By Francesc Planas-Vilanova

Dept. Matemàtica Aplicada I. ETSEIB-UPC. Diagonal 647, E-08028 Barcelona.

1 Introduction

Let A be a commutative ring. We denote by a standard A-algebra a commutative graded A-algebra $U=\oplus_{n\geq 0}U_n$ with $U_0=A$ and such that U is generated as an A-algebra by the elements of U_1 . Take \underline{x} a set of (possibly infinite) generators of the A-module U_1 . Let $V=A[\underline{t}]$ be the polynomial ring with as many variables \underline{t} (of degree one) as \underline{x} has elements and let $f:V\to U$ be the graded free presentation of U induced by the \underline{x} . For $n\geq 2$, we will call module of effective n-relations the A-module $E(U)_n=\ker f_n/V_1\cdot\ker f_{n-1}$. The minimum positive integer $r\geq 1$ such that the effective n-relations are zero for all $n\geq r+1$ is known to be an invariant of U. It is called the relation type of U and is denoted by $\operatorname{rt}(U)$. For an ideal I of A, we define $E(I)_n=E(\mathcal{R}(I))_n$ and $\operatorname{rt}(I)=\operatorname{rt}(\mathcal{R}(I))$, where $\mathcal{R}(I)=\oplus_{n\geq 0}I^nt^n\subset A[t]$ is the Rees algebra of I.

In this paper, we give two descriptions of the A-module of effective n-relations. In terms of André-Quillen homology we have that $E(U)_n = H_1(A, U, A)_n$ (see 2.3). It turns out that this module does not depend on the chosen \underline{x} . In terms of Koszul homology we prove that $E(U)_n = H_1(\underline{x}; U)_n$ (see 2.4). Using these characterizations, we show later some properties on the module of effective n-relations and the relation type of a graded algebra. Meanwhile, our line of disquisition approaches us to several earlier works on the subject (see [2], [5], [6], [7], [9], [10], [13] and [14]).

Section 2 is devoted to state the above mentioned (co)homological characterizations of the A-module of effective n-relations and compare them with some already known results. In section 3, we give some applications. The interest is specially centered on the module of n-relations of powers of an ideal and the module of n-relations of Veronese subrings. In particular, one concludes that $\operatorname{rt}(U^{(p)}) \leq \operatorname{rt}(U^p_+)$ but, in general, $\operatorname{rt}(U^{(p)}) \neq \operatorname{rt}(U^p_+)$, where $U_+ = \bigoplus_{n>0} U_n$ is the irrelevant ideal of U and $U^{(p)} = \bigoplus_{n\geq 0} U_{np}$ is the p-th Veronese subring of U (see 3.12). Finally, in section 4 we characterize, in terms of a system of generators, which ideals have module of effective n-relations zero. In particular, a new characterization of sequences of linear type is obtained.

 $e\text{-}mail:\ planas@ma1.upc.es$

2 Homological description of effective relations

Let $U = \bigoplus_{n\geq 0} U_n$ be a standard A-algebra. Put $U_+ = \bigoplus_{n>0} U_n$ its irrelevant ideal. If $E = \bigoplus_{n\geq 1} E_n$ is a graded U-module and $r\geq 1$, we denote by $F_r(E)$ the submodule of E generated by the elements of degree at most r. Put (possibly infinite)

$$s(E) = \min\{r \ge 1 \mid E_n = 0 \text{ for all } n \ge r + 1\}.$$

Since $(E/U_+E)_n = E_n/U_1E_{n-1}$, then the following three conditions are equivalent: $F_r(E) = E$, $s(E/U_+E) \le r$, and, $E_n = U_1E_{n-1}$ for all $n \ge r+1$.

Given $h:W\to U$, a surjective graded morphism of standard A-algebras, we are interested in the graded A-module $E(h)=\ker h/W_+\cdot\ker h$. The following is an elementary, but useful lemma:

Lemma 2.1 Let $f: V \to U$ and $g: W \to V$ be two surjective graded morphisms of standard A-algebras. Then, there exists a graded exact sequence of A-modules:

$$E(g) \to E(f \circ g) \xrightarrow{g} E(f) \to 0$$
. (1)

In particular, $s(E(f)) \leq s(E(f \circ g)) \leq \max(s(E(f)), s(E(g)))$. Moreover, if V and W are two symmetric algebras, then $E(g)_n = 0$ and $E(f \circ g)_n = E(f)_n$ for all $n \geq 2$.

