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Abstract

We study the motive of the moduli spaces of semistable rank two vector bundles
over an algebraic curve. When the degree is odd the moduli space is a smooth pro-
jective variety, we obtain the absolute Hodge motive of this, and in particular the
Poincaré-Hodge polynomial. When the degree is even the moduli space is a singu-
lar projective variety, we compute the pure motivic Poincaré polynomial and show
that only two weights can occur in each cohomology group. As corollaries we obtain
the isogeny type of some intermediate jacobians of the smooth moduli space and the
motive and Hodge numbers of Seshadri’s smooth model for the singular moduli space.

1 Introduction.

The moduli space of stable vector bundles over an algebraic curve is a relatively well-
known object, it has received great attention for the last twenty years, in particular when
the rank and degree are coprime its cohomology has been shown to be torsion free and
its Betti numbers are known. However the methods used in studying its cohomology are
topological ([20]), number theoretical ([11], [9]) or infinite-dimensional ([1]), and these, at
least in principle, do not yield information on the algebraic structure of the cohomology
of the moduli space, say its Hodge numbers or Hodge structure.

In this paper we use a recent construction by M. Thaddeus ([25]) to give a description
of the motivic Poincaré polynomial of the moduli space of rank two semistable vector
bundles of fixed determinant on an algebraic curve. It is an idea of Grothendieck (see
[23]) that one should work in the Grothendieck group K of the category of motives, this
is where the motivic Poincaré polynomial lives. We believe that the theory of motives is an
effective language to express clearly and precisely how the algebro-geometric properties of
the curve influence those of the moduli space of stable vector bundles, as a manifestation
of this belief we show how to prove a result by I. Biswas [6] in this framework. However
at the present moment we do not have at our disposal the true category of motives My
of Grothendieck, since the standard conjectures remain unproven, so we use the definition
by Deligne of absolute Hodge motives M,‘gH .

We start by giving a quick review of the theory of absolute Hodge motives, the natural
language in which motives are expressed is that of tannakian categories so we recall the
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basic facts of these, we also define the motivic Poincaré polynomial, this is done in section
2.

In order to carry out the calculations we need a motivic version of MacDonald’s formula
for the Betti numbers of a symmetric power, we do this in section 3. Note that in fact we
get an expression for the motive of X(® and not only for P™0t X (") ¢ KOMkAH .

Then in section 4 we give a short account of Thaddeus’ construction of the moduli
spaces of pairs.

In section 5 is where with the aid of Thaddeus’ construction we manage to calculate the
motivic Poincaré polynomial of the moduli space Ny(2,1) of stable rank 2 vector bundles
with fixed odd determinant.

In section 6 we study the singular moduli space Ny(2,0) of rank 2 semistable vector
bundles with fixed even determinant. We use the geometric Hecke correspondence as
defined by Narasimhan an Ramanan in [18]. Our results differ from those of Kirwan ([13])
in that we use pure Poincaré polynomials whereas she finds the intersection cohomology
Poincaré polynomial. As a corollary we obtain the motive of the smooth model of Seshadri
([24]) generalising the results of Balaji and Seshadri ([4], [5]).

Finally in section 7 we extract information concerning the intermediate jacobians of
the moduli spaces from the motivic Poincaré polynomial.
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Throught the paper k will denote a field of characteristic zero.

2  Absolute Hodge motives.

In this section we give a brief review of the theory of absolute Hodge motives and related
topics. For proofs of theorems and more precise statements refer to [8].

2.1 Tannakian categories.

By a tannakian category we shall mean a k-linear abelian neutral rigid tensor category
with End(1l) = k. Let C be a tannakian category, the fact that C is neutral means there
exists a faithful exact functor from C to the category of finite dimensional vector spaces
over k

w:C — Vecy

called a fibre functor.

In a rigid tensor category there is a concept of rank. However in the case of a tannakian
category this definition of rank gets simplified by the use of a fibre functor, rankM =
dimgw(M).

An example of tannakian category is the category of finite dimensional k-represen-
tations of an affine group scheme G over k, the fibre functor being the obvious one. In fact
a fundamental theorem ([8], 2.11) states that all tannakian categories arise in this way,
so that if C is a tannakian category with fibre functor w then there exists an affine group
scheme G, over k and an equivalence of categories C — Rep-G, compatible with the



fibre functors, G, is then called the Galois group or fundamental group of the tannakian
category C respect to w, Gal(C,w).

2.1 Examples:

1. Consider the category of finite dimensional graded vector spaces over k, it is a
tannakian category which is easily seen to be equivalent to Rep-Gy, -

2. The category of local systems of finite dimensional complex vector spaces over a
topological space X is a tannakian category. A fibre functor is obtained by assigning
to each local system L the complex vector space L,, where z is a point of X. The
fundamental group of this tannakian category is naturally isomorphic to (X, z),
the fundamental group of homotopy classes of loops based at z.

3. The category of rational pure Hodge structures, HSg is a tannakian category.

One can also introduce the notion of a graded (by Z) tannakian category ([8], §5). It is
one where every object has a finite direct sum decomposition compatible with a Kiinneth
formula. A pure object is defined to be one with trivial decomposition, its degree will
also be refered to as its weight. This is better expressed by using the Galois group, a
graded tannakian category is a tannakian category C together with a central morphism
Gm — Gal(C).

However a richer structure appears quite naturally in the theory of motives: (C,w,T)
is called a Tate triple if C is a tannakian category graded by w : G,, — Gal(C), and T is
a weight —2 invertible object called the Tate object. The result of tensoring an object by
the Tate object is usually refered to as a Tate twist. A standard way to abreviate A ® T'®*
is A(4).

The following definition will be useful.

