvgs= 0 meeting at any pointin the finite plane.
(v) There are no two curves having a common factor in the highest order terms.

Then,X has the first integralfl’\1 e fﬁp with 1; e Cif and only if Y7, 8fi =m + 1.
Moreover,

P P
X = )»,‘(1_[ f]>Xfl 5)
i=1 j=1

J#i

Theorem 5 will be proved in Section 3. An example of a polynomial vector field
satisfying Theorem 5 will be given in Section 4.

A function R(x, y) is anintegrating factorof the vector fieldX = (P, Q) on the domain
of definitionU of R if div(RP, RQ) =0 onU. As usual thalivergencef the vector field
X is defined by

div(X) =div(P, Q) = Q + %
ax dy

For the next theorem see the definitions of irreducible invariant algebraic curve,
exponential factor, their cofactors and (weak) independent singular in Section 2. This
theorem improves the conditions for the existence of an integrating factor in the
Darbouxian theory of integrability using imfmation about the degree of the invariant
algebraic curves, specifically it improves statement (e) of Theorem 9. As far as we know,
this is the first time that information about the degree of the invariant algebraic curves,
instead of the number of these curves, isdiieg studying the integability of a polynomial
vector field.
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Theorem 6. Suppose that a polynomial vector fieYd= (P, Q) of degreen, with P and
Q coprime, admity irreducible invariant algebraic curveg; = 0 with cofactorsk; for
i =1,..., p; g exponential factorexp(g;/ ;) with cofactorsL; for j =1,...,4; and
r independent singular points, yx) such thatf; (xx, yv) 20 fori =1,..., p and for
k=1,...,r. Then, the irreducible factors of the polynomialsare somef;’s and we can

write
g1\ ga \ " n1g1 Mq8q
e 2= ..|le 27 —e i S T A i
(o(iz)) - (o0(ie)) =omf et s

whereus, ..., ug € C, n1,...,n, € NU {0} and the polynomiat of C[x, y] is coprime
with f; if n; # 0. We denote by=max{}""_, n;8f;, 8g}.

fp+qg+r=mm+21)/2,1+ Zleafi < m + 1, and ther independent singular
points are weak, then tHenulti-valued function

Mni Kq
flM - fl);l’ (exp(%>> ... (exp(i_q)) (6)
q

for convenienk;, 1 ; € C not all zero is an integrating factor of .

Theorem 6 is also proved in Section 3. An example of a polynomial vector field
satisfying Theorem 6 will be given in Section 4.

As far as we know, this theorem uses by first time information about the degree
of the invariant algebraic curves forustying the integrabilityof a polynomial vector
field, because until now the Darbouxian theofyintegrability only used of the invariant
algebraic curves of a polynomial vectorlfleits number for studying its integrability
looking for, either a first integral, or an integrating factor, see Theorem 9.

2. Darbouxian theory of integrability

The Darbouxian theory of integrability fgplanar polynomial vector fields can be
summarized in the next theorem. As far as we know, the problem of integrating a
polynomial vector fields by using its invariant algebraic curves was started to be considered
by Darboux in [10]. The version that we present improves Darboux’s one essentially
because here we also take into account tkporential factors (see [4,9]), and the
independent singular points (see [3]). Some more complete versions can also consider the
Darbouxian invariants (see [1,2]), but since these more complete versions will not play any
role in this paper here we omit them.

First we introduce the main three notiomsthe Darbouxian they of integrability.

Let f € C[x, y]. The algebraic curveg (x, y) = 0 is aninvariant algebraic curveof the
polynomial vector fieldX if for some polynomialk € C[x, y] we have
af af

Xf:PaJrQ@:Kf.
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The polynomialk is called thecofactorof the invariant algebraic curvg = 0. Of course,
the curvef = 0 is formed by trajectories of the polynomial vector fidld We note that
since the polynomial vector field has degmeghen any cofactor has at most degree 1.
The following result is well known, see for instance [7].

