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Abstract

We study the motive of the moduli spaces of semistable rank two vector bundles
over an algebraic curve� When the degree is odd the moduli space is a smooth pro�
jective variety� we obtain the absolute Hodge motive of this� and in particular the
Poincar�e�Hodge polynomial� When the degree is even the moduli space is a singu�
lar projective variety� we compute the pure motivic Poincar�e polynomial and show
that only two weights can occur in each cohomology group� As corollaries we obtain
the isogeny type of some intermediate jacobians of the smooth moduli space and the
motive and Hodge numbers of Seshadri�s smooth model for the singular moduli space�

� Introduction�

The moduli space of stable vector bundles over an algebraic curve is a relatively well�
known object� it has received great attention for the last twenty years� in particular when
the rank and degree are coprime its cohomology has been shown to be torsion free and
its Betti numbers are known� However the methods used in studying its cohomology are
topological �����	� number theoretical ��

�� ���	 or in�nite�dimensional ��
�	� and these� at
least in principle� do not yield information on the algebraic structure of the cohomology
of the moduli space� say its Hodge numbers or Hodge structure�

In this paper we use a recent construction by M� Thaddeus ����	 to give a description
of the motivic Poincar�e polynomial of the moduli space of rank two semistable vector
bundles of �xed determinant on an algebraic curve� It is an idea of Grothendieck �see
����	 that one should work in the Grothendieck group K� of the category of motives� this
is where the motivic Poincar�e polynomial lives� We believe that the theory of motives is an
e�ective language to express clearly and precisely how the algebro�geometric properties of
the curve in�uence those of the moduli space of stable vector bundles� as a manifestation
of this belief we show how to prove a result by I� Biswas ��� in this framework� However
at the present moment we do not have at our disposal the true category of motives Mk

of Grothendieck� since the standard conjectures remain unproven� so we use the de�nition
by Deligne of absolute Hodge motives MAH

k �
We start by giving a quick review of the theory of absolute Hodge motives� the natural

language in which motives are expressed is that of tannakian categories so we recall the
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basic facts of these� we also de�ne the motivic Poincar�e polynomial� this is done in section
��

In order to carry out the calculations we need a motivic version of MacDonald�s formula
for the Betti numbers of a symmetric power� we do this in section �� Note that in fact we
get an expression for the motive of X�n� and not only for PmotX�n� � K�M

AH
k �

Then in section � we give a short account of Thaddeus� construction of the moduli
spaces of pairs�

In section  is where with the aid of Thaddeus� construction we manage to calculate the
motivic Poincar�e polynomial of the moduli space N���� 
	 of stable rank � vector bundles
with �xed odd determinant�

In section � we study the singular moduli space N���� �	 of rank � semistable vector
bundles with �xed even determinant� We use the geometric Hecke correspondence as
de�ned by Narasimhan an Ramanan in �
��� Our results di�er from those of Kirwan ��
��	
in that we use pure Poincar�e polynomials whereas she �nds the intersection cohomology
Poincar�e polynomial� As a corollary we obtain the motive of the smooth model of Seshadri
�����	 generalising the results of Balaji and Seshadri ����� ��	�

Finally in section � we extract information concerning the intermediate jacobians of
the moduli spaces from the motivic Poincar�e polynomial�
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Throught the paper k will denote a �eld of characteristic zero�

� Absolute Hodge motives�

In this section we give a brief review of the theory of absolute Hodge motives and related
topics� For proofs of theorems and more precise statements refer to ����

��� Tannakian categories�

By a tannakian category we shall mean a k�linear abelian neutral rigid tensor category
with End�
l	 � k� Let C be a tannakian category� the fact that C is neutral means there
exists a faithful exact functor from C to the category of �nite dimensional vector spaces
over k

� � C �� Veck

called a �bre functor�
In a rigid tensor category there is a concept of rank� However in the case of a tannakian

category this de�nition of rank gets simpli�ed by the use of a �bre functor� rankM �
dimk��M	�

An example of tannakian category is the category of �nite dimensional k�represen�
tations of an a�ne group scheme G over k� the �bre functor being the obvious one� In fact
a fundamental theorem ����� ��

	 states that all tannakian categories arise in this way�
so that if C is a tannakian category with �bre functor � then there exists an a�ne group
scheme G� over k and an equivalence of categories C �� Rep�G� compatible with the

�



�bre functors� G� is then called the Galois group or fundamental group of the tannakian
category C respect to �� Gal�C� �	�

��� Examples�


� Consider the category of �nite dimensional graded vector spaces over k� it is a
tannakian category which is easily seen to be equivalent to Rep�Gm �

�� The category of local systems of �nite dimensional complex vector spaces over a
topological space X is a tannakian category� A �bre functor is obtained by assigning
to each local system L the complex vector space Lx� where x is a point of X� The
fundamental group of this tannakian category is naturally isomorphic to ���X�x	�
the fundamental group of homotopy classes of loops based at x�

�� The category of rational pure Hodge structures� HSQ is a tannakian category�

One can also introduce the notion of a graded �by Z	 tannakian category ����� x	� It is
one where every object has a �nite direct sum decomposition compatible with a K�unneth
formula� A pure object is de�ned to be one with trivial decomposition� its degree will
also be refered to as its weight� This is better expressed by using the Galois group� a
graded tannakian category is a tannakian category C together with a central morphism
Gm �� Gal�C	�

However a richer structure appears quite naturally in the theory of motives� �C� w� T 	
is called a Tate triple if C is a tannakian category graded by w � Gm �� Gal�C	� and T is
a weight �� invertible object called the Tate object� The result of tensoring an object by
the Tate object is usually refered to as a Tate twist� A standard way to abreviate A�T�i

is A�i	�
The following de�nition will be useful�

De�nition ��� If C is a tensor category then C��T �� is the tensor category whose objects
are

Ob�C��T ��	 � f�Ai	i�NjAi � Ob�C	g

�also written as
P
AiT

i�� The morphisms are de�ned by

Hom�
X

AiT
i�
X

BiT
i	 �

Y
Hom�Ai� Bi	�

The tensor product of
P
AiT

i and
P
BiT

i is de�ned as

X
n

�� M
i�j�n

AiBj

�AT n�

This tensor product inherits associativity and commutativity constraints from C� De�ne
natural functors