Proof. Exact sequence (1) follows from the snake lemma applied to the commutative diagram:

$$W_1 \otimes \ker g_{n-1} \longrightarrow W_1 \otimes \ker(f \circ g)_{n-1} \longrightarrow W_1 \otimes \ker f_{n-1} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \ker g_n \longrightarrow \ker(f \circ g)_n \longrightarrow \ker f_n \longrightarrow 0$$

Moreover, if $W = \mathbf{S}(W_1)$ and $V = \mathbf{S}(V_1)$, then $\ker g = F_1(\ker g)$.

Definition 2.2 Let U be a standard A-algebra and let $\alpha: \mathbf{S}(U_1) \to U$ be the graded morphism of standard A-algebras induced by the identity on U_1 . Given $n \geq 2$, the module of effective n-relations of U is defined to be $E(U)_n = \ker \alpha_n/U_1 \cdot \ker \alpha_{n-1}$. Put $E(U) = \bigoplus_{n \geq 2} E(U)_n = \ker \alpha/\mathbf{S}_+(U_1) \cdot \ker \alpha$. Then, the relation type of U is defined to be $\mathrm{rt}(U) = \mathrm{s}(E(U))$. Remark that if $h: W \to U$ is any symmetric presentation of U, that is, W is a symmetric algebra and h is a surjective graded morphism of standard A-algebras, then h can be factorized into $h = f \circ g$, where $g: \mathbf{S}(W_1) \to \mathbf{S}(U_1)$ is the induced morphism by $h_1: W_1 \to U_1$ and $f = \alpha$. Thus, applying Lemma 2.1, $E(U)_n = E(h)_n$ for all $n \geq 2$ and $\mathrm{s}(E(U)) = \mathrm{s}(E(h))$. If I is an ideal of A, the module of effective n-relations of I is $E(I)_n = E(\mathcal{R}(I))_n$ and the relation type of I is $\mathrm{rt}(I) = \mathrm{rt}(\mathcal{R}(I))$, where $\mathcal{R}(I) = \bigoplus_{n \geq 0} I^n t^n$ is the Rees algebra of I. An ideal with module of effective 2-relations zero is called syzygetic. An ideal of relation type 1 is called of linear type (see, e.g., [8]).

Remark 2.3 In fact, sequence (1) is part of a long exact sequence of André-Quillen homology. Indeed, the Jacobi-Zariski sequence associated to the morphisms $g:W\to V$ and $f:V\to U$, with respect to the *U*-module $A=U/U_+$, gives rise to

$$\dots \to H_1(W,V,A) \to H_1(W,U,A) \to H_1(V,U,A) \to H_0(W,V,A) \to \dots$$

Using $H_1(A, A/I, M) = I/I^2 \otimes M$ and $H_0(A, A/I, M) = 0$ for any ideal I of A and any A/I-module M, we get (1) (see [1]).

On the other hand, the Jacobi-Zariski sequence associated to the morphisms $A \to \mathbf{S}(U_1)$ and $\alpha : \mathbf{S}(U_1) \to U$, with respect to the *U*-module A, is

$$\dots \to H_1(A, \mathbf{S}(U_1), A) \to H_1(A, U, A) \to H_1(\mathbf{S}(U_1), U, A) \to H_0(A, \mathbf{S}(U_1), A) \to \dots$$

Using $H_1(A, \mathbf{S}(U_1), A) = 0$ and $H_0(A, \mathbf{S}(U_1), A) = H_0(A, U, A)$, we get the graded isomorphism of A-modules $H_1(A, U, A) = H_1(\mathbf{S}(U_1), U, A) = \ker \alpha/\mathbf{S}_+(U_1) \cdot \ker \alpha$. Thus, $H_1(A, U, A)_n = E(U)_n$ is the module of effective n-relations of U. In particular, $\operatorname{rt}(U) = \operatorname{s}(H_1(A, U, A))$.