Proposition 7. We suppose that € C[x, y] and let f = ffl -« £ be its factorization in
irreducible factors ovefC[x, y]. Then, for the polynomial systdih), f = 0is an invariant

algebraic curve with cofactok ; if and only if f; = O is an invariant algebraic curve for
eachi =1,...,r with cofactorK ,. MoreoverK s =n1Kp +---+n.Ky,.

By Proposition 7, in what follows we can restrict our attention to the irreducible
invariant algebraic curves.

Leth, g € Clx, y] and assume thatandg are relatively prime in the rin@[x, y]. Then
the function expg/h) is called anexponential factoof the polynomial vector fieldX if
for some polynomial € C[x, y] of degree at most — 1 it satisfies

§ §
X =))=L =.
(eXp(h )) eXp(h>
As before we say that is thecofactorof the exponential factor exp/ h).

Proposition 8. If exp(g/ h) is an exponential factor for the polynomial vector fi&idthen
h = 0is an invariant algebraic curve oX.

Proof. See [4]. O

In fact, in Proposition & = 0 is an invariant algebraic curve with multiplicity larger
than 1 as solution ok, for more details see [9].
If
m—1
S(x,y) = Z aijx'y’
i+j=0
is a polynomial of degreen — 1 with m(m + 1)/2 coefficients inC, then we write
S € Cp_1[x, y]. We identify the linear vector spa@®,_1[x, y] with C”+D/2 through
the isomorphisn® — (ago, a10, @01, - - - » Am—1.0> Am—2.1s - - - » A0, m—1)-
We say thatr points (xx, yx) € C?, k = 1,...,r, are independenwith respect to
Cm-1[x, y] if the intersection of the hyperplanes

m—1
{(aij)e(cm(’"+l)/2: Z x,iy,{a,-j:O, k=1,...,r¢},
i+j=0

is a linear subspace @™ "+1/2 of dimensiornm (m + 1)/2 — r > 0.

We recall that(xg, yo) is a singular point of system (1) # (xg, yo) = Q(xo, yo) = 0.

We remark that the maximum number of isolated singular points of the polynomial
system (1) isn? (by Bezout theorem), that the maxim number of independent isolated
singular points of the systemis(m + 1)/2, and thain(m + 1)/2 < m? for m > 2.
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A singular point(xo, yo) of system (1) is calledreakif the divergence, dix , of system
(1) at(xo, yo) is zero.

Theorem 9. Suppose that a polynomial vector fietdof degreem admits p irreducible
invariant algebraic curveg; = 0 with cofactorsk; fori =1, ..., p; g exponential factors
exp(g;/ h;) with cofactorsL ; for j =1, ..., g; andr independent singular pointsy, yx)
such thatf; (xx, yv) #0fori =1,..., p and fork =1, ..., r. Moreover, the irreducible
factors of the polynomials; are somef;’s.

(a) There exist;, 1 ; € C not all zero such that

14 q

Z}‘-iKl' +ZMij =0,

if and only if the(multi-valued function

©1 g
s (oofr)) (o) 2

is a first integral ofX.
(b) If p+q +r=[m@m+1)/2]+ 1, then there exist;, u; € C not all zero such that

p q
Z)»l‘Ki —i—ZpLij =0.
i=1 =1

(©) If p+g+r>=[m@m+1)/2]+2,thenX has a rational first integral, and consequently
all trajectories of the system are contained in invariant algebraic curves.
(d) There exisk;, u; € C not all zero such that

p q
Z)\.iK,’ —i—ZM,ij =—divX,
i=1 i=1

if and only if the functior{7) is an integrating factor of.

(e)If p+gq+r=m@m+ 1)/2 and ther independent singular points are weak, then
function(7) for convenient;, u; € C not all zero is a first integral or an integrating
factor.

Note that in Theorem 9 the fact that the irreducible factors of the polynorhjaise
somef;’s is due to Proposition 8.

Statements (a), (b), (d) and (e) restricted only to invariant algebraic curves are due
essentially to Darboux [10]. These statertsetiaking into account the exponential factors
and the independent singular points can be found in [4,6,7]. Statement (c) is due to
Jouanolou [12], for an easy proof see [7].