Definition 2.2 If C is a tensor category then C[[T]] is the tensor category whose objects
are

Ob(C[[T]]) = {(Ai)ien|As € OB(C)}
(also written as Y A;T*). The morphisms are defined by
Hom()_ AT, B;T') = [[ Hom(4;, B;).
The tensor product of 3> A;T* and 3. B;T* is defined as
> ( b AiBj) ™.
n \itj=n

This tensor product inherits associativity and commutativity constraints from C. Define
natural functors

Coefrn : C[[T]] — C (1)

sending 3 A;T® to A, (this is not however a tensor functor).



Recall that in a tensor category there are commutation constraints, that is for every
pair of objects M, N € Ob(C) isomorphisms

MeN -2 NeoM

2.3 Let C be a graded tensor category. Consider the new commutation constraints, given
on pure objects M;, N; of weights ¢ and j by (—1)”¢ where ¢ are the old commutation

constraints. Call C the resulting tensor category.

In the case when C is a tannakian category C need not be tannakian. For instance, if C is
MAH (see 2.2) then C is called the false category of motives M £ ([8], §6).

2.2 Absolute Hodge motives.

We shall work with the category of smooth projective varieties over k, V.

The main problem in the theory of motives is to find a tannakian category that factors
all possible cohomology functors. Grothendieck gave a construction of such a category
My (see [15]) but in order to prove it has the required properties one needs the standard
conjectures which remain unproven.

Deligne ([8]) has given a temporary working definition for motives, these are the abso-
lute Hodge motives which we shall use in what follows. The category MfH is constructed
in exactly the same way as M, but using absolute Hodge cycles instead of algebraic cycles.
We recall that an absolute Hodge cycle of X of codimension p is an element of

2. 2: 2.
FOHP(X)(p) x HH PX,Q)p) x I Hy(Xs,Q)(p)

o:k—C

such that it is compatible with the comparison isomorphisms between de Rham, singular
and tale cohomology. We denote the group of such cycles by Z% ;(X).

In the same manner as with Grothendieck motives we get a functor, h, from the
category of smooth projective varieties over k to the category of AH-motives.

One advantage of working with AH-motives is that the Kiinneth components of the
diagonal in H?¥(X x X) are again AH-cycles, so we get a decomposition hX = h'X @
R'X @ --- ® h??X. This makes MfH into a graded tannakian category, it is customary
to refer to this grading as the weight grading. A motive that is zero in all degrees except
in one is called a pure weight motive. As MkAH is a graded tannakian category one has a
graded fibre functor

M#H s Grad-Vecy

2.4 Remarks:

1. The cycle maps produce an absolute Hodge cycle for each p-codimensional algebraic
cycle so one gets a morphism ZP(X) — Z4,(X). In this way we get a functor

2. An important thing to know about the category of AH-motives is that it is a full
subcategory of the category of realization systems defined in [12]. The motive h¢(X)

can thus be seen as a triple (HiDR(X, k), H: (X, Q)’Hét (7,(@@)), where H, (X, k)
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is a finite dimensional k-vector space with a filtration F* (the Hodge filtration), for

each embedding k¥ < C H(X,Q) is a rational pure Hodge structure of weight i
and for each prime / Hét (X,Q) is a Gal(k,k)-module, together with comparison
isomorphisms.

2.3 KoM4AH and the motivic Poincaré polynomial

Recall that to every abelian category C one can attach the Grothendieck group K,C.
Moreover if C is a (graded) tensor category then KoC is a (graded) unitary commutative
ring. Given A an object C we shall use the notation [A] for its class in K(C. If C is a tensor
category and C[[T]] is the tensor category defined in 2.2 then Ky(C[[T]]) = KoC[[T]] and
the additive functor Coefr» induces the standard morphism Coefrr : KoC[[T]] — KoC.

In particular if we put C = MAH we get a graded ring KoM# . In the category MaH
one has the Tate twist

A — An)
and the dualising functor

MPHE 5 MpH
A — AY

both of which are exact functors and so descend to additive morphisms of the graded ring
KoM{HE,

Definition 2.5 Let M be an AH-motive then its motivic Poincaré polynomial is defined
to be its class in the graded ring KOMkAH

P™M = [M] € KoMpH
2.6 Remarks:
1. Note that this is not really a polynomial, it is an element of a graded ring.
2. If X is a smooth projective variety over k then we shall write P™?X = P™th X,

3. This is a generalisation of the usual Poincaré polynomial as can be seen by following
hX = ®h'X through the commutative diagram

obmpmy A, gopmpt

Ob(H3, ) + Ko(H3 ) +

Ob(Grad-Vec) % KyGrad-Vecy = Z[t,t ]

4. If X is the blow up of a smooth variety X along a smooth closed subvariety ¥ then
pmotx = pmotx _ pmoty  pmoty (1+...+1(—codimxY)). If £ is a vector bundle
over X then P™O'PE = PmOtX (1 + --- + 1(—rank&) ([8], §6).

In general the map from isomorphism classes of objects of an abelian category C to KyC
is not injective, but as an application of the fact that M£H is semisimple ([8], theorem
6.5) we show now that this is the case for MfH.

The following proposition is easily proven.



Proposition 2.7 Let C be an artinian abelian semisimple category (for example MﬁH)
and A,B,C € Ob(C). f A& C ~B & C then A~ B.

Corollary 2.8 Let M, N be AH-motives. If P™'M = P™°N then M ~ N.

Proof. P™'M = P™% N means that there exists P € Ob(M£H) with Mo P ~ No P,
now use the previous proposition. O

Therefore whenever we need to prove an equality of motives it will be enough to prove
it in Ky, and this is normally easier to write.