There is also a description of the module of effective n-relations in terms of Koszul (co)homology. Let $f: V \to U$ be a surjective graded morphism of standard A-algebras. For each $p \geq 1$, consider the map $V_p \otimes U \to U$ sending $x \otimes y$ to $f_p(x)y$ and let $\mathcal{K}(f,p)$ be the Koszul complex associated to this U-linear form (see 1.6.1 of [3]). Since it is an homogeneous form of degree zero, $\mathcal{K}(f,p)$ is a complex of graded U-modules having differentials homogeneous morphisms of degree zero. Concretely, $\mathcal{K}(f,p) = \bigoplus_{n \geq 0} \mathcal{K}(f,p)_n$ where $\mathcal{K}(f,p)_n$ is the following subcomplex $(U_n = 0 \text{ for } n < 0)$:

$$\ldots \longrightarrow \mathbf{\Lambda}_2^A(V_p) \otimes_A U_{n-2p} \stackrel{\partial_2}{\longrightarrow} V_p \otimes_A U_{n-p} \stackrel{\partial_1}{\longrightarrow} U_n \longrightarrow 0$$

where $\partial_q((x_1 \wedge \ldots \wedge x_q) \otimes y) = \sum_{i=1}^q (-1)^{i-1} x_1 \wedge \ldots \wedge \widehat{x}_i \wedge \ldots \wedge x_q \otimes f_p(x_i) y$, for all $x_i \in V_p$ and $y \in U_{n-qp}$. In particular, for every $q \geq 0$, $H_q(\mathcal{K}(f,p))$ is a graded A-module with $H_q(\mathcal{K}(f,p))_n = H_q(\mathcal{K}(f,p)_n)$.

Theorem 2.4 Let $f: V \to U$ and $g: W \to V$ be two surjective graded morphisms of standard A-algebras. Let $\alpha: \mathbf{S}(U_1) \to U$ be the canonical morphism and suppose W is a symmetric algebra. Given $(n \geq 2, p = 1)$ or $(n \geq 2p + 1, p \geq 2)$, there are isomorphisms of A-modules

$$H_1(\mathcal{K}(f,p)_n) = \frac{\ker(f \circ g)_n}{W_p \cdot \ker(f \circ g)_{n-p}} = \frac{\ker \alpha_n}{\mathbf{S}_n(U_1) \cdot \ker \alpha_{n-p}}.$$

In particular, the module of effective n-relations of U is $E(U)_n = H_1(\mathcal{K}(f,1)_n)$ and the relation type of U is $\mathrm{rt}(U) = \mathrm{s}(H_1(\mathcal{K}(f,1)))$.

Proof. Put $h = f \circ g$. Since $n - p \geq p$, then $W_{n-p} \cdot \ker g_p \subset W_p \cdot \ker g_{n-p} \subset W_p \cdot \ker h_{n-p}$. Applying the snake lemma to the commutative diagram of exact rows

$$\ker g_p \otimes W_{n-p} \oplus W_p \otimes \ker h_{n-p} \longrightarrow W_p \otimes W_{n-p} \xrightarrow{g_p \otimes h_{n-p}} V_p \otimes U_{n-p} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \ker h_n \longrightarrow W_n \longrightarrow h_n$$

$$U_n \longrightarrow 0$$

we get the exact sequence of A-modules

$$0 \to (g_p \otimes h_{n-p})(\mathcal{Z}_1(1_W, p)_n) \to \mathcal{Z}_1(f, p)_n \to \ker h_n/W_p \cdot \ker h_{n-p} \to 0,$$

where $\mathcal{Z}_1(1_W,p)_n$, $\mathcal{Z}_1(f,p)_n$ stand for the *n*-th component of the 1-cycles module of $\mathcal{K}(1_W,p)$, $\mathcal{K}(f,p)$. If $\mathcal{Z}_1(1_W,p)_n = \mathcal{B}_1(1_W,p)_n$ (the *n*-th component of the 1-boundaries module of $\mathcal{K}(1_W,p)$), then $(g_p \otimes h_{n-p})(\mathcal{Z}_1(1_W,p)_n) = \mathcal{B}_1(f,p)_n$ Thus, the first isomorphism is demonstrated provided we prove $H_1(\mathcal{K}(1_W,p))_n = 0$ for a symmetric algebra W (see next lemma). In particular, if we take V = U and $f = 1_U$, then $h = f \circ g = g$ and one of the possible choices of h is the canonical morphism α . Hence, applying twice the first equality to α and to any $h: W \to U$ arising from a symmetric algebra W, we have

$$H_1(\mathcal{K}(1_U,p)_n) = rac{\ker lpha_n}{\mathbf{S}_p(U_1) \cdot \ker lpha_{n-p}} = rac{\ker h_n}{W_p \cdot \ker h_{n-p}} \cdot \blacksquare$$

Lemma 2.5 Let M be an A-module and $W = \mathbf{S}(M)$ the symmetric algebra of M. Then, for $(n \geq 1, p = 1)$ or $(n \geq 2p + 1, p \geq 2)$, $H_1(\mathcal{K}(1_W, p))_n = 0$.