CoefTn � C��T �� �� C �
	

sending
P
AiT

i to An �this is not however a tensor functor��

�



Recall that in a tensor category there are commutation constraints� that is for every
pair of objects M�N � Ob�C	 isomorphisms

M �N
�
�� N �M

��� Let C be a graded tensor category� Consider the new commutation constraints� given
on pure objects Mi� Nj of weights i and j by ��
	ij� where � are the old commutation

constraints� Call
�
C the resulting tensor category�

In the case when C is a tannakian category
�
C need not be tannakian� For instance� if C is

MAH
k �see ���	 then

�
C is called the false category of motives

�
M AH

k ����� x�	�

��� Absolute Hodge motives�

We shall work with the category of smooth projective varieties over k� Vk�
The main problem in the theory of motives is to �nd a tannakian category that factors

all possible cohomology functors� Grothendieck gave a construction of such a category
Mk �see �
�	 but in order to prove it has the required properties one needs the standard
conjectures which remain unproven�

Deligne ����	 has given a temporary working de�nition for motives� these are the abso�
lute Hodge motives which we shall use in what follows� The category MAH

k is constructed
in exactly the same way asMk but using absolute Hodge cycles instead of algebraic cycles�
We recall that an absolute Hodge cycle of X of codimension p is an element of

F �H�p
DR�X	�p	 �

Y
l

H�p

�et�X�Q�	�p	�
Y

��k��C

H�p
sing�X� �Q	�p	

such that it is compatible with the comparison isomorphisms between de Rham� singular
and tale cohomology� We denote the group of such cycles by Zp

AH�X	�
In the same manner as with Grothendieck motives we get a functor� h� from the

category of smooth projective varieties over k to the category of AH�motives�
One advantage of working with AH�motives is that the K�unneth components of the

diagonal in H�d�X � X	 are again AH�cycles� so we get a decomposition hX � h�X �
h�X � � � � � h�dX� This makes MAH

k into a graded tannakian category� it is customary
to refer to this grading as the weight grading� A motive that is zero in all degrees except
in one is called a pure weight motive� As MAH

k is a graded tannakian category one has a
graded �bre functor

MAH
k �� Grad�Veck

M � �Mi �� �Hi
DR�M	�

��� Remarks�


� The cycle maps produce an absolute Hodge cycle for each p�codimensional algebraic
cycle so one gets a morphism Zp�X	 �� Zp

AH�X	� In this way we get a functor
Mk ��MAH

k �

�� An important thing to know about the category of AH�motives is that it is a full
subcategory of the category of realization systems de�ned in �
��� The motive hi�X	

can thus be seen as a triple
�
Hi
DR�X� k	�H

i
��X�Q	� H

i

�et�X�Q�	
�
� where Hi

DR�X� k	

�



is a �nite dimensional k�vector space with a �ltration F � �the Hodge �ltration	� for

each embedding k
�
�� C Hi

��X�Q	 is a rational pure Hodge structure of weight i
and for each prime � Hi

�et�X�Q�	 is a Gal�k� k	�module� together with comparison
isomorphisms�

��� K�M
AH

k
and the motivic Poincar�e polynomial

Recall that to every abelian category C one can attach the Grothendieck group K�C�
Moreover if C is a �graded	 tensor category then K�C is a �graded	 unitary commutative
ring� Given A an object C we shall use the notation �A� for its class in K�C� If C is a tensor
category and C��T �� is the tensor category de�ned in ��� then K��C��T ��	 � K�C��T �� and
the additive functor CoefTn induces the standard morphism CoefTn � K�C��T �� �� K�C�

In particular if we put C �MAH
k we get a graded ring K�M

AH
k � In the categoryMAH

k

one has the Tate twist

MAH
k

���l�n�
�� MAH

k

A �� A�n	

and the dualising functor

MAH
k

��
�� MAH

k

A �� A�

both of which are exact functors and so descend to additive morphisms of the graded ring
K�M

AH
k �

De�nition ��� Let M be an AH�motive then its motivic Poincar�e polynomial is de�ned
to be its class in the graded ring K�M

AH
k

PmotM � �M � � K�M
AH
k

��	 Remarks�


� Note that this is not really a polynomial� it is an element of a graded ring�

�� If X is a smooth projective variety over k then we shall write PmotX � PmothX�

�� This is a generalisation of the usual Poincar�e polynomial as can be seen by following
hX � �hiX through the commutative diagram

Ob�MAH
k 	

	�

�� K�M

AH
k

Ob�H�

DR
� � K��H�

DR
� �

Ob�Grad�Veck	
	�

�� K�Grad�Veck � Z�t� t

���

�� If eX is the blow up of a smooth variety X along a smooth closed subvariety Y then
Pmot eX � PmotX�PmotY �PmotY �
l� � � ��
l ��codimXY 		� If E is a vector bundle
over X then PmotPE � PmotX �
l � � � �� 
l��rankE	 ����� x�	�

In general the map from isomorphism classes of objects of an abelian category C to K�C
is not injective� but as an application of the fact that MAH

k is semisimple ����� theorem
��	 we show now that this is the case for MAH

k �
The following proposition is easily proven�





Proposition ��
 Let C be an artinian abelian semisimple category �for example MAH
k �

and A�B�C � Ob�C	� If A� C 	 B � C then A 	 B�

Corollary ��� Let M�N be AH�motives� If PmotM � PmotN then M 	 N �

Proof� PmotM � PmotN means that there exists P � Ob�MAH
k 	 withM�P 	 N�P �

now use the previous proposition�
Therefore whenever we need to prove an equality of motives it will be enough to prove

it in K�� and this is normally easier to write�

��� Mixed absolute Hodge motives�

The geometric methods in the de�nition of AH�motives do not extend at the present
moment to the case of open or singular varieties� As already mentioned MAH

k is a full
subcategory of the category of realization systems� Rk� this is very useful to construct a
category of mixed absolute Hodge motives as there is a reasonable candidate for category
of mixed systems of realizations�MRk� together with natural functors hi �Wk ��MRk�
whereWk denotes the category of varieties over k �not necessarily smooth or proper	 ��
���
I�x�	�

Let V�
k denote the category of smooth varieties over k �not necessarily proper	� Jannsen

��
��� I�x�	 de�nes MMAH
k to be the full tannakian subcategory of MRk generated by

the image of the hi � V�
k ��MRk�

There is a functor

h �Wk �� Grad�MMAH

k

which assigns �hi�X	 to the variety X�
There is a natural fully faithful functor MAH

k �� MMAH
k � MAH

k can thus be seen
as a full subcategory ofMMAH

k � An object M ofMMAH
k is provided with an increasing

�ltrationW� called the weight �ltration and the associated graded object is a pure motive�
This implies that the previous functor induces an isomorphism of rings K�M

AH
k

�
��

K�MMAH
k � We now de�ne a polynomial which via this isomorphism extends the motivic

Poincar�e polynomial�

De�nition ��� ��	
�� Let M � �Mi � Ob�Grad�MMAH
k 	 be a graded mixed motive�

then the pure motivic Poincar�e polynomial is

PmotM �
X
m

�X
i

��
	m�i�GrW�

m Mi�

�
� K�M

AH
k �

��� Remarks�


� If M � �Mi with Mi a pure motive of weight i� GrW�

m Mi is equal to Mi if i � m
and zero if i 
� m so that this polynomial coincides with the one already de�ned�

�� Note that in the mixed case PmotM does not coincide with the class ofM inK�M
AH
k �

�� Let X be a variety over k� �hiX its mixed motive and PmotX its motivic Poincar�e
polynomial� Composition with the ring morphism

K�M
AH
k �� K�Grad�Veck � Z�t� t

���

�



does not yield the classical Poincar�e polynomial� PtX ��
P

dimHi�X�Q	ti � but
rather the pure Poincar�e polynomial de�ned by

P pur
t �X	 �

X
m

�purm �X	tm� where �purm �X	 �
X
i

��
	i�mdimGrW�

m Hi�X�Q	

�c�f� �
��� 
��
�
� ���� and �
��	� which is better suited for computations than the
ordinary Poincar�e polynomial� For example if Y is a closed subvariety of X of
codimension d and both X and Y are smooth one has the Gysin exact sequence�

� � � �� hi��dY ��d	 �� hiX �� hi�X � Y 	 �� � � �

and as the functor GrW�

m is exact one gets an equality in K�M
AH
kX

i

��
	i�GrW�

m hiX� �
X

��
	i�GrW�

m hi�X � Y 	� �
X

��
	i�GrW�

m��dh
i��dY ���d	

so that PmotX � Pmot�X � Y 	 � PmotY ��d	�

�� One can de�ne in the same fashion the mixed motive of a variety with compact
supports� hcX � �hicX� and its pure motivic Poincar�e polynomial Pmot

c X � If Y is a
closed subvariety of a variety X then Pmot

c X � Pmot
c �X�Y 	�Pmot

c Y � If X is proper
then Pmot

c X � PmotX and if X is smooth then Pmot
c X � �PmotX	���dimX	�

� A motivic MacDonald formula�

Let X be a compact polyhedron and consider X�n� the symmetric power of X� this is
the quotient of Xn by the natural action of the symmetric group Sn� MacDonald gave a
formula ��
��	 that computes Betti numbers of X�n� in terms of those of X� explicitly

PtX
�n� � CoefTn

�
 � tT 	b��X� � �
 � t�T 	b��X� � � �

�
� T 	b��X� � �
� t�T 	b��X� � � �
�

In this paragraph we give a motivic version of MacDonald�s formula valid in any
neutral k�linear graded tannakian category� in particular that of Absolute Hodge Motives
or conjecturally Grothendieck�s category of pure motives�

Let C be a tannakian category� in ��� �proposition 
�	 it is shown that the commutation
constraints can be extended to cover the case of more than two factors so that for every
	 �Sn� we get isomorphisms

�� �M� � � � � �Mn ��M������ � � � � �M����n��

In particular if M � Ob�C	 this de�nes an action of Sn on M�n

Sn
�
�� Aut�M�n	�

Let 
 � Sn �� f�
��
g denote the signature�

De�nition ��� Given M � Ob�C	 de�ne SiM �resp� �iM� to be the image of the mor�
phism �

i�

P
��Si �� � M

�i ��M�i �resp� �
i�

P
��Si 
�		 ����� Extend this de�nition to the

case i � � by putting S�M � ��M � 
l�

�



��� Remarks�


� As the �bre functor � is a tensor functor it sends �� to the canonical commutation
constraints in Veck� Combining this with the fact that � is exact gives immediately
that �

�
�iM

	
� �i��M	� and using the faithfulness of � we see that �iM � � for

i � rankM �

�� If M is a rank one object then using again the �bre functor one immediately sees
that SiM �M�i�

De�nition ��� If M � Ob�C	 de�ne

�
 � T 	M �
P
�iM � T i � Ob�C�T �	

�
� T 	�M �
P
SiM � T i � Ob�C��T ��	�

If the rank of M is one then �
� T 	�M �
P
M�iT i so we shall also use the notation

�
��MT

in this case� If M and N are rank one objects then �
M�NT

will stand for

M�� �







�M��NT

�
� Ob�C��T ��	�

For the rest of the section C will denote a graded tannakian category over k� Recall

that for a graded tensor category C we de�ned in ��� a tensor category
�
C by changing

certain signs in the commutation constraints�

De�nition ��� De�ne the symmetric power of M � M �i�� in the same way as SiM but

using the commutation constraints from
�
C�

Proposition ��� Let M be a pure degree object of weight n then M �i� is SiM if n is even
and �iM if n is odd�

Proof� IfM is pure of even weight then the commutation constraintsM�M �M�M

are the same in
�
C and in C so M �n� � SnM �

In the odd weight case the commutation constraints change sign and when more than
one factor appears then the sign is given by the signature 
 so we get M �n� � �nM �

The next theorem gives an expression for the symmetric power of an object in terms
of symmetric powers of its pure components� it is our motivic version of the MacDonald
formula�

Theorem ��	 Let M � �Mi be an object in a graded neutral k�linear tannakian category�
then

M �n� 	 CoefTn
� � � � �
 � T 	M�� � �
 � T 	M� � �
 � T 	M� � � � �

� � � � �
� T 	M�� � �
� T 	M� � �
� T 	M� � � � �
� ��	

Proof� We need to see that M �n� is isomorphic to

CoefTn
�
� � � �

P
i �

iM��T
i �

P
i �

iM�T
i �

P
i �

iM�T
i � � � �

�
P

i S
iM��T

i �
P

i S
iM�T

i �
P

i S
iM�T

i � � � �
	

�
P

��������k�n
M

����
r� � � � � �M

��k�
rk �

�



On the other hand� by K�unneth

M�n �
M

r������rn�Z

Mr� � � � � �Mrn

Applying the exactness and faithfulness of a �bre functor one can check that the
following morphism is a monomorphism

�
M�n	Sn ��M�n ��

M
s������skP

�i�n

Ms��
��
� � � �Ms� � � � � �Msk�

�k
� � � �Msk �

Its image obviously lies in

M
s������skP

�i�n



Ms��

��
� � � �Ms� � � � � �Msk�

�k
� � � �Msk

�
S��

	���	S�k

�

This way we get an injection of the LHS into the RHS of ��	� to complete the proof
its enough to see that they both have the same rank but this is just the assertion of
MacDonald�s main theorem ��
��	�

Let X be a smooth projective variety over k� Write hX � �hiX � Ob�MAH
k 	� then by

Proposition ��� in ��� hX�n� � �hX�n	Sn � where the action of Sn is the one arising from
the geometric commutations X � � � � �X �� X � � � � � X� so that �hX�n	Sn � hX�n�

and this is computed using the formula in the Theorem� so we have

Corollary ��
 The motive of X�n� is

hX�n� � CoefTn
�
 � T 	h

�X � �
 � T 	h
�X � � � �

�
� T 	h�X � �
� T 	h�X � � � �
�

In particular if C is a smooth projective curve

hC�n� � CoefTn
�
 � T 	h

�C

�
� 
lT 	�
 � 
l��
	T 	
�

��� Remark� If we apply the graded �bre functor

H�
DR �MAH

k �� Grad�Veck

followed by Ob�Grad�Veck	
	�

�� Z�t� t��� we get the classical MacDonald formula� whereas

if we do the same with

�H�
DR� F

�	 �MAH
k �� Grad�Fil�Veck

and Ob�Grad�Fil�Veck	
	�

�� Z�x� y� x��� y��� we get the Hodge numbers as in ����

�



� Thaddeus� construction�

In this section we review the basic construction of Thaddeus we shall use� for a more
complete exposition see ����

Let C be a �xed smooth projective algebraic curve of genus g � � over k and L a line
bundle over C of large degree d� The moduli spaces we are primarily interested in are
N���� d	�C	 the moduli space of rank � semistable vector bundles with �xed determinant
over C� They depend on the curve C however we shall simply write N���� d	�

Thaddeus considers the problem of giving a moduli space for pairs �E� s	� where E is
a rank � vector bundle over the curve C with �xed determinant L and s is a non�zero
section of E� It appears that there are many possible de�nitions for stability of a pair
depending on a parameter 	 � ��� d� �� For 	 varying in certain open disjoint intervals there
are no strictly semistable pairs and one obtains a �nite list of �ne moduli spaces of pairs

M�� ���� M� �� �
h
d��
�

i
	�

These di�erent moduli spaces are all birational and are related by a special kind of bi�
rational maps called �ips� In this context a �ip between two varieties X and Y means that
X and Y have a common blow�up� �X 	 �Y � with the same exceptional locus� The centers
of these blow�ups are a couple of subvarieties of Mj called PW

�
i and PW�

i�� isomorphic
to certain projective bundles over symmetric products of the curve� PW�

i is a Pd��i�g���
bundle over C�i� and PW�

i�� is a P
i�bundle over C�i���� To summarize� the blow�up of Mi

along PW�
i is isomorphic to the blow�up of Mi�� along PW�

i � We can picture this chain
of �ips�

�M�
�M�

�M�

 �  � � � �  �
M� M� M�

� �
M� N���� d	�

Moreover� it is easy to see that M� is a projective space of dimension d � g � �� In
the other extreme we have M�� in the case when degL is odd M� is a projective bundle
of relative dimension d� �g � 
 over N���� 
	� the moduli space of rank two stable vector
bundles over C with �xed odd determinant� whereas if degL is even we have a map from
M� to the analogous moduli space which is only a projective �bration over the stable
locus�

� The motive of N���� ���

The purpose of this section is to give an expression for hN���� 
	 in terms of h�C and 
l�
	�
An immediate consequence is that hN���� 
	 is in the tannakian subcategory of MAH

k

generated by hC and 
l�
	�
The calculation of the Poincar�e polynomial of the moduli space involves some in�nite

sums of motives thus falling outside of the ring K�M
AH
k � to formalise this we need to

construct a greater ring �K�MAH
k � the ring of Laurent series of motives� this is done as

follows� �rst consider the subring

K�M
AH
k

�
� fx � K�M

AH
k jdegx � �g � K�M

AH
k �


�



complete it with respect to the ideal I formed by the strictly positive degree elements�
tensor the result by K�M