2.4 Mixed absolute Hodge motives.

The geometric methods in the definition of AH-motives do not extend at the present
moment to the case of open or singular varieties. As already mentioned M,‘gH is a full
subcategory of the category of realization systems, Ry, this is very useful to construct a
category of mixed absolute Hodge motives as there is a reasonable candidate for category
of mixed systems of realizations, MRy}, together with natural functors h? : Wy — MRy,
where Wy, denotes the category of varieties over k (not necessarily smooth or proper) ([12],
1.§2).

Let V,S denote the category of smooth varieties over k (not necessarily proper). Jannsen
([12], 1.§4) defines MM£H to be the full tannakian subcategory of MR}, generated by
the image of the A : V) — MRy.

There is a functor

h: Wy — Grad-MMPH

which assigns ©h*(X) to the variety X.

There is a natural fully faithful functor MAH — MMM MAH can thus be seen
as a full subcategory of MM?H . An object M of MM?H is provided with an increasing
filtration W. called the weight filtration and the associated graded object is a pure motive.

~

This implies that the previous functor induces an isomorphism of rings KngH —
KOMMfH . We now define a polynomial which via this isomorphism extends the motivic
Poincaré polynomial.

Definition 2.9 ([19]) Let M = &M; € Ob(Grad-MMZLH) be a graded mized motive,
then the pure motivic Poincaré polynomial is

PO =" (Z(—Dm“[GrL"-Mi]) € KoM ™.
m 7
2.10 Remarks:

1. If M = ®M; with M; a pure motive of weight i, Gr'V- M; is equal to M; if i = m
and zero if ¢ # m so that this polynomial coincides with the one already defined.

2. Note that in the mixed case P™° M does not coincide with the class of M in K, OM,‘;‘H .

3. Let X be a variety over k, ®h‘X its mixed motive and P™° X its motivic Poincaré
polynomial. Composition with the ring morphism

KoM — KyGrad-Vecy, = Z[t,t7}]



does not yield the classical Poincaré polynomial, P, X := Y. dimH*(X,Q)#, but
rather the pure Poincaré polynomial defined by

m

PPY(X) = x5 (X)t™, where xb"(X) = Z(—l)”mdimGrnVKHi(X, Q)

i

(c.f. [10], 185-191, [23] and [19]), which is better suited for computations than the
ordinary Poincaré polynomial. For example if Y is a closed subvariety of X of
codimension d and both X and Y are smooth one has the Gysin exact sequence,

v — BUY (—d) — B X — R(X -Y) — -
and as the functor Gr)V" is exact one gets an equality in KngH

Y (U (Gry ki X] = Y (~1) [Gra BA(X = Y)] + Y (= 1) [Gry b Y ](—d)

%
so that PMotX = Pmot(X —Y) 4+ Pmoty (—d).

4. One can define in the same fashion the mixed motive of a variety with compact
supports, h X = @hiX , and its pure motivic Poincaré polynomial P™'X . If Y is a
closed subvariety of a variety X then PM?tX = PMo{(X —Y )+ P™oYy. If X is proper
then Pt X = P™°tX and if X is smooth then P™?*X = (P™°tX)V(— dim X).

3 A motivic MacDonald formula.

Let X be a compact polyhedron and consider X(™ the symmetric power of X, this is
the quotient of X™ by the natural action of the symmetric group &,,. MacDonald gave a
formula ([14]) that computes Betti numbers of X (™) in terms of those of X, explicitly

(1 +¢T) (X)L (1 4 ¢3T7)bs(X) . ...
P,X™ = Coefrn 1= T)® (1 - 2T)e®

In this paragraph we give a motivic version of MacDonald’s formula valid in any
neutral k-linear graded tannakian category, in particular that of Absolute Hodge Motives
or conjecturally Grothendieck’s category of pure motives.

Let C be a tannakian category, in [8] (proposition 1.5) it is shown that the commutation
constraints can be extended to cover the case of more than two factors so that for every
o € G, we get isomorphisms

Yo M1 @ - Q@ M, — Ma—1(1) Q- ®M0—1(n).
In particular if M € Ob(C) this defines an action of &,, on M®"
G, 5 Aut(M®™).
Let € : 6, — {+1, —1} denote the signature.
Definition 3.1 Given M € Ob(C) define S°M (resp. N°M) to be the image of the mor-

phism 3 Y ce, 0o : ME — M® (resp. 3 cs, €(0) - @5). Extend this definition to the
case i = 0 by putting SOM = N\OM = 1.



3.2 Remarks:

1. As the fibre functor w is a tensor functor it sends ¢, to the canonical commutation
constraints in Vecy. Combining this with the fact that w is exact gives immediately
that w (A'M) = Aw(M), and using the faithfulness of w we see that A’M = 0 for
1 > rank M.

2. If M is a rank one object then using again the fibre functor one immediately sees
that S°M = M®".

Definition 3.3 If M € Ob(C) define

1+T)™ =S A'M-T* € Ob(C[T])
(1-T7)™M =%8M- T € Ob(C[[T]])-

If the rank of M is one then (1 — 7)™ = S~ M®T* 50 we shall also use the notation

ﬁ in this case. If M and N are rank one objects then MENT will stand for

Mg (%) € Ob(C[[T])).

For the rest of the section C will denote a graded tannakian category over k. Recall

that for a graded tensor category C we defined in 2.3 a tensor category C by changing
certain signs in the commutation constraints.

Definition 3.4 Define the symmetric power of M, MY, in the same way as S*M but

using the commutation constraints from C.

Proposition 3.5 Let M be a pure degree object of weight n then M® is S*M if n is even
and N'M if n is odd.