Proof. Put $\mathbf{T}(M)$ the tensorial algebra of M and q=n-p. Applying the snake lemma to the commutative diagram of exact rows

we get the exact sequence $0 \to \ker v \to \ker \varepsilon \xrightarrow{v} \ker \omega \to 0$. Thus, $\mathcal{Z}_1(1_W, p)_n = \ker \omega = v(\ker \varepsilon)$ is the A-module generated by the elements

$$(x_1\cdots x_{p-1}x_p)\otimes (y_1y_2\cdots y_q)-(x_1\cdots x_{p-1}y_1)\otimes (x_py_2\cdots y_q),$$

where $x_i, y_j \in M$ and $x_1 \cdots x_p$ stands for the product in $W = \mathbf{S}(M)$. Clearly, if $(n \geq 1, p = 1)$, then $\mathcal{Z}_1(1_W, p)_n = \mathcal{B}_1(1_W, p)_n$. Suppose $(n \geq 2p + 1, p \geq 2)$, i.e., q > p. Then, $H_1(\mathcal{K}(1_W, p)_n) = 0$ follows from the equality:

$$(x_1\cdots x_p)\otimes (y_1\cdots y_q)-(x_1\cdots x_{p-1}y_1)\otimes (x_py_2\cdots y_q)=$$

$$(x_1\cdots x_p)\otimes (y_1\cdots y_q)-(y_2\cdots y_{p+1})\otimes (x_1\cdots x_py_1y_{p+2}\cdots y_q)+$$

$$(y_2\cdots y_{p+1})\otimes (x_1\cdots x_{p-1}y_1x_py_{p+2}\cdots y_q)-(x_1\cdots x_{p-1}y_1)\otimes (x_py_2\cdots y_q).$$

Remark 2.6 Let $f: \mathbf{S}(F) \to \mathbf{S}(M)$ be the induced morphism on the symmetric algebras by an epimorphism $\pi: F \to M$ of A-modules. Then, the last three nonzero terms of $\mathcal{K}(f,p)_{p+q}, \ q \geq p \geq 1$, define the sequence:

$$\mathbf{\Lambda}_{2}^{A}(\mathbf{S}_{p}(F)) \otimes_{A} \mathbf{S}_{q-p}(M) \stackrel{\partial_{2}}{\to} \mathbf{S}_{p}(F) \otimes_{A} \mathbf{S}_{q}(M) \stackrel{\partial_{1}}{\to} \mathbf{S}_{p+q}(M) \to 0,$$
 (2)

with $\partial_2((x_1\cdots x_p)\wedge(y_1\cdots y_p)\otimes z)=(y_1\cdots y_p)\otimes f(x_1\cdots x_p)z-(x_1\cdots x_p)\otimes f(y_1\cdots y_p)z$ and $\partial_1((x_1\cdots x_p)\otimes t)=f(x_1\cdots x_p)t$, $x_i,y_j\in F$, $z\in \mathbf{S}_{q-p}(M)$ and $t\in \mathbf{S}_q(M)$.

On the other hand, Micali and Roby defined (in [10]) the sequence of A-modules

$$\mathbf{T}_{p+q}^{A}(F) \xrightarrow{\lambda} \mathbf{S}_{p}(F) \otimes_{A} \mathbf{S}_{q}(M) \xrightarrow{\mu} \mathbf{S}_{p+q}(M) \to 0,$$
(3)

with $\lambda(x_1 \otimes \ldots \otimes x_{p+q}) = (x_1 \cdots x_p) \otimes f(x_{p+1} \cdots x_{p+q}) - (x_1 \cdots x_{p-1} x_{p+1}) \otimes f(x_p x_{p+2} \cdots x_{p+q})$ and $\mu = \partial_1$. By a similar argument to that one of the end of Lemma 2.5, one can prove that $\text{Im}\partial_2$ is always contained in $\text{Im}\lambda$ and that if q > p, then both modules are equal. Thus, the exactness of (2) (settled by Theorem 2.4 either for $q \geq p = 1$ or either for $q > p \geq 2$) assures the exactness of (3). Nevertheless, if $q = p \geq 2$, then (2) might not be exact (see proof of Lemma 3.8) while (3) is always exact (see [10]).

