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Abstract: - Let (E, A1, A2, B) be a quadruple of matrices representing a two-order

generalized time-invariant linear system, Eẍ = A1ẋ + A2x + Bu. We study the controllability character

under an algebraic point of view.

AMS Subj. Classification: 15A21,93B52.
Key-Words: - Two-order generalized linear systems, feedback, controllabil-
ity.

1. Introduction
A second order generalized linear system is described by the following state

space equation
Eẍ = A1ẋ + A2x + Bu, (1)

where Ai are n-square complex matrices and B a n×m-rectangular complex
matrix in adequate size. we denote this kind of systems by quadruples of
matrices (E, A1, A2, B), and the space of all quadruples by M.

In this paper, and using order-reduction process generalizing the one given
in Lancaster and Tismenestsky [5], for `-order linear systems, we present nec-
essary conditions for existence of a control w in such a way the state can be
driven from any position to any other in a prescribed period of time. Some
sufficient conditions for E = I are presented in Clotet and Garćıa-Planas [2].

The structure of this paper is as follows.
In section 2, an equivalence relation over the space of second order gen-

eralized linear systems is defined and it induce an equivalence over the space
of order-reduced generalized systems. We observe that the equivalent order-
reduced generalized systems are feedback and derivative feedback equivalent
as linear systems, but the converse is not true.



In section 3, the controllability analysis relating controllability of second
order generalized linear systems and controllability of linear systems associated
is presented.

2. Orbits of order-reduced generalized systems
Let Eẍ = A1ẋ+A2x+Bu be a second order generalized linear system as in

the introduction, the standard transformations that can be applied are basis
change in the state space, basis change in the input space, feedback, deriva-
tive feedback, second order derivative feedback. Then, the initial equation is
transformed to

(P−1EP +P−1BF3)ẍ = (P−1A1P +P−1BF1)ẋ+(P−1A2P +P−1BF2)x+P−1BQu

This leads to the definition of the following equivalence relation in the space
M.

Definition 1. Two quadruples (E,A1, A2, B), (E ′, A′
1, A

′
2, B

′) ∈ M, are
equivalent if and only if there exist matrices P ∈ Gl(n;C), Q ∈ Gl(m;C) and
F1, F2, F3 ∈ Mm×n(C) such that these equalities E ′ = P−1EP +P−1BF3, A

′
1 =

P−1A1P + P−1BF1, A
′
2 = P−1A2P + P−1BF2, B

′ = P−1BQ hold.
It is straightforward that this relation is an equivalence relation.
To Find a canonical reduced form for quadruples of matrices under this

equivalence relation is an open problem. In order to obtain some structural
invariants we consider the order-reduction process.

We consider X =
(
x ẋ

)t
, then, we can rewrite the second order generalized

linear system (1) as
EẊ = AX + Bu, (2)

whith E =
(

In 0
0 E

)
, A =

(
0 In

A2 A1

)
and B =

(
0
B

)

This expression permits to consider feedback and derivative feedback equiv-
alence relation. Remember that (see Carriegos and Garćıa-Planas [1], for ex-
ample), two generalized linear systems (E,A,B) and (E1,A1,B1) are called
feedback and derivative feedback equivalent if and only if there exist (P,Q,FE,FA)
in the full group G = {(P,Q,FE,FA) | P ∈ Gl(2n;C),Q ∈ Gl(m;C),FE,FA ∈
Mm×2n(C) such that

(
E1 A1 B1

)
= P−1

(
E A B

)


P 0 0
0 P 0
FE FA Q


.



It is easy to prove the following proposition.
Proposition 1. Let (E, A1, A2, B) and (E ′, A′

1, A
′
2, B

′) be two equivalent
quadruples of matrices in M. Then, the order-reduced generalized systems
(E,A,B), (E′,A′,B′), are feedback and derivative feedback equivalent. Notice
that the converse is not true.

Before proposition ensures that all structural invariants of a order-reduced
system as a triple under feedback and derivative feedback equivalence are in-
variants for a given quadruple, but the set of these invariants is not a complete
system of invariants.

In order to preserve the form (2) for equivalent generalized linear systems,
in the sense that the only equivalent triples are those that are order reduced
generalized of some equivalent second order generalized linear system, we need
to restrict to the subgroup G2 ⊂ G formed by matrices (P,Q,F) ∈ G with
P = diagonal(P, P ), P ∈ Gl(n,C), and FE =

(
0 FE

)
, with FE ∈ Mm×n(C).

Then we have the following proposition.
Proposition 2. Two quadruples (E, A1, A2, B) and (E ′, A′

1, A
′
2, B

′) in
M are equivalent, if and only if the triples (E,A,B) and (E′,A′,B′) are G2-
equivalent.