Proof. If M is pure of even weight then the commutation constraints M @ M — M QM

are the same in C and in C so M) = §"M.
In the odd weight case the commutation constraints change sign and when more than
one factor appears then the sign is given by the signature ¢ so we get M) = A"M. O
The next theorem gives an expression for the symmetric power of an object in terms
of symmetric powers of its pure components, it is our motivic version of the MacDonald
formula.

Theorem 3.6 Let M = ®M; be an object in a graded neutral k-linear tannakian category,
then

QU+T)M1a1+T)Me(1+T)"®--- o)
QMN-TYM20(1-T)YMe(1-T)Mg-...

MM ~ Coefpn =

Proof. We need to see that M) is isomorphic to

RIS M T @Y, S"MT' @Y, S'MoT' ® -+ +)
A A
= Y bt A=n M,gl Vg... M,gkk).
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On the other hand, by Kiinneth

MO — @ M, ® - ®M,,

71y P'n€Z

Applying the exactness and faithfulness of a fibre functor one can check that the
following morphism is a monomorphism
A A
(M(X)n)Gn oy MO @ Msl® 2L ®Msl ® --- ®Msk® Uk ®Msk-

51 < <8p
Z)\i=n
Its image obviously lies in
A1 )‘k
@ <M51®"'®Msl®"'®Msk®"'®Msk

81 <--<Sp

Z)\i=n

This way we get an injection of the LHS into the RHS of (2), to complete the proof
its enough to see that they both have the same rank but this is just the assertion of
MacDonald’s main theorem ([14]). O

Let X be a smooth projective variety over k. Write hX = ®h‘X € Ob(M#H), then by
Proposition 6.8 in [8] hX () = (hX®")®» where the action of &,, is the one arising from
the geometric commutations X x --- x X — X x --- x X, so that (hX®?)%» = pX()
and this is computed using the formula in the Theorem, so we have

)6)\1><---><G)\k

Corollary 3.7 The motive of X is

hRX™ = Coefyn (1+ T)hlx ®(1+ T)hSX O
1-THX(1-T)V"Xg...

In particular if C' is a smooth projective curve

(1+T)*'¢

(n) — . .
RO = Coctr My A — 1))

3.8 Remark: If we apply the graded fibre functor

Hpp : M — Grad-Vecy

followed by Ob(Grad-Vecy) i, Z[t,t 1] we get the classical MacDonald formula, whereas
if we do the same with

(Hbg, F') : MEE — Grad-Fil-Vecy

and Ob(Grad-Fil-Vecy) A, Z[z,y,x 1,y '] we get the Hodge numbers as in [7].



4 Thaddeus’ construction.

In this section we review the basic construction of Thaddeus we shall use, for a more
complete exposition see [25].

Let C be a fixed smooth projective algebraic curve of genus g > 2 over k£ and £ a line
bundle over C of large degree d. The moduli spaces we are primarily interested in are
No(2,d)(C) the moduli space of rank 2 semistable vector bundles with fixed determinant
over C. They depend on the curve C however we shall simply write Ny(2,d).

Thaddeus considers the problem of giving a moduli space for pairs (E, s), where E is
a rank 2 vector bundle over the curve C' with fixed determinant £ and s is a non-zero
section of E. It appears that there are many possible definitions for stability of a pair
depending on a parameter o € [0, %] For ¢ varying in certain open disjoint intervals there
are no strictly semistable pairs and one obtains a finite list of fine moduli spaces of pairs
My, ..., M, (w= [d;;])

These different moduli spaces are all birational and are related by a special kind of bi-
rational maps called flips. In this context a flip between two varieties X and Y means that
X and Y have a common blow-up, X ~ Y, with the same exceptional locus. The centers
of these blow-ups are a couple of subvarieties of M called IF’W{Ir and PW; | isomorphic
to certain projective bundles over symmetric products of the curve: ]P’Wz-+ is a P4—2it9-2.
bundle over C® and PW; , is a Pi-bundle over Ct1), To summarize, the blow-up of M;
along PW,™ is isomorphic to the blow-up of M;_; along ]PWZ-'". We can picture this chain
of flips:

M- My M,
vd hN e N\ e hN
My M, M,
3 \J
My N0(27d)

Moreover, it is easy to see that M, is a projective space of dimension d + g — 2. In
the other extreme we have M, in the case when degL is odd M, is a projective bundle
of relative dimension d — 2g + 1 over Ny(2,1), the moduli space of rank two stable vector
bundles over C' with fixed odd determinant, whereas if degl is even we have a map from
M, to the analogous moduli space which is only a projective fibration over the stable
locus.

5 The motive of Ny(2,1).

The purpose of this section is to give an expression for hNy(2, 1) in terms of h!C and 1(1).
An immediate consequence is that hNy(2,1) is in the tannakian subcategory of MkAH
generated by hC and 1(1).

The calculation of the Poincaré polynomial of the moduli space involves some infinite
sums of motives thus falling outside of the ring KOMkAH , to formalise this we need to
construct a greater ring KOMkAH , the ring of Laurent series of motives, this is done as
follows: first consider the subring

KoMAET = [z € KgM2H |degz > 0} ¢ KgMAHE

10



complete it with respect to the ideal I formed by the strictly positive degree elements,
tensor the result by KOM,‘;‘H over KOM,‘;‘H +, then the result is the ring we were looking
for.

Definition 5.1
— — +
AH
K()M?H == K()Mk ®K0M£H+ K()MI?HI .
An easy but crucial result is the following.

Lemma 5.2 The natural graded ring morphism KOM,‘?H — KOM;?H 1§ @ monomor-
phism.