Corollary 2.7 Let U be a standard A-algebra and let \underline{x} be a (possibly infinite) set of forms of degree one generating U_+ . If $H_1(\underline{x};U)$ denotes the first Koszul homology group associated to \underline{x} , then $E(U)_n = H_1(\underline{x};U)_n$ for all $n \geq 2$. In particular, $\operatorname{rt}(U) = \operatorname{s}(H_1(\underline{x};U))$.

Proof. Take in Theorem 2.4, $f: \mathbf{S}(F) \to U$ induced by a free presentation $F \to U_1$ associated to \underline{x} . Then, $\mathcal{K}(f,1) = \mathcal{K}(\underline{x};U)$ is the usual Koszul complex associated to the elements \underline{x} .

Remark 2.8 Using duality between Koszul homology and cohomology (see 1.6.10 of [3]) we recover Schenzel's result $\operatorname{rt}(U) = \operatorname{s}(H^{d-1}(\underline{x};U)) + d$, when \underline{x} is finite of cardinal d (see [13]).

Remark 2.9 Let I be an ideal of A and $\mathcal{R}(I) = \bigoplus_{n \geq 0} I^n t^n$ its Rees algebra. Take $f = 1_{\mathcal{R}}$, the identity on $\mathcal{R}(I)$, in Theorem 2.4. Then,

$$\mathcal{Z}_1(f,p)_n = \ker \left(I^p \otimes I^{n-p} \to I^n\right) = \operatorname{Tor}_1^A(A/I^p, I^{n-p}),$$

which is known to be isomorphic to $Z_1 \cap I^{n-p}F/I^{n-p}Z_1$, where $0 \to Z_1 \to F \to I^p \to 0$ is a presentation of I^p with F free (see, e.g., 2.5 of [8]). Moreover, via the same isomorphism

$$\mathcal{B}_1(f,p)_n = \operatorname{Im}\left(\mathbf{\Lambda}_2^A(I^p) \otimes I^{n-2p} \to I^p \otimes I^{n-p}\right) = I^{n-2p}B_1/I^{n-p}Z_1$$
.

Thus, by Theorem 2.4, we have

$$H_1(f,p)_n = rac{\ker lpha_n}{\mathbf{S}_n(I) \cdot \ker lpha_{n-p}} = rac{Z_1 \cap I^{n-p} F}{I^{n-2p} B_1},$$

which reproves an earlier result of Kühl (see 1.2 of [9]).

3 Some applications

The purpose of this section is to give some applications of Lemma 2.1 and Theorem 2.4.

Example 3.1 CYCLIC STANDARD ALGEBRAS Let U be a cyclic standard A-algebra generated by a degree one form $x \in U_1$. Put $f: A[t] \to U$ with f(t) = x in Theorem 2.4. Then, $E(U)_n = H_1(\mathcal{K}(f,1)_n) = (0:x) \cap U_{n-1}$ and $\operatorname{rt}(U) = \min\{r \geq 1 \mid (0:x^{r+1}) = (0:x^r)\}.$

Example 3.2 Change of Base Ring Let U be a standard A-algebra and let $\varphi: A \to B$ be a homomorphism of rings. Take $f: V \to U$ any surjective graded morphism of standard A-algebras in Theorem 2.4. It induces $f \otimes 1: V \otimes_A B \to U \otimes_A B$. Since $\mathcal{K}(f \otimes 1, p)_n = \mathcal{K}(f, p)_n \otimes_A B$, one can deduce $\mathrm{rt}(U \otimes_A B) \leq \mathrm{rt}(U)$. If φ is flat, then $H_1(\mathcal{K}(f \otimes 1, p)_n) = H_1(\mathcal{K}(f, p)_n) \otimes_A B$. In particular, $\mathrm{rt}(U) = \sup\{\mathrm{rt}(U_\mathfrak{p}) \mid \mathfrak{p} \in \mathrm{Spec}(A)\}$. If φ is faithfully flat, then $\mathrm{rt}(U \otimes_A B) = \mathrm{rt}(U)$. In particular, via the Nagata morphism $A \to A[t]_{\mathfrak{m}[t]} = B$, \mathfrak{m} a maximal ideal of A, one can always suppose, when calculating the relation type of U, that A is a local ring of maximal \mathfrak{m} and residual field $A/\mathfrak{m} = k$ infinite.