Written in a matrix form

(
P−1 0

0 P−1

) (
0 0 In 0
E A2 A1 B

) (
P 0 0 0
0 P 0 0
0 0 P 0
F3 F2 F1 Q

)
=

(
0 0 In 0
E′ A′2 A′1 B′

)
.

So, we have the following definition
Definition 2. Two second order generalized linear systems (E ′, A′

1, A
′
2, B

′),
(E ′′, A′′

1, A
′′
2, B

′′) ∈M, are equivalent if and only if the associated order reduced
generalized systems (E′,A′,B′), (E′′,A′′,B′′) are G2-equivalent.

3. Controllability
We recall that a second order generalized linear system is called controllable

if, for any t1 > 0, x(0), ẋ(0) ∈ Cn and w,w1 ∈ Cn, there exists a control u(t)
such that x(t1) = w, ẋ(t1) = w1. This definition is a natural generalization of
controllability concept in the first order linear systems.

Taking into account that x(t) is a solution of the second order generalized

linear system if and only if
(
x(t) ẋ(t)

)t
is a solution of the associated order-

reduced generalized system,we have that the second order generalized linear



system is controllable if and only if the order-reduced generalized system is
controllable.

So, we can use results about controllability of generalized linear systems,
in particular (see Dai [3], Carriegos and Garćı-Planas [1], for example) we
have that the triple (E,A,B) (order-reduced generalized of (E,A1, A2, B)) is
controllable if and only if

i) rank
(
E B

)
= 2n ii) rank

(
sE− A B

)
= 2n ∀s ∈ C (3)

Remark 1. Condition i) ensures that there exists a derivative feedback
FE ∈ Mm×2n(C) such that E+BFE is regular and the system is standardizable,
so there exists a second order derivative feedback F3 (the matrix formed by
the n last columns of FE) such that E + BF3 is regular and the second order
generalized linear system is standardizable.

Making elementary transformations in the matrices on (3), we can ana-
lyze the controllability directly from the matrices defining the second order
generalized linear system, obtaining the following characterization.

Theorem 1. The second order generalized linear system (E, A1, A2, B), is
controllable if and only if

i) rank
(
E B

)
= n ii) rank

(
s2E − sA1 − A2 B

)
= n ∀s ∈ C

Proof. i) rank
(
E B

)
= n + rank

(
E B

)
.

ii) rank
(
sE− A B

)
= rank

(
s

(
I 0
0 E

)
−

(
0 I

A2 A1

) (
0
B

))
=

rank
(

0 I 0
s2E − sA1 −A2 0 B

)
= n + rank

(
s2E − sA1 −A2 B

)
.

Theorem 1, permits us to define controllability in the following manner.
Definition 3. We say that the second order generalized linear system

(E, A1, A2, B), is controllable if and only if

i) rank
(
E B

)
= n ii) rank

(
s2E − sA1 − A2 B

)
= n ∀s ∈ C.

It is well known that, the controllability of a linear system is invariant under
feedback equivalence, then the controllability of order reduced generalized sys-
tems is invariant under G2-equivalence. So, the controllability of second order



generalized linear systems is invariant under equivalence relation considered.
In fact we have the following proposition.

Proposition 3. The controllability condition is invariant under equiva-
lence defined before.

Proof. Let (E, A1, A2, B) and (E ′, A′
1, A

′
2, B

′) be two equivalent quadru-
ples. Then

(
E′ B′) = P−1

(
E B

)(
P 0
F3 Q

)

(
s2E′ − sA′1 −A′2 B′) = P−1

(
s2E − sA1 −A2 B

)(
P 0

s2F3 − sF1 − F2 Q

)

4. Geometric approach
In this section, we are seing quadruples of matrices as triples of linear

maps defined modulo a subspace (f, g, h) : X −→ X/W , where X is a finite
dimensional vector space, W is a linear subspace verifying f|W = g|W = h|W ,
generalizing results for a linear map defined modulo a subspace, or pair of
linear maps defined modulo a subspace (see Garćıa-Planas [4] for example).

Definition 4. Let (f, g, h) : X −→ X/W be a triple of linear maps defined
modulo a subspace. We consider the following triples of linear maps induced
in a natural way by (f, g, h):

(ḟ , ġ, ḣ) : W → W1

w → f(w) = g(w) = h(w)
(f1, g1, h1) : X/W → X1/W1

π(x) → π1(f, g, h)(x)
(4)

where W1 = f(W ) = g(W ) = h(W ), X1 = X/W and π : X −→ X/W and
π1 : X/W −→ X1/W1 the canonical projections.

We will call simply triple of linear maps.
Then we have the following commutative diagrams:

W
ḟ−→ W1

↓ ↓
X

f−→ X/W = X1

↓ ↓
X/W

f1−→ X1/W1 = X2

W
ġ−→ W1

↓ ↓
X

g−→ X/W = X1

↓ ↓
X/W

g1−→ X1/W1 = X2

W
ḣ−→ W1

↓ ↓
X

h−→ X/W = X1

↓ ↓
X/W

h1−→ X1/W1 = X2

(5)

Notice that the maps ḟ = ġ = ḣ are surjective, dim X1 ≤ dim X and
dim X1 = dim X if and only if W = {0}.