Note that if A, B are invertible motives with degB > degA then A — B € KOMkAH is
invertible in KoM## and its inverse is given by

1

=A1'4+A42.B+A3. B +....
B + + +

Proposition 5.3 The motive of the moduli space of pairs M; is given by
i .
hM; =3 hCW @ (1(—j) & -+ & U(—d +2j — g +2))
=0
and its motivic Poincaré polynomial is

1
1-1(-1)

I(—d+2i—g+1) 1A(—i—1) (1+T)MC
1(-2)T -1  T- 11(—1)> (A-T)(1 - 1(—D)T)’

- Coefp: (
Proof. From Thaddeus’ construction and 2.6.4 we get
Pmoth — PmOth_l + PmOtEj - PmOt[PW]-_
Pmoth — pmot M] + pmot E] - Pmot]P)Wj-l—
combining both equalities
Pmoth — PmOth,1 4 Pmot]P)Wj+ _ Pmot]P)ij- (3)

Projective bundles are rationally cohomologically trivial (2.6.4) so

POt = PMOIM g+ PMCON (L + o+ U(—d + 25 — g +2))
—pmotCW (D + -+ 1(—j + 1))

and putting this in (3)
PN = PNy + PMOCUN(U(—j) + - + U(—d + 25 — g + 2)).
When j = 0 this is still valid taking M ; = § since My is just P92, Now we add all
these expressions from j = 0 to j =i to get
i
PN =S PtCW(A(—5) + -+ + 1(—d + 2 — g + 2)), (4)

i=0

11



which by 2.8 proves the first part of the proposition. For the rest rewrite (4)

J1(—j) —U(~d+2j —g +1)

i
PmOth' _ Z PmotC(j

= 1—1(-1)
and apply corollary 3.7
mot ar. __ ) (1+T) ]l(_J)_]l(_d+2J_g+1)
PPoM: = %CoefT’ (1— 17)(1 - 1(—1)T) 1-1(-1)
 Coct Z (L+T)MCTii  1(—j) - U(—d+2j —g+1)
-1 -1(-1)7) 1—1(-1)

j=0
= Coefys i:Ti’j(—j) —T"9(—d+2j —g+1)
§=0
1 (1+T)MC

11— 1(=1) (1 - 1T)(1 — 1(-1)T)
C Coet T — (=i —1) (1—T"(=2i +2)1(—d — g+ 1+ 20)
= oefr; T—1(=1) + 1(—2)T -1
1 (1+T)h10
11— 1(=1) (1 - 17)(1 — 1(—1)T)

and this completes the proof of the proposition. O

In the odd degree case, if d > 49 — 4 M, is a P4 29t fibration over Ny(2,d). As
No(2,d) ~ Ny(2,1) we can choose any convenient value of d, if we use d = 4g — 3, then
w = 29 — 2. Then by (2.6.4)

1—1(—2g +1)

PmOtM —
© 1—1(-1)

POt N, (5)

If we put the formula for P™%M; in proposition 5.3 into (5) we obtain the following
expression for P™%' Ny(2,1)

—i(—g) (1+7)h'C
Ta(—20r1) CO¢treo—2 o dcimd—i—on 1
1(—2¢+2) (1+T)h" @
I 2000 COCtT— Ty Ind 1 07

Our aim now is to simplify this in KOM,‘;‘H . We shall need a definition.

Definition 5.4 Let A,B and M be objects in M#H with r = rankM, define (A + B)M
to be the Newton binomial

(A+B)M =3 ANM- A" B € KoMiE.
Lemma 5.5 If M = h'C, with C a curve of genus g, we have

(4+B)M = (B(-1) + A)M(g).

12



Proof. Poincaré duality on the Jacobian of C says A°'M ~ (A2~°M(g))V, and by
Poincaré duality on C, M"Y ~ M(1) so that
(A*7TM(g))Y = (A*¥"M")(~g)
A2 H M (1)) (—g) = A "M (g — ).

AM

1R

Apply this to the definition of (4 + B)M

(A+BM = AMA% + A'M A% 1B + N2MA?9 2B + ... + A2 M B
= AYM(9)A% + N M (g —1)A%9 1B +--- + A°M(—g)B¥
= (AYMAY + N9 M(—1)AY7IB + - + A" M(—29)B?9)(g)
= (B(-1)+4)"(g).

O

Theorem 5.6 If Ny(2,1) denotes the moduli space of rank two vector bundles with fized
odd degree on a curve C' then its motivic Poincaré polynomial in KngH 18

(1+1(-1))*¢ — (1+ D"'C(—g)

P™*Ny(2,1) = (1—1(-1))(1— 1(-2))

Proof. We have seen that

mot _ —]l(—g) ]l( 29+2)
PNy = 525 F(1L1(-1), (=2) + 375 25 F(1,1(=1), 1(1)

where in analogy with [25], if a, b and ¢ are rank one motives, F'(a,b,c) means

(]1 + T)hIC

F(a,b,c) = Coefpag-2 A= )1 - bT) (1 T’

By direct calculation one can prove the same identity as in [25],

(a + ]l)hIC (b+ ]l)hIC (c+ ]l)hIC

Flobe) = a0 T 6-ob-a) a5

Then P™* N, equals

1l(—2+2) ( aedylc o densre o da
Tl(=2g+1) \ (I-AC-0)-1w) " ACE)-DACH-1m) " AO-Ham-1-1)
)

1
—1l(—g) ( @edetc o dpsdpte L (d(=2)41)
T \ @A)+ A - D) -1e2) {2~ DH-2)-11)

Call Sy the result of adding the third summand in both sums and S5 the rest, we shall
first calculate Sy,

(-1
)—

11(—2g +2)(1(1) + W™ (1 + 1(-1)*C

(1(1) - (A1) = 2(-1))  (L—1(-1))(1 - 1(-2))

and

(-2 + MO _1(—2g)(1 4+ U(-1)M CU(D)
(U(~2) - H(U(-2) ~ 1(-1)  ([@— Q~1)(I - 1(~2))