Let I be an ideal of A and $\mathcal{G}(I) = \bigoplus_{n \geq 0} I^n/I^{n+1}$ its associated graded ring. Since $\mathcal{G}(I) = \mathcal{R}(I) \otimes_A A/I$, then (by 3.2) $\operatorname{rt}(\mathcal{G}(I)) \leq \operatorname{rt}(\mathcal{R}(I)) = \operatorname{rt}(I)$. In [14], Valla showed that if $\operatorname{rt}(\mathcal{G}(I)) = 1$, then $\operatorname{rt}(I) = 1$ too. Next proposition is a generalization of that result.

Proposition 3.3 If I is an ideal, there exists $E(I)_{n+1} \to E(I)_n \to E(\mathcal{G}(I))_n \to 0$, exact sequence of A-modules, for all $n \geq 2$. In particular, if $\operatorname{rt}(I) < \infty$, then $\operatorname{rt}(\mathcal{G}(I)) = \operatorname{rt}(I)$.

Proof. If $1_{\mathcal{R}}$, $1_{\mathcal{G}}$, denote the identity on $\mathcal{R}(I)$, $\mathcal{G}(I)$, respectively, then for each $n \geq 1$, there is an exact sequence of complexes $\mathcal{K}(1_{\mathcal{R}},1)_{n+1} \to \mathcal{K}(1_{\mathcal{R}},1)_n \to \mathcal{K}(1_{\mathcal{G}},1)_n \to 0$. Since the 0-th component of the first morphism is injective and $H_0(\mathcal{K}(1_{\mathcal{R}},1)_{n+1}) = 0$, we have enough to deduce the exact sequence $E(I)_{n+1} \to E(I)_n \to E(\mathcal{G}(I))_n \to 0$. In particular, if $\mathrm{rt}(I) < \infty$, one can proceed by decreasing induction.

Remark 3.4 If $\operatorname{rt}(I) = \infty$, then 3.3 might be false as Example 4.4 of [11] shows. Note that, as a consequence of next proposition, we will see that for the irrelevant ideal of a standard algebra hypothesis $\operatorname{rt}(I) < \infty$ can be removed.

Proposition 3.5 Let U be a standard A-algebra and let $U_+ = \bigoplus_{n>0} U_n$ denote its irrelevant ideal. Take $f: W \to U$ a surjective graded morphism of standard A-algebras with W a symmetric algebra. Given $(n \geq 2, p = 1)$ or $(n \geq 3, p \geq 2)$, the module of effective n-relations of U_+^p is

$$E(U_+^p)_n = \bigoplus_{q \ge np} \frac{\ker f_q}{W_p \cdot \ker f_{q-p}}.$$

In particular, $E(U_+^p)_n=0$ if, and only if, $\mathrm{rt}(U_+^p)\leq n-1$. For p=1, $\mathrm{rt}(U)=\mathrm{rt}(U_+)$. Moreover, U_+ is a syzygetic ideal if, and only if, U is a symmetric algebra.

Proof. Let $g: \mathbf{S}^U(U_p \otimes_A U) \to \mathcal{R}(U_+^p)$ be induced by the natural epimorphism of A-modules $U_p \otimes_A U \to U_+^p$. It is not hard to see $\mathcal{K}(g,1)_n = \bigoplus_{i \geq 0} \mathcal{K}(1_U,p)_{np+i}$. Moreover, if $(n \geq 2, p = 1)$, then $np + i \geq 2$ and if $(n \geq 3, p \geq 2)$, then $np + i \geq 2p + 1$. Therefore, by Theorem 2.4,

$$E(U_+^p)_n = H_1(\mathcal{K}(g,1)_n) = \bigoplus_{i \geq 0} H_1(\mathcal{K}(1_U,p)_{np+i}) = \bigoplus_{i \geq 0} \frac{\ker f_{np+i}}{W_p \cdot \ker f_{(n-1)p+i}} = \bigoplus_{q \geq np} \frac{\ker f_q}{W_p \cdot \ker f_{q-p}}.$$