Let (f, g, h) : X −→ X/W a triple of linear maps. In order to obtain a
matrix representation we consider triples of bases of X adapted to W , that is to
say bases (bf = {e1, . . . , en, en+1, . . . , en+m}, bg = {ē1, . . . , ēn, en+1, . . . , en+m},
bh = {ẽ1, . . . , ẽn, en+1, . . . , en+m}, ) such that {en+1, . . . , en+m} is a base for W ,
and ei−ēi, ei−ẽi ∈ W for all i = 1, · · · , n. Consequently {e1+W, . . . , en+W} =
{ē1 + W, . . . , ēn + W} = {ẽ1 + W, . . . , ẽn + W} is a base for X/W .

Associated matrices Af , Ag and Ah of the linear maps f , g and h in this
triple of adapted bases are in the form

Af =
(
E B

)
, Ag =

(
A1 B

)
, Ah =

(
A2 B

)
, (6)

with E, A1, A2 ∈ Mn(C), B ∈ Mn×m(C).
We will write simply as a quadruple of matrices (E, A1, A2, B).
In order to see equivalence of quadruples as an equivalence of triples of

linear maps (f, g, h) : X −→ X/W , (f ′, g′, h′) : X ′ −→ X ′/W ′ we consider
the triples of isomorphisms (ϕ, ψ, φ) : X −→ X ′ where the maps induced in a
natural way

(ϕ̇, ψ̇, φ̇) : W −→ W ′ (ϕ̃, ψ̃, φ̃) : X/W −→ X ′/W ′ (7)

verify ϕ̇ = ψ̇ = φ̇ and ϕ̃ = ψ̃ = φ̃. We denote by H(W ) the group of
such pairs of isomorphisms, obviously we must suppose dim X = dim X ′ and
dim W = dim W ′. From now on, these dimensions will be denoted by n + m
and m respectively.

Definition 5. Let (f, g, h) : X −→ X/W , (f ′, g′, h′) : X ′ −→ X ′/W ′ be
two triples of linear maps. We say that they are equivalent, (written (f, g, h) ∼
(f ′, g′, h′)), if there is (ϕ, ψ, φ) ∈ H(W ) such that f ′ ◦ ϕ = ϕ̃ ◦ f, g′ ◦ ψ =
ψ̃ ◦ g, h′ ◦ φ = φ̃ ◦ h and we will write simply as

(f ′, g′, h′) ◦ (ϕ, ψ, φ) = (ϕ̃, ψ̃, φ̃) ◦ (f, g, h) (8)

Proposition 4. Let (E, A1, A2, B) and (E ′, A′
1, A

′
2, B

′) be two quadru-
ples of matrices corresponding to the matrix representation of two equiva-
lent triples of maps (f, g, h) and (f ′, g′, h′) respectively. Then there exist
invertible matrices P ∈ Gl(n;C) Q ∈ Gl(m;C) and rectangular matrices



F1, F2, F3 ∈ Mm×n(C) such that the following equality holds.

(
E ′ A′

1 A′
2 B′) = P−1

(
E A1 A2 B

) (
P 0 0 0
0 P 0 0
0 0 P 0
F3 F1 F2 Q

)
. (9)

Proof. It suffices to observe the form of matrices of automorphisms of
Cn+m ' Cn×Cm applying {0}×Cm in {0}×Cm and Cn+m/Cm in Cn+m/Cm.

Proposition 5. Let (f, g, h) be a triple of linear maps with dim W = 1, f
a linear map defined modulo a subspace corresponding to a controllable map.
Then there exists a triple of adapted bases (bf , bg, bh) such that

E =
(

0 In−1

0 0

)
, A1 = (a1

i,j), A2 = (a2
i,j), B =

(
0n−1

1

)
,

with a1
n,j = a2

n,j = 0
Proposition 6. Numbers a1

ij in matrix A1 and a2
ij in matrix A2 charac-

terize the equivalence class of quadruples of matrices.
Now, it is easy to obtain conditions for controllability of a quadruple of

matrices representing a second order generalized system.
Theorem 2. Let E, A1, A2 ∈ Mn(C) and B ∈ Mn×1(C), n > 1. Let

(E, B) a controllable pair of matrices. Let (bf , bg, bh) an adapted triple of
bases such that the quadruple take the form given in proposition 5.

A necessary condition for controllability of the quadruple is
(
A1 B

)
e1 /∈ [en + W ] or

(
A2 B

)
e1 /∈ [en + W ]

Proof. It suffices to compute the bases bf .
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