Adding and dividing by (1 — 1I(—2g + 1))

(14 0(=1))"'C

S W 1)@ 1(-2)’

similarly we calculate S2

(1+ 1)*C1(—g)
(1= 1(-1))(1 - 1(-2))’

Sy =—

Sum S; and S> to get the desired expression for P™°!Ny. This proves the theorem. O
By applying the ring morphism Ko(H}p) : KoM2H — Z[t,t~!] we obtain the formula
of Desale and Ramanan ([9]) for the Poincaré polynomial of Ny(2,1)

(1+13)29 —29(1 4+ t)¥
(1—1t2)(1—t4)

In the following corollary we obtain the Hodge numbers of Ny(2,1).
Corollary 5.7 The Poincaré-Hodge polynomial of No(2,1) is

(1+2%y)?(1 + zy®)? — 2999(1 + 2)?(1 + y)*
(1 —=zy)(1 — z%y?) ’

Proof. Let Bi-Grad-Vecy denote the category of finite dimensional vector spaces over
k with a double graduation V' = @ (V9. Sometimes we shall write VP9zPy? instead of
VP4 to remind us of the graduation. Note that K,Bi-Grad-Vec;, = Z[z,y,z %,y ~!] and
[V] =Y dim VP igPyd.

If M is a AH-motive and M = @M; is its weight grading define HS M = Grh,. My,
this defines an exact functor Hpjp

szNO(za 1) =

Hpp: M — Bi-Grad-Vec
M — eap,qG’l”Z]:—v.Mp+q.

We have to calculate the image of

(1+3(=1)"C — U(—g)(1 + H*'C
(1= 1(=1))(1 - 1(-2))

by the morphism

Ko(Hyy) : KopMp? — KBi-Grad-Vecy, = Z[z,y,z 1,y 7],

this is a morphism of rings and it is enough to calculate the image of . 11]%71)’ T ]1]%72),
1(—g), (14 1)*'C and (1 + 1(—1))»'C.

As HB;Z (1(—i)) Cz'y the image of ]l—]l]%_1)’ ]1_]11}_2)

and 1(—g) by Ko(Hpy) is just

1 1
1-zy’ 1—z2y2

The functor Hjj sends (1 + 1(—k))"'C = @, A" B1C(—nk) to ®p A" (Vz & CIy) @
Cz™®y™* ~ @, Byt jp A(CIFFLyR) @ NI (CIzFyF 1) and taking the class in Ko we obtain
(1 +$k+1yk)g(1 +wkyk+1)g‘

and z9y9.
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Putting all this together we obtain the Poincaré-Hodge polynomial of the moduli space.

O
Recall that by [21] h%PNy(2,1) = 0 for all p > 0, that is, the border of the Hodge
diamond contains zeroes, in fact the Hodge diamond is quite thin, for this recall the
definition of the level of a Hodge structure: Maxpp.a£o|p — ¢|. Then one can prove that the
i

level of the Hodge structure H:Ny(2,1) is lower o equal to [—] This can be proven by using

5l
the Newstead generators of the cohomology ring ([22]) or by working out the Poincaré-
Hodge polynomial in the following way: Put A = (1+zy?)(1+z%y) and B = zy(1+z)(1+y)

then

A9 — BY

A-B

= A9 ' 4 A9 2B +4... 4+ BIL

szNO(za 1) =

and as the only monomials in A and B are z'y/ with i = j, i = 2j or 2i = j one can now
see that the level of H? is less than or equal to [%}

As a byproduct of our result and theorem 6.25 in [8] we can give another proof of the
following result of I. Biswas

Corollary 5.8 (/6]) Let o be an embedding of the field k in C, then o-Hodge cycle on the
variety No(2,1) is an absolute Hodge cycle.

Let C be a curve defined over a finite field, Fy, and note by (c(s) its zeta function.
The moduli space is also defined over F,; and we can deduce the following result concerning
its number of points (see [11], in fact this corollary is equivalent to the Siegel formula for
SLy over the function field of C).

Corollary 5.9 The number of F,-points of No(2,1) is

qg

#No(2,1)(Fy) = ¢c(2) — EDErD)

#Jac(C).

6 The mixed motive of Ny(2,0).

If g = 2 then Ny(2,0) is isomorphic to P? and its motive is well known. However if g > 2
moduli space Ny(2,d) is a singular projective variety with singular locus the Kummer
variety associated to the Jacobian of the curve. In this section we assume g > 2 and study
the mixed motive hNy(2,0), in particular we find an expression for its motivic Poincaré
polynomial and show that only two weights can appear. We do this by relating Ny(2,1)
and Ny(2,0) via the Hecke correspondence introduced by Narasimhan and Ramanan in
[18]. This consists of a variety M and morphisms p; and py

M
p1 / \P2
No(2,1) Np(2,0).

The basic properties of M are:

1. The morphism p; makes M into a P'-bundle. This projective bundle arises from a
vector bundle over Ny(2,1).

15



2. The morphism ps has fibres as follows:

(a) Over the stable locus,
Py ' No(2,0)" — No(2,0)°

is a P-bundle. Unlike the odd degree case this projective bundle does not arise
from a vector bundle.

(b) The strictly semistable locus is the Kummer variety, K, associated to the Jaco-
bian of the curve. Let Kj be its 229 singular points. Then the fibre of py over
a point of K — K is isomorphic to P91 vV P9~L. It is an interesting fact that
the double cover associated to this over K — K is not trivial.

(c) Over K the reduced fibre is isomorphic to P9~

3. One can define M as a moduli space of semistable parabolic rank two vector bundles
with trivial determinant over the curve with small enough parabolic weights ([16]).