In particular, $E(U_+^p)_n \supset E(U_+^p)_{n+1}$. Thus, $E(U_+^p)_n = 0$ is equivalent to $\operatorname{rt}(U_+^p) \leq n-1$. For p=1 and $n \geq 2$, $E(U_+)_n = \bigoplus_{i \geq 0} \ker f_{n+i}/W_1 \cdot \ker f_{n-1+i} = \bigoplus_{i \geq 0} E(U)_{n+i} = \bigoplus_{q \geq n} E(U)_q$. In particular, $\operatorname{rt}(U) = \operatorname{s}(E(U)) = \operatorname{s}(E(U_+)) = \operatorname{rt}(U_+)$. Moreover, $E(U_+)_2 = \bigoplus_{q \geq 2} E(U)_q = E(U)$. Thus, U_+ be syzygetic is equivalent to U be a symmetric algebra.

Now, let us focus our attention into the relation type of Veronese subrings. Let U be a standard A-algebra. Recall that the p-th Veronese subring of U is defined to be the standard A-algebra $U^{(p)} = \bigoplus_{n \geq 0} U_{np}$. Clearly, if $f: V \to U$ is a (surjective) graded morphism of standard A-algebras, then it induces $f^{(p)}: V^{(p)} \to U^{(p)}$ another (surjective) graded morphism of standard A-algebras.

Lemma 3.6 Let $f: V \to U$ be a surjective graded morphism of standard A-algebras. Then, for all $p \ge 1$, $s(E(f^{(p)})) \le 1 + [(s(E(f)) - 1)/p]$ ([a] is the integer part of a).

Proof. Write s(E(f)) - 1 = pa + b with $0 \le b < p$. So [(s(E(f)) - 1)/p] = a. Take $n \ge 2 + a$. Then $(n-1)p \ge pa + p \ge s(E(f))$. Thus, $\ker f_{np} = V_1 \cdot \ker f_{np-1} = \ldots = V_p \cdot \ker f_{(n-1)p}$ and hence $s(E(f^{(p)})) \le 1 + a$.

Lemma 3.7 Let U be a standard A-algebra and let $f: V \to U$ be a symmetric presentation of U. If $(n \geq 2, p = 1)$ or $(n \geq 3, p \geq 2)$, then the module of effective n-relations of $U^{(p)}$ is

$$E(U^{(p)})_n = \frac{\ker f_{np}}{V_p \cdot \ker f_{(n-1)p}}.$$

Proof. Take $g: \mathbf{S}(V_p) \to U^{(p)}$ induced by $f_p: V_p \to U_p$ in degree one. We have $\mathcal{K}(g,1)_n = \mathcal{K}(f,p)_{np}$. Moreover, if $(n \geq 2, p = 1)$, then $np \geq 2$, and if $(n \geq 3, p \geq 2)$, then $np \geq 2p + 1$. Thus, by Theorem 2.4, $E(U^{(p)})_n = H_1(\mathcal{K}(g,1)_n) = H_1(\mathcal{K}(f,p)_{np}) = (\ker f_{np})/(V_p \cdot \ker f_{(n-1)p})$. ■

Lemma 3.8 Let M be an A-module and $\mathbf{S}(M)$ its symmetric algebra. Then, for all $p \geq 1$, $\mathrm{rt}(\mathbf{S}(M)^{(p)}) \leq 2$. Moreover, if $p \geq 2$ and M is finitely generated, then $\mathrm{rt}(\mathbf{S}(M)^{(p)}) = 1$ if, and only if, M is locally cyclic.

Proof. By Lemma 3.7, $E(\mathbf{S}(M)^{(p)})_n = 0$ for all $n \geq 3$. Thus, $\operatorname{rt}(\mathbf{S}(M)^{(p)}) \leq 2$. Suppose $p \geq 2$ and (A, \mathfrak{m}, k) is local (see 3.2). If M is cyclic, then $\mathbf{S}(M)^{(p)} = \mathbf{S}(\mathbf{S}_p(M))$ and $\operatorname{rt}(\mathbf{S}(M)^{(p)}) = 1$. Conversely, suppose M finitely generated, but not cyclic. Take x, y part of a basis of $M \otimes k$ and $x^p, y^p, x^{p-1}y$ in $\mathbf{S}_p(M) \otimes k$. Then, $z = x^p \otimes y^p - x^{p-1}y \otimes y^p = x^{p-1}y$

 $xy^{p-1} \in \mathcal{Z}_1(f \otimes 1_k, 1)_2$. Moreover, looking at the components of an element in a k-basis of $\mathcal{B}_1(f \otimes 1_k, 1)_2$, one sees that $z \notin \mathcal{B}_1(f \otimes 1_k, 1)_2$. Thus, $H_1(\mathcal{K}(f \otimes 1_k, 1)_2) \neq 0$, hence (by 3.2) $H_1(\mathcal{K}(f, 1)_2) \neq 0$ and $\operatorname{rt}(\mathbf{S}(M)^{(p)}) = 2$.