AH
k over K�M

AH
k

�
� then the result is the ring we were looking

for�

De�nition ���

�K�MAH
k � K�M

AH
k �

K�MAH
k

�
�K�MAH

k

�

I
�

An easy but crucial result is the following�

Lemma ��� The natural graded ring morphism K�M
AH
k �� �K�MAH

k is a monomor�
phism�

Note that if A�B are invertible motives with degB � degA then A� B � K�M
AH
k is

invertible in �K�MAH
k and its inverse is given by




A�B
� A�� �A�� �B �A�� � B� � � � � �

Proposition ��� The motive of the moduli space of pairs Mi is given by

hMi �
iX

j��

hC�j� � �
l��j	 � � � � � 
l��d� �j � g � �		

and its motivic Poincar�e polynomial is


l


l� 
l��
	
� CoefT i




l��d� �i� g � 
	


l���	T � 
l
�


l��i� 
	

T � 
l��
	

�
�

�
 � T 	h
�C

�
l� T 	�
l� 
l��
	T 	
�

Proof� From Thaddeus� construction and ����� we get

PmotfMj � PmotMj�� � PmotEj � PmotPW�
j

PmotfMj � PmotMj � PmotEj � PmotPW�
j

combining both equalities

PmotMj � PmotMj�� � PmotPW�
j � PmotPW�

j � ��	

Projective bundles are rationally cohomologically trivial ������	 so

PmotMj � PmotMj�� � PmotC�j��
l � � � �� 
l��d� �j � g � �		

�PmotC�j��
l � � � �� 
l��j � 
		

and putting this in ��	

PmotMj � PmotMj�� � PmotC�j��
l��j	 � � � �� 
l��d � �j � g � �		�

When j � � this is still valid taking M�� � � since M� is just Pd�g��� Now we add all
these expressions from j � � to j � i to get

PmotMi �
iX

j��

PmotC�j��
l��j	 � � � � � 
l��d � �j � g � �		� ��	







which by ��� proves the �rst part of the proposition� For the rest rewrite ��	

PmotMi �
iX

j��

PmotC�j�
l��j	 � 
l��d � �j � g � 
	


l� 
l��
	

and apply corollary ���

PmotMi �
iX

j��

CoefT j
�
 � T 	h

�C

�
l� 
lT 	�
l� 
l��
	T 	


l��j	 � 
l��d � �j � g � 
	


l� 
l��
	

� CoefT i
iX

j��

�
 � T 	h
�CT i�j

�
l� 
lT 	�
l � 
l��
	T 	


l��j	 � 
l��d � �j � g � 
	


l� 
l��
	

� CoefT i
iX

j��

T i�j��j	 � T i�j��d� �j � g � 
	

�

l


l� 
l��
	

�
 � T 	h
�C

�
l� 
lT 	�
l� 
l��
	T 	

� CoefT i

�
T i�� � 
l��i � 
	

T � 
l��
	
�

�
l� T i�����i� �		
l��d � g � 
 � �i	


l���	T � 
l

�

�

l


l� 
l��
	

�
 � T 	h
�C

�
l� 
lT 	�
l� 
l��
	T 	

and this completes the proof of the proposition�
In the odd degree case� if d � �g � � M� is a Pd��g����bration over N���� d	� As

N���� d	 	 N���� 
	 we can choose any convenient value of d� if we use d � �g � �� then
� � �g � �� Then by ������	

PmotM� �

l� 
l���g � 
	


l� 
l��
	
PmotN�� �	

If we put the formula for PmotMi in proposition �� into �	 we obtain the following
expression for PmotN���� 
	

��l��g�
�l��l���g���

CoefT �g��
���T �h

�C

��l��l����T ���l��lT ���l��l����T �

� �l���g���

�l��l���g���
CoefT �g��

���T �h
�C

��l��l���T ���l��lT ���l��l����T �

Our aim now is to simplify this in K�M
AH
k � We shall need a de�nition�

De�nition ��� Let A�B and M be objects in MAH
k with r � rankM � de�ne �A � B	M

to be the Newton binomial

�A�B	M �
X

�iM �Ar�i � Bi � K�M
AH
k �

Lemma ��� If M � h�C� with C a curve of genus g� we have

�A�B	M � �B��
	 �A	M �g	�


�



Proof� Poincar�e duality on the Jacobian of C says �iM 	 ���g�iM�g		�� and by
Poincar�e duality on C� M� 	M�
	 so that

�iM 	 ���g�iM�g		� 	 ���g�iM�	��g	

	 ��g�i�M�
		��g	 	 ��g�iM�g � i	�

Apply this to the de�nition of �A�B	M �

�A�B	M � ��MA�g � ��MA�g��B � ��MA�g��B� � � � �� ��gMB�g

� ��gM�g	A�g � ��g��M�g � 
	A�g��B � � � �� ��M��g	B�g

� ���gMA�g � ��g��M��
	A�g��B � � � �� ��M���g	B�g	�g	

� �B��
	 �A	M �g	�

Theorem ��	 If N���� 
	 denotes the moduli space of rank two vector bundles with �xed
odd degree on a curve C then its motivic Poincar�e polynomial in K�M

AH
k is

PmotN���� 
	 �
�
l � 
l��
		h

�C � �
l � 
l	h
�C��g	

�
l� 
l��
		�
l� 
l���		
�

Proof� We have seen that

PmotN� �
��l��g�

�l��l���g���
F �
l� 
l��
	� 
l���		 � �l���g���

�l��l���g���
F �
l� 
l��
	� 
l�
		

where in analogy with ���� if a� b and c are rank one motives� F �a� b� c	 means

F �a� b� c	 � CoefT �g��
�
l � T 	h

�C

�
l� aT 	�
l� bT 	�
l� cT 	
�

By direct calculation one can prove the same identity as in ����

F �a� b� c	 �
�a� 
l	h

�C

�a� b	�a� c	
�

�b� 
l	h
�C

�b� c	�b� a	
�

�c� 
l	h
�C

�c� a	�c� b	
�

Then PmotN� equals

�l���g���

�l��l���g���



��l��l�h�C

��l��l�������l��l����
� ��l������l�h�C

��l������l���l������l����
� ��l�����l�h�C

��l�����l���l�����l�����

�
� ��l��g�

�l��l���g���



��l��l�h�C

��l��l�������l��l�����
� ��l������l�h�C

��l������l���l������l�����
� ��l������l�h�C

��l������l���l������l�����

�
Call S� the result of adding the third summand in both sums and S� the rest� we shall