The next theorem is another kind of inverse problem of the Darbouxian theory of
integrability, in it the invariant algebraic curves are given and we want to obtain all the
polynomial vector fields having these invariant algebraic curves. This theorem was stated
by Christopher without proof in [5], and used in other papers as [1,1]Zmﬁdek in [21]
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(see also Theorem 3 of [22]) stated a similautegsing an analytic approach, but as far as
we know the paper [21] has not been published. A first complete proof of it, using mainly
algebraic tools, has been given in [8].

Theorem 10. Let f; =0, fori = 1,..., p, be irreducible algebraic curves iff2. We
assume that alf; satisfy the generic conditions of Theor&nThen any polynomial vector
field X of degreem having all f; = 0 as invariant algebraic curves satisfies one of the
following statements.

(@) If Y0 8fi <m+1,then

p P p
X= (Hﬁ>y+zhi( I1 fj)Xf,»,
i=1 i=1 j=1
J#i
where ther; are polynomials such that; <m—+1— Zf’zl 3fi, andY is a polynomial
vector field with degreec m — Y°F_; f;.
(b) If Y-F_, 8f; =m + 1, thenX is of the form(5).
(€) If Y-F [ 8fi >m+1,thenX =0.

In [8] we show that all the assumptions of Theorem 10 are necessary in order that the
result hold. More specifically, we proved the next result.

Proposition 11. If one of the conditiongi)—(v) of Theoreml0 is not satisfied, then its
statements do not hold.

An interesting complement to Theorem 10(b) due to Christopther and Kooij [5] is the
following.

Proposition 12. Under the assumptions of Theord®(b)a polynomial syster(b) has an
integrating factor of the forng fy - - - fp)‘1 and a first integral of the fornff1 e f,’}”.

The second part of statement (a) of Theorem 1 is in some sense the equivalent to
Proposition 12 for our inverse problem.

3. Proof of our main results
In this section we shall prove Theorems 1, 5 and 6.

Proof of Theorem 1. By a direct calculation we prove that system (4) in statements (a)
and (b) of Theorem 1 has (3) as a first integral. So, the “only if” part of Theorem 1 is
proved. Now, we shall prove the “if” part.
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We assume thall = f}*--- f,7 F with F =exp(g/(f[--- f3")) is a first integral of
the polynomial vector field = (P, Q) of degreen. So, we have

0= PH,+ QH,
p
= PF(ZA £ i ]"[ £ +gx<1"[ £ )(1‘[ f}f’)
j=1 r=1 j=1
J#i
P . po P P
_g(znifinl_ Jix l_[ fj]><1_[fr_2nr>(l_[ fj]>>
i=1 j=1 r=1 j=1
J#i
P - P P LA
+QF(ZAifi’ i 1 fj’+gy(]_[ fr‘"’)(]_[ fj’>
i=1 j=1 r=1 j=1
/;ﬁz

(g [ ) (1)

e froee( ) 1)
S (1) 11)
ol (T 1)
Son( (1) (fL0)]r

Since the last expression is equal to zero, we can cancel the non-zero product
F ]‘[3.’21 fjkf'_l and we can replace it with the non-zero prodigt_; £, . So we get

0=PG1+ 0Gy, 8)
with

61— (zx i n fj>l_[f”’+gx 117 —gznzﬁx n 3

J#’ = J#l
p P
G2 = (Zmu [1 f,) [1r+e 1‘[ fi— an,fU 1‘[ fi.
i=1 j=1 r=1 j=1 j=1

J#i J#i
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We remark that, sinc& and Q are coprime, fromP H, + Q H, = 0 it follows that A,
andH, cannot be zero. Consequentls andG» are not zero.
Since P and Q are coprime, from (8) we have th& must divide the polynomiat;,,
and Q0 must divide the polynomial;1, which is impossible i6G; < m = maxXéP, §Q}
fori =1,2. Duetothe factthatG; =1—1+Y "  5f;, we getthat + >7_, 8f; >m+1.
Since P and Q are coprime, ify_7_, 8f; + 1 =m + 1 we have that there is a constant
A € C\ {0} such thatP = —1G2 andQ = AG1. Doing the change of time— (1/A)t the
first part of statement (a) is proved. Now we shall show the second part of statement (a).
The algebraic curvgy = 0 is invariant for the vector field (4) with cofactor