We set some notations. Let J be the Jacobian of the curve and Jj its 2-torsion points.
The strictly semistable locus of the moduli space Ny(2,0) is isomorphic to the Kummer
variety associated to the Jacobian of C, we shall note this by K and K| its 229 singular
points. The projection J — K restricts to a double cover J —Jy — K — K. Fix a point
z € C and choose a Poincaré line bundle, £, over C' x J normalised so that L£; = L(z}1xs
is trivial. The action of Z/2Z on (J — Jp) x C lifts to the vector bundle £ & £ ! and by
descent we get a vector bundle on (K — Ky) x C which we still note £@® £~ (of course £
is not defined over (K — Kj) x C). The projections of a product, X x Y, over its factors
will be written px and py.

Theorem 6.1 The motivic Poincaré polynomial of Ny(2,0) and Ny(2,0)° are

(1 - 1(-1)) (-1)P™'K — (I(-1) — I(—g)) P™"'J

PmotNO(Z’ O) = PmotNO(Z, 1) + T ]1(_2) ’
P™ING(2,0° = ProNy(2,1) — 2T 2L) Pm“tfii](l?:)l) — U(—g)) P

The proof of the theorem relies on the following lemma,

Lemma 6.2 The morphism p, (K — Ko) — K — K has a section o such that if P is
the projective bundle over J — Jy defined by the vector bundle Rlp(J,JO)*[:2 ®0y_j, and
o' is the section defined by the natural morphism Rlp(J_JO)*E2 ®05_j, — Oj_j, then
there exists an isomorphism ¢ yielding a commutative diagram

P—d(J—-Jy) 5 p,Y(K—Ky) —o(K —K)

: :
J—J() — K—K().

Proof. We first define 0. Let F = L® L ! — (K — Kp) x C be the family of
rank two vector bundles defined above. If i; : {x} — C is the natural inclusion, put
Fr = (id X iz)*F. The projective bundle  : PFY — K — K, parametrizes a family of
parabolic rank two vector bundles: (id x m)*F, O(1) — 7*F,. If we see a point of PF,’ as
a line, £, in L, ® L' with L € J — Jy one can see that the parabolic bundle is stable iff
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0# Ly and £ # L. As we are assuming £, = O, PF,) ~ P! x (K — K) and we see that
the stable locus in the previous family is (P! — {0,00}) x (K — Kp). From the definition
of M we obtain a modular morphism, 7,

(Pt — {0,00}) x (K — Ky) -1 M

+ +
K—KO — N0(2,0)

And it is easy to prove that j(¢,L & L~!) is independent of £ thus yielding a section of
M —s Ny(2,0) over K — K.

Note next that the sheaf Rlp(J_JO)*E2 is locally free of rank g — 1, let R be the
projective bundle over J — Jy associated to it and let 7 be the projection. Over R x C we
have an extension of line bundles

0— Or(l)@7*L — £ — 7L~ —0.
Taking pullback by i, we obtain the following exact sequence of vector bundles over R
0— Ogr(l) — & — Or — 0.

Let Q be the P! bundle over R associated to the vector bundle &, Q parametrizes a
family of parabolic vector bundles. If we see a point of () as an extension of line bundles
0 — L— E — L' — 0 together with a line £ C E, then this defines an unstable
parabolic bundle iff ¢ C L,. This way we see that the stable locus, Q°, of @ is is the
complementary of the section of @ = P&, ~ P(Og(1) ® Og) given by Ogr(1) ® Ogr — Og,
that is Q° is isomorphic to the total space of the line bundle Og(1).

From the definition of M we get a modular morphism ¢ : Q°* — M which by obvious
considerations makes the following diagram commutative

Q 5 M
+ +
J—J() — N0(2,0).

We see that ¢ gives an isomorphism Q° — p5 L(K — Kj) because it induces a bijection
of S-points for every S € Ob(Sch).

Moreover @° is the complementary of the stated section of the projective bundle
]P(Rlp(J_JO)*£2 ® O) to see this just note that if V. — X is a vector bundle then Opy(1)
is isomorphic to the complementary of the trivial section of P(V & O). O

Proof of the Theorem. From the Hecke correspondence we see that

PM!NT = (1+1(1)) P No(2, 1),
and
PO = (14 1(1)) P Ny(2,0)° + P, (K — Kg) + P, LK.
Now p, LK, consists of 229 copies of P91 and so

1-1(—g)

Py Ky = 22’77]l —TE
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On the other hand by lemma 6.2 P°'p; ' (K — Kj) equals

(]1 - ]l(_g) o ]1) (PmotJ o 229) o PmOtK + 229_

1—1(-1)
Therefore
protig 1 () g prot
P Ny(2,0)* = P™*Np(2,1) — 1+ (1) ;
and P™°'Ny(2,0) = Pt Ny(2,0)° + P™'K. O

Seshadri constructs in [24] a desingularization of the moduli space Ny(2,0),
p: M — Ny(2,0)
the fibres of this morphism are given by
1. Over the stable locus Ny(2,0)? it is an isomorphism.
2. Over K — K it is a P92 x P9~2-bundle.

3. The fibre over a point of K is the disjoint union of GrasszV and a rank g — 2 vector
bundle over GrasssV where V = H(C,O¢).

From theorem 6.1 one can easily derive the following corollary.

Corollary 6.3 The motivic Poincaré polynomial of M s

mot mot (11_11(3_9))(211_]1(_1)_11(2_9))(_1) mot (]l ]l(l ))
2

Proof. From the description of M we see that
PmotM — PcmOtNg(z,O) Pmot —I(K KO) Pmot _1(K0)

We have computed P Ny(2,0)* in theorem 6.1, on the other hand

Pty (K — Ko) = (—]1 if(i(g_;m)z (PmetK —2%)

PMotplRy = 2% (Pm"tGra333V + P™'GrassyVi(g — 2)) .