�rst calculate S��


l���g � �	�
l�
	 � 
l	h
�C

�
l�
	 � 
l	�
l�
	 � 
l��
		
�

�
l � 
l��
		h
�C

�
l� 
l��
		�
l� 
l���		

and

�
l��g	�
l���	 � 
l	h
�C

�
l���	 � 
l	�
l���	 � 
l��
		
�
�
l���g	�
l � 
l��
		h

�C
l�
	

�
l� 
l��
		�
l� 
l���		
�


�



Adding and dividing by �
l� 
l���g � 
		

S� �
�
l � 
l��
		h

�C

�
l� 
l��
		�
l� 
l���		
�

similarly we calculate S�

S� � �
�
l � 
l	h

�C
l��g	

�
l� 
l��
		�
l � 
l���		
�

Sum S� and S� to get the desired expression for PmotN�� This proves the theorem�
By applying the ring morphism K��H

�
DR	 � K�M

AH
k � Z�t� t��� we obtain the formula

of Desale and Ramanan ����	 for the Poincar�e polynomial of N���� 
	

�
 � t�	�g � t�g�
 � t	�g

�
� t�	�
� t	
�

In the following corollary we obtain the Hodge numbers of N���� 
	�

Corollary ��
 The Poincar�e�Hodge polynomial of N���� 
	 is

PxyN���� 
	 �
�
 � x�y	g�
 � xy�	g � xgyg�
 � x	g�
 � y	g

�
� xy	�
� x�y�	
�

Proof� Let Bi�Grad�Veck denote the category of �nite dimensional vector spaces over
k with a double graduation V � �p�qV

p�q� Sometimes we shall write V p�qxpyq instead of
V p�q to remind us of the graduation� Note that K�Bi�Grad�Veck � Z�x� y� x

��� y��� and
�V � �

P
dimV p�qxpyq�

If M is a AH�motive and M � �Mi is its weight grading de�ne H
p�q
DRM � GrpF �Mp�q�

this de�nes an exact functor H���
DR

H���
DR �MAH

k �� Bi�Grad�Veck
M ��� �p�qGr

p
F �Mp�q�

We have to calculate the image of

�
l � 
l��
		h
�C � 
l��g	�
l � 
l	h

�C

�
l� 
l��
		�
l � 
l���		

by the morphism

K��H
���
DR	 � K�M

AH
k �� K�Bi�Grad�Veck � Z�x� y� x

��� y����

this is a morphism of rings and it is enough to calculate the image of �l
�l��l����

� �l
�l��l����

�


l��g	� �
l � 
l	h
�C and �
l � 
l��
		h

�C �

As H���
DR �
l��i		 Cxiyi the image of �l

�l��l����
� �l

�l��l����
and 
l��g	 by K��H

���
DR	 is just

�
��xy �

�
��x�y� and xgyg�

The functor H���
DR sends �
l � 
l��k		h

�C � �n �
n h�C��nk	 to �n �

n �C gx � C gy	 �
Cxnkynk 	 �n�i�j�n �

i�C gxk��yk	��j�C gxkyk��	 and taking the class in K� we obtain
�
 � xk��yk	g�
 � xkyk��	g�


�



Putting all this together we obtain the Poincar�e�Hodge polynomial of the moduli space�

Recall that by ��
� h��pN���� 
	 � � for all p � �� that is� the border of the Hodge
diamond contains zeroes� in fact the Hodge diamond is quite thin� for this recall the
de�nition of the level of a Hodge structure� Maxhp�q 
��jp�qj� Then one can prove that the

level of the Hodge structureHiN���� 
	 is lower o equal to
h
i
�

i
� This can be proven by using

the Newstead generators of the cohomology ring �����	 or by working out the Poincar�e�
Hodge polynomial in the following way� PutA � �
�xy�	�
�x�y	 andB � xy�
�x	�
�y	
then

PxyN���� 
	 �
Ag �Bg

A�B

� Ag�� �Ag��B � � � � �Bg���

and as the only monomials in A and B are xiyj with i � j� i � �j or �i � j one can now

see that the level of Hi is less than or equal to
h
i
�

i
�

As a byproduct of our result and theorem ��� in ��� we can give another proof of the
following result of I� Biswas

Corollary ��� ���� Let 	 be an embedding of the �eld k in C � then 	�Hodge cycle on the
variety N���� 
	 is an absolute Hodge cycle�

Let C be a curve de�ned over a �nite �eld� Fq � and note by �C�s	 its zeta function�
The moduli space is also de�ned over Fq and we can deduce the following result concerning
its number of points �see �

�� in fact this corollary is equivalent to the Siegel formula for
SL� over the function �eld of C	�

Corollary ��� The number of Fq �points of N���� 
	 is

�N���� 
	�Fq 	 � �C��	 �
qg

�
� q	�
� q�	
�Jac�C	�

� The mixed motive of N���� ���

If g � � then N���� �	 is isomorphic to P� and its motive is well known� However if g � �
moduli space N���� d	 is a singular projective variety with singular locus the Kummer
variety associated to the Jacobian of the curve� In this section we assume g � � and study
the mixed motive hN���� �	� in particular we �nd an expression for its motivic Poincar�e
polynomial and show that only two weights can appear� We do this by relating N���� 
	
and N���� �	 via the Hecke correspondence introduced by Narasimhan and Ramanan in
�
��� This consists of a variety fM and morphisms p� and p�

fM
p�  � p�

N���� 
	 N���� �	�

The basic properties of fM are�


� The morphism p� makes fM into a P��bundle� This projective bundle arises from a
vector bundle over N���� 
	�






�� The morphism p� has �bres as follows�

�a	 Over the stable locus�

p��
� N���� �	

s �� N���� �	
s

is a P��bundle� Unlike the odd degree case this projective bundle does not arise
from a vector bundle�

�b	 The strictly semistable locus is the Kummer variety� K� associated to the Jaco�
bian of the curve� Let K� be its ��g singular points� Then the �bre of p� over
a point of K �K� is isomorphic to Pg�� � Pg��� It is an interesting fact that
the double cover associated to this over K �K� is not trivial�

�c	 Over K� the reduced �bre is isomorphic to Pg���

�� One can de�ne fM as a moduli space of semistable parabolic rank two vector bundles
with trivial determinant over the curve with small enough parabolic weights ��
��	�

We set some notations� Let J be the Jacobian of the curve and J� its ��torsion points�
The strictly semistable locus of the moduli space N���� �	 is isomorphic to the Kummer
variety associated to the Jacobian of C� we shall note this by K and K� its ��g singular
points� The projection J �� K restricts to a double cover J�J� �� K�K�� Fix a point
x � C and choose a Poincar�e line bundle� L� over C � J normalised so that Lx � Ljfxg	J
is trivial� The action of Z�Z on �J � J�	 � C lifts to the vector bundle L � L�� and by
descent we get a vector bundle on �K �K�	�C which we still note L�L�� �of course L
is not de�ned over �K �K�	� C	� The projections of a product� X � Y � over its factors
will be written pX and pY �

Theorem 	�� The motivic Poincar�e polynomial of N���� �	 and N���� �	
s are

PmotN���� �	 � PmotN���� 
	 �
�
l� 
l��
		 ��
	PmotK � �
l��
	 � 
l��g		PmotJ


l � 
l���	
�

PmotN���� �	
s � PmotN���� 
	 �

�
l� 
l��
		PmotK � �
l��
	 � 
l��g		PmotJ


l � 
l���	
�

The proof of the theorem relies on the following lemma

Lemma 	�� The morphism p��
� �K �K�	 �� K �K� has a section 	 such that if P is

the projective bundle over J � J� de�ned by the vector bundle R�p�J�J���L
� �OJ�J� and

	� is the section de�ned by the natural morphism R�p�J�J���L
� �OJ�J� �� OJ�J� then

there exists an isomorphism � yielding a commutative diagram

P � 	��J � J�	
�
�� p��

� �K �K�	� 	�K �K�	
� �

J � J� �� K �K��

Proof� We �rst de�ne 	� Let F � L � L�� �� �K � K�	 � C be the family of
rank two vector bundles de�ned above� If ix � fxg �� C is the natural inclusion� put
Fx � �id � ix	

�F � The projective bundle � � PF�x �� K �K� parametrizes a family of
parabolic rank two vector bundles� �id��	�F � O�
	 �� ��Fx� If we see a point of PF

�
x as

a line� �� in Lx � L��
x with L � J � J� one can see that the parabolic bundle is stable i�


�



� 
� Lx and � 
� L��
x � As we are assuming Lx � O� PF�x 	 P

�� �K �K�	 and we see that
the stable locus in the previous family is

�
P� � f���g

	
� �K �K�	� From the de�nition

of fM we obtain a modular morphism� j�

�
P� � f���g

	
� �K �K�	

j
�� fM

� �
K �K� �� N���� �	�

And it is easy to prove that j��� L � L��	 is independent of � thus yielding a section offM �� N���� �	 over K �K��
Note next that the sheaf R�p�J�J���L

� is locally free of rank g � 
� let R be the
projective bundle over J �J� associated to it and let � be the projection� Over R�C we
have an extension of line bundles

� �� OR�
	 � ��L �� E �� ��L�� �� ��

Taking pullback by ix we obtain the following exact sequence of vector bundles over R

� �� OR�
	 �� Ex �� OR �� ��

Let Q be the P� bundle over R associated to the vector bundle Ex� Q parametrizes a
family of parabolic vector bundles� If we see a point of Q as an extension of line bundles
� �� L �� E �� L�� �� � together with a line � � Ex then this de�nes an unstable
parabolic bundle i� � � Lx� This way we see that the stable locus� Qs� of Q is is the
complementary of the section of Q � PEx 	 P�OR�
	�OR	 given by OR�
	�OR �� OR�
that is Qs is isomorphic to the total space of the line bundle OR�
	�

From the de�nition of fM we get a modular morphism � � Qs �� fM which by obvious
considerations makes the following diagram commutative

Qs �
�� fM

� �
J � J� �� N���� �	�

We see that � gives an isomorphism Qs �� p��
� �K�K�	 because it induces a bijection

of S�points for every S � Ob�Sch	�
Moreover Qs is the complementary of the stated section of the projective bundle

P�R�p�J�J���L
��O	 to see this just note that if V �� X is a vector bundle then OPV �
	

is isomorphic to the complementary of the trivial section of P�V �O	�
Proof of the Theorem� From the Hecke correspondence we see that

Pmot
c

fM � �
l � 
l�
		 Pmot
c N���� 
	�

and

Pmot
c

fM � �
l � 
l�
		 Pmot
c N���� �	

s � Pmot
c p��

� �K �K�	 � Pmot
c p��

� K��

Now p��
� K� consists of �

�g copies of Pg�� and so

Pmot
c p��

� K� � ��g

l� 
l��g	


l� 
l��
	
�


�



On the other hand by lemma ��� Pmot
c p��

� �K �K�	 equals


l� 
l��g	


l� 
l��
	
� 
l

��
PmotJ � ��g

�
� PmotK � ��g�

Therefore

Pmot
c N���� �	

s � PmotN���� 
	 �
PmotK �



�l��l��g�
�l��l����

� 
l

�
PmotJ


l � 
l�
	
�

and PmotN���� �	 � Pmot
c N���� �	

s � PmotK�
Seshadri constructs in ���� a desingularization of the moduli space N���� �	�

p � M �� N���� �	

the �bres of this morphism are given by


� Over the stable locus N���� �	
s it is an isomorphism�

�� Over K �K� it is a P
g�� � Pg���bundle�

�� The �bre over a point of K� is the disjoint union of Grass�V and a rank g�� vector
bundle over Grass�V where V � H��C�OC 	�

From theorem ��
 one can easily derive the following corollary�

Corollary 	�� The motivic Poincar�e polynomial of M is

PmotN���� 
	� PmotK



��l��l���g�	���l��l������l���g�	����

��l��l����	��l��l����	

�
� PmotJ



��l��l���g�	
�l��l����

�
�

���g
�
PmotGrass�V � PmotGrass�V ��� g	�



�l��l���g�
�l��l����

��
�

Proof� From the description of M we see that

PmotM � Pmot
c N���� �	

s � Pmot
c p���K �K�	 � Pmot

c p���K�	

We have computed Pmot
c N���� �	

s in theorem ��
� on the other hand

Pmot
c p���K �K�	 �




l� 
l��g � �	


l� 
l��
	

�� �
PmotK � ��g

�
Pmot
c p��K� � ��g

�
PmotGrass�V � PmotGrass�V �g � �	

�
�

Upon application of the ring morphism

K��H
�
DR	 � K�Mk �� K�Grad�Veck � Z�t� t

���

we obtain the formula for the Poincar�e polynomial of M in ��� If instead we apply the
ring morphism