p 4 L
Ky = (n f,"’) inmxfky—ﬂyfk»( [ ff)
=1 =t

i=1
J#ik

p p P
+ (8 fry — gyka)( I fj) +8 > nilfiyfix — ﬂxf@,)( [ fj)-
o = i

The vector field (4) has divergence

i {f17) (7)o (1) £}

x i=1 j=1 1=1 yi=1
J#i JjAi
p
(Hﬁrzz>ZKl((H f]) flx_(l_[ f_]) fiy)
1=1 i=1 j=1 j=1 X
J#i J#i
p p p p
+g"z (l_[ fJ) iy gyzni(n fj)fix
i=1 /=1 i=1 j—;

i=1 j=1 j=1
J#i J#Fi
p p
+<]_[ fj) gx—<]_[ fj) gy
j=1 y j=1 X

or equivalently,

P
divX = Z nk)\i(fkyfix_kafly (1_[ f])(l_[ f]n]> rit

k=1 =1
VR l#k
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P p P
+ (l_[ f;”) Z }\i(ijfix_fjxfiy)< H fk)
1=1 k=1

jk=1

» P
+ Z n;(8x fiy _gyfiX)( H fj)
j=1

i=1

k#i,j

J#i

14 p p
+g Y mi Z(fjxﬁy—ijﬁx)< I1 fk)
k=1

i=1 j=1
j#i k#i,j

p P
+ Z(gxfiy _gyfix)< H fj>,

i=1

and it is easy to check that

)4 )4
Z K, + Z n,K, =divX.
r=1

r=1

Therefore, by Theorem 9(bR1 = (f1--- fp f1*++- f,’fp)‘l is an integrating factor of the
vector field (4).

Suppose that+ Zf’zl 8f; > m+ 1. SinceP andQ are coprime, from (8) we have that
there is a polynomiaF such thatG1 = FQ andG2 = —F P. So, dividingG1 andG; by
F we obtain the polynomial vector fieldP, Q) of degreen. This completes the proof of
statement (b), and consequently of Theorem .

Proof of Theorem 5. Assume that the assumptions of Theorem 5 hold. Suppose that
> i_18f;i =m + 1. Then, by Theorem 10(b) it follows that the polynomial vector field
satisfying the assumptions of Theorem 5 is of the form (5), and by Proposition 12 it has
the first integralf; - - - £,

Now we shall prove the converse statement. Suppose that the polynomial vector field
satisfying the assumptions of Theorem 5 has the first integfral ~-f,',\”. So, for this
first integrall = 0, using the notation of Theorem 1. Then, by Corollary 2 we have that
Z{’:l 8f; =2 m+ 1. Since all the invariant algebraic curvgs= 0 are generic, by Theorem
10, it follows that}""_, 8f; <m + 1. Hence,>_"_, 8fi = m + 1, and the proof of the
theorem is completed.O

Now we shall show that the second part of statement (a) of Theorem 1 cannot be
extended to integrating factors of the form (3) witk4 0. The system
x=x(x+y+1D),
. 9
y=y+y), ©
has the two invariant algebraic curvgs= x =0 and f> = y = 0, and the exponential
factor F = exp(—(1+ x)/y) with cofactorsK1 =x+y+ 1, Ko=x+y andL = 1,
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respectively. Since-K1 + K2 + L = 0, by Theorem 9(a) system (9) has the first integral
H= fl‘lng. Doing simple computations we observe that system (9) can be written into
the form (4) withAi; = —1, 12 = 1,n1 = 0 andnz = 1. We also note that the polynomials
P andQ are coprime.

Since the divergence of system (9) is givl + 3x 4+ 3y and we have thak'; + K # div
and K1 + K> + L # div, by Theorem 9(d) there is no integrating factors of the form
(fif2)~Y or (fifoexpF)~ 1. So, although system (9) can be written into the form (4),
the second part of statements (a) of Theorem 1 cannot be extended to integrating factors of
the form (3) withg = 0. However, sinc&1 + 2K = div, this system has the integrating
factorRy = f; 1 f, 2.