Upon application of the ring morphism
Ko(H}g) : KoM — KoGrad-Vecy, = Z[t,t ]

we obtain the formula for the Poincaré polynomial of M in [5]. If instead we apply the
ring morphism

Ko (Hbg, F') : KoMy, — KoGrad-Fil-Vecy, = Z[z,y,z ',y 7]
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we obtain the following formula for the Poincaré-Hodge polynomial of M

(Ltoy?)9 (1+a%y)? —(Ltw)9 (Lty)7a9yd | (Lte)d (1) +(1-a)?(1y)d ((1-(en)?7?)(2—zy—(2y)?™*)y ) _
(1-zy)(1-22y?) 2 (1-zy)(1—(zy)?)

—(I+z)9(1+y)? (%) +2%9 (szGrass;:,V + PwyGrassQV(gyy)g—2 _ (M) ) )

The following proposition shows how near is P™°Ny(2,0) from the true motive of
N0(270)'

Proposition 6.4 The mized AH-motive h'Ny(2,0) has only weights i and i — 1.

Proof. First note that p~ 'K admits a cell decomposition and therefore hip*1K0 is a
pure motive of weight i. Now write the Gysin exact sequence for p~ 'K, C p~ 'K,

oo — hip YK — Ko) — hip 'K — hip 'Ky — ..

If one writes the Gysin exact sequence for Ko C K one sees that W; 1hi(K — Kj) is
the image of hi~1Kj by the connecting morphism, from this and the description of the
fibres of p it can be seen that the image of W;_ihip !(K — Kj) in hip 'K is zero, it
follows that hip~lK is a pure motive of weight 4.

Now write the Gysin sequence for p 'K C M,

oo — B LK — hING(2,0)° — REM — hip 'K — .-,

Being h{~1p~ 'K and hi M pure motives it follows that hiN(2,0)* is a mixed motive with
weights ¢ and ¢ — 1, by writing one more Gysin sequence one proves the same fact about
h*Ny(2,0). O

7 Intermediate Jacobians.

If X is a smooth projective variety over the complex numbers then Griffiths associates a
complex torus to the integer pure Hodge structure H*~(X,7),

H2i-1 (X, (C)

HX) = == :
THX) FiH%-1(X,C) + H¥(X,z)’

called the ¢-th intermediate Jacobian. If X is defined over a field k then for each embedding
o : k = C we have an associated intermediate jacobian J*(X ®, C).

Note that if we know h%~1(X) and are interested in J¢(X,) there is only one piece of
data missing: the entire structure on the singular cohomology group H*~!(X,,Q), so we
can recover J(X,) up to isogeny from h%~1(X)

The intermediate jacobian J*X is isomorphic to the group Ext} (., ¢ (Z, H*7(X,Z)(j)),
where MHS is the category of mixed Hodge, (see Lemma 9.2 in [12]) this motivates the
definition of ¢-adic intermediate jacobian of a variety, X, defined over an arbitrary field k,
as the group of extensions Ea:t}{ep—Gk (Zg, H¥1(X,Z4)(j)) where Rep-Gy is the category
of continuous /-adic representations of the Galois group Gy = Gal(k|k). Define the f-adic
intermediate jacobians up to isogeny as the same extension groups but replacing Z, by Q.

In the following corollary, for notational purposes, assume that either an embedding
of the field k£ in C or a prime ¢ have been chosen and use the corresponding definition of
intermediate jacobian.
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Corollary 7.1 The i-th intermediate jacobian of the moduli space Ny(2,1) is isogenous
to

where ¢; g = Coefyi—sii1 (1 +t+t2 4+ t9*2k) (1 +e2 4+t t29*4k).
Proof. Theorem 5.6 says

(1+ (=1)"¢ — (14 D*'¢(—g)

PR = g a1y

this is equal to

5 I(—k) — I(—g)
kil
SN Ty a2y

use Poincaré duality on the Jacobian of C' as in the proof of lemma 5.5 to get

9 e 1(—k) — () N 1k — 29) — 1(—g)
SR Ty e R G oy v

adding this we obtain the following expression for P™% Ny(2,1)

g 1—1(—g+k)1—1(—2g + 2k)
kgjj/\’“hlc T 1D) T 1(-2) (—k). (6)

Note that this is the class in KOMfH of an object of MkAH so that in fact, by corollary
2.8, we have obtained hNy(2,1).
In order to compute J:Ny(2,1) we have to find h%~1Ny(2,1), by formula (6) this is

[5]
@ /\2k71hlc ® ]l(k _ Z')EBCi,k,g
k=1

Now the result follows. O

7.2 Examples:

1. Putting i = 1 we obtain J'Ny(2,1) = 0 which is reasonable since H' Ny(2,1) = 0.
The value i = 2 gives an isogeny J2Ny(2,1) ~ Jac(C) which is a result of Mumford
and Newstead ([17]) modulo isogeny. One can easily check that if g > 2 J>Ny(2,1)
is also isogenous to Jac(C). Of course, if g =2, J3Np(2,1) = 0.

2. For g > 3 the value i = 4 gives an isogeny J*Ny(2,1) ~ Jac(C) x Jac(C). If g = 2
J*Ny(2,1) is clearly zero for dimensional reasons, if g = 3 then J*Ny(2,1) = Jac(C)
by duality.

3. If g > 3 then there are non abelian intermediate jacobians, the first is J°Ny(2,1)
which for g > 4 is isogenous to J*>Jac(C) x Jac(C) x Jac(C) whereas for g = 4 is
isogenous to J2Jac(C) x Jac(C).
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