K� �H
�
DR� F

�	 � K�Mk �� K�Grad�Fil�Veck � Z�x� y� x
��� y���


�



we obtain the following formula for the Poincar�e�Hodge polynomial of M

���xy��g���x�y�g����x�g���y�gxgyg

���xy����x�y�� � ���x�g���y�g����x�g���y�g

�



����xy�g��	���xy��xy�g��	xy

���xy�����xy���

�
�

��
 � x	g�
 � y	g


����xy�g��	

��x�y�

�
� ��g



PxyGrass�V � PxyGrass�V �xy	

g�� �
�
���xy�g��

��xy

���
�

The following proposition shows how near is PmotN���� �	 from the true motive of
N���� �	�

Proposition 	�� The mixed AH�motive hiN���� �	 has only weights i and i� 
�

Proof� First note that p��K� admits a cell decomposition and therefore hicp
��K� is a

pure motive of weight i� Now write the Gysin exact sequence for p��K� � p��K�

� � � �� hicp
���K �K�	 �� hicp

��K �� hicp
��K� �� � � � �

If one writes the Gysin exact sequence for K� � K one sees that Wi��h
i
c�K �K�	 is

the image of hi��
c K� by the connecting morphism� from this and the description of the

�bres of p it can be seen that the image of Wi��h
i
cp
���K � K�	 in hicp

��K is zero� it
follows that hicp

��K is a pure motive of weight i�
Now write the Gysin sequence for p��K �M �

� � � �� hi��
c p��K �� hicN���� �	

s �� hicM �� hicp
��K �� � � � �

Being hi��
c p��K and hicM pure motives it follows that hicN��� �	s is a mixed motive with

weights i and i� 
� by writing one more Gysin sequence one proves the same fact about
hiN���� �	�

	 Intermediate Jacobians�

If X is a smooth projective variety over the complex numbers then Gri�ths associates a
complex torus to the integer pure Hodge structure H�i���X�Z	�

J i�X	 �
H�i���X� C 	

F iH�i���X� C 	 �H�i���X�Z	
�

called the i�th intermediate Jacobian� IfX is de�ned over a �eld k then for each embedding
	 � k �� C we have an associated intermediate jacobian J i�X �� C 	�

Note that if we know h�i���X	 and are interested in J i�X�	 there is only one piece of
data missing� the entire structure on the singular cohomology group H�i���X��Q	� so we
can recover J i�X�	 up to isogeny from h�i���X	

The intermediate jacobian J iX is isomorphic to the groupExt�MHS

�
Z�H�i���X�Z	�j	

	
�

where MHS is the category of mixed Hodge� �see Lemma ��� in �
��	 this motivates the
de�nition of ��adic intermediate jacobian of a variety� X� de�ned over an arbitrary �eld k�
as the group of extensions Ext�Rep�Gk

�
Z��H

�i���X�Z�	�j	
	
where Rep�Gk is the category

of continuous ��adic representations of the Galois group Gk � Gal�kjk	� De�ne the ��adic
intermediate jacobians up to isogeny as the same extension groups but replacing Z� by Q� �

In the following corollary� for notational purposes� assume that either an embedding
of the �eld k in C or a prime � have been chosen and use the corresponding de�nition of
intermediate jacobian�


�



Corollary 
�� The i�th intermediate jacobian of the moduli space N���� 
	 is isogenous
to

� g��
�
�Y

k��

�
JkJac�C	

�ci�k�g
�

where ci�k�g � Coefti��k��
�

 � t� t� � � � �� tg��k

� �

 � t� � t � � � �� t�g�k

�
�

Proof� Theorem �� says

PmotN���� 
	 �
�
l � 
l��
		h

�C � �
l � 
l	h
�C��g	

�
l� 
l��
		�
l � 
l���		
�

this is equal to

�gM
k��

�kh�C

l��k	 � 
l��g	

�
l� 
l��
		 �
l� 
l���		
�

use Poincar�e duality on the Jacobian of C as in the proof of lemma � to get

gM
k��

�kh�C

l��k	 � 
l��g	

�
l� 
l��
		 �
l� 
l���		
�

gM
k��

�kh�C��g � k	

l�k � �g	� 
l��g	

�
l� 
l��
		 �
l� 
l���		
�

adding this we obtain the following expression for PmotN���� 
	

gM
k��

�kh�C

l� 
l��g � k	


l� 
l��
	


l� 
l���g � �k	


l� 
l���	
��k	� ��	

Note that this is the class in K�M
AH
k of an object of MAH

k so that in fact� by corollary
���� we have obtained hN���� 
	�

In order to compute J iN���� 
	 we have to �nd h�i��N���� 
	� by formula ��	 this is

� g��� �M
k��

��k��h�C � 
l�k � i	�ci�k�g

Now the result follows�


�� Examples�

	� Putting i � 
 we obtain J�N���� 
	 � � which is reasonable since H�N���� 
	 � ��
The value i � � gives an isogeny J�N���� 
	 � Jac�C	 which is a result of Mumford
and Newstead ��	��� modulo isogeny� One can easily check that if g � � J�N���� 
	
is also isogenous to Jac�C	� Of course� if g � �� J�N���� 
	 � ��

�� For g � � the value i � � gives an isogeny JN���� 
	 � Jac�C	� Jac�C	� If g � �
JN���� 
	 is clearly zero for dimensional reasons� if g � � then JN���� 
	 � Jac�C	
by duality�

�� If g � � then there are non abelian intermediate jacobians� the �rst is J�N���� 
	
which for g � � is isogenous to J�Jac�C	 � Jac�C	 � Jac�C	 whereas for g � � is
isogenous to J�Jac�C	� Jac�C	�

��
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