Proof of Theorem 6. Assume that the assumptions of Theorem 6 hold. By Theorem 9(e)
function (6) is either a first integral, or an integrating factorXafBut, from Corollary 2
function (6) cannot be a first integral &f becauseé + Zf’zl 3f; <m+ 1. Hence, the proof

is completed. O

4. The examples

First, we provide three examples of a first integral satisfying statement (a) of Theorem 3.

The Darbouxian functiodd = y~3exp(3x3/y) is of the form (3) withf1 = y, 11 = —3,
n1 =1 andg = 3x3. Then, thel defined in Theorem 3 satisfiés= 3. Therefore, since
[+ Zle 8f; = 4, and the polynomial vector field given by (4) %= 3(y + x3, 3x%y)
with m = 3, it follows thatH and X satisfy statement (a) of Theorem 3.

The next first integral and its corresponding polynomial vector field provide examples
satisfying Theorem 3(a) and Theorem 5. The Darbouxian fundfieaxy(x — 1+ y/3) is
oftheform (3)withfi =x, fo=y, fa=x—14+y/3,A1=r2=A3=1,n1=np=n3=0
andg = 0. Then, thd = 0. Therefore, sincé+ Zf’zl 3f; = 3, and the polynomial vector
field given by (4) isX = (x(1 — x — 2y/3), y(—=1+ 2x + y/3)) with m = 2, we get that
H and X satisfy statement (a) of Theorem 3, becaiskas the first integralH and the
integrating factor 1H . Additionally, this is an example satisfying Theorem 5.

Now the third example satisfying Theorem 3(a). The Darbouxian fundiica (x2 +
y2) exp(2y) is of the form (3) withfi = x +iy, fo=x —iy, MM =A2=1,n1=np=0
andg = 2y. Then, thd = 1. Therefore, sinceé+ Y""_ §f; = 3, and the polynomial vector
field given by (4) isX = 2(—y — x2 — y2, x) with m = 2, we have thaH and X satisfy
statement (a) of Theorem 3, becausdas the first integrall and the integrating factor
1/(x2%+ y?).

Now we shall provide two examples satisfying statement (b) of Theorem 3. The
Darbouxian functior = y~4(x3+x*+y%) is of the form (3) withf1 = y, fo = x3+x*+
¥4 A1 =—4,2=1,n1 =np=0andg = 0. Then, thé = 0. Therefore] + }-"_, §f; =5,
and the polynomial vector field given by (4)(8, Q) = (4x3(1+x), x2(3+4x)y) with P
and Q non-coprime. SoX = (4x(1+ x), y(3+ 4x)) with m = 2 is the polynomial vector
field satisfying statement (b) of Theorem 3.

The second example is the following one. The Darbouxian fundiiea (x + 1) ~2(y —

x?) exp(—1/(x + 1)) is of the form 3) withfy =x +1, fo=y —x%, A1 =—-2,22 =1,
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n1=1,np=0andg = —1. Then/ = 1. Therefore] + Zf:l 8f; =4, and the polynomial
vector field given by (4) isX = (—(x + 1)2, —2x — y — 3x? — 2xy) with m = 2 satisfying
statement (b) of Theorem 3.

Finally we provide an example satisfying Theorem 6. The polynomial vector field
X =xG+121,—yx+ 1) with m =2 has the invariant algebraic curyg = x with
cofactorKy = y+1, the exponential factor exp+ y + 1) with cofactorL = x —y = —div,
and the weak independent singular paiatl, —1) which is not onf; = 0. Therefore,
[=1, p=gq=r =1, and consequently it satisfigs+ g +r =m(m + 1)/2= 3 and
I+YF  8fi =2<m+1=3, and it hasfexp(x + y + 1) as integrating factor. Hence,
X is an example of a polynomial vector field satisfying Theorem 6. We note that, from
Theorem 9(a), there does not exist a first integral given by a Darbouxian function of the

form fl’\1 expix +y + D
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