Remark 3.9 Let I be an ideal of linear type finitely generated, but not locally principal. Then, by Lemma 3.8, $\operatorname{rt}(I^p) = 2$ for all $p \geq 2$, which reproves 2.6 of [7].

Theorem 3.10 Let U be a standard A-algebra. Then, $\operatorname{rt}(U^{(p)}) \leq \max(1+[(\operatorname{rt}(U)-1)/p],2)$ for all $p \geq 1$. Moroever, if U is finitely generated and $p \geq 2$, then $\operatorname{rt}(U^{(p)}) = 1$ if, and only if, U_p is locally generated by a d-sequence of length 1.

Proof. Let $\alpha: \mathbf{S}(U_1) \to U$ be the canonical morphism. Put $g: \mathbf{S}(\mathbf{S}_p(U_1)) \to \mathbf{S}(U_1)^{(p)}$ and $f = \alpha^{(p)}$. Then, by Lemma 2.1, $\operatorname{rt}(U^{(p)}) \leq \max(\operatorname{s}(E(f)),\operatorname{s}(E(g)))$ and, by Lemmas 3.6 and 3.8, we prove the inequality. Suppose $p \geq 2$ and U finitely generated. By 3.2, one can suppose that (A,\mathfrak{m},k) is a local ring of infinite residual field k. If U_p is generated by a d-sequence of length 1, then (by 3.1) $\operatorname{rt}(U^{(p)}) = 1$. Conversely, suppose $\operatorname{rt}(U^{(p)}) = 1$. Take $V = U \otimes k$, so $V^{(p)} = U^{(p)} \otimes k$ and $\operatorname{rt}(V^{(p)}) \leq \operatorname{rt}(U^{(p)}) = 1$. Therefore, $V^{(p)}$ is a polynomial ring of Krull dimension $l = \mu(V_p) = \dim V^{(p)} = \dim V$ (since $V^{(p)} \subset V$ is an integral extension). Take $W \subset V$ a graded Noether normalization (it exists since k is infinite, see 1.5.17 of [3]). Thus, $\dim W = \dim V = l$ and so $\binom{l+p-1}{p} = \mu(W_p) \leq \mu(V_p) = l$, which forces l = 1. Hence, $\mu(U_p) = \mu(V_p) = 1$, $U_p = Ax$ is cyclic and, by 3.1 again, x is a d-sequence. \blacksquare

Remark 3.11 The inequality of 3.10 was firstly proved by Backelin and Fröberg for finitely generated k-algebras (see [2]). Recently, Johnston and Katz showed a very similar statement to that of 3.10, but for $U = \mathcal{R}(I)$ the Rees algebra of an ideal I (see [7]). Since $\mathcal{G}(I)^{(p)} = \mathcal{R}(I)^{(p)} \otimes A/I = \mathcal{R}(I^p) \otimes A/I$, then (by 3.2) $\operatorname{rt}(\mathcal{G}(I)^{(p)}) \leq \operatorname{rt}(I^p)$. In particular, for $I = U_+$ the irrelevant ideal of a standard algebra U, $\mathcal{G}(I) = U$ and $\operatorname{rt}(U^{(p)}) \leq \operatorname{rt}(U_+^p)$. Thus, Johnston-Katz's result implies Backelin-Fröberg's result and the inequality of 3.10, when U is a Noetherian ring. Nevertheless, the whole Theorem 3.10 can not be deduced directly from earlier results since, in general, $\operatorname{rt}(U^{(p)}) \neq \operatorname{rt}(U_+^p)$ as next example shows.

Example 3.12 Put U = k[x,y,z]/J with $J = (x^3y,xy^3,z^4,x^2y^2z^3)$. Then, ${\rm rt}(U) = 7$, ${\rm rt}(U^{(2)}) = 2$ and ${\rm rt}(U_+^2) = 3$ (remark that $\max(1 + [({\rm rt}(U) - 1)/2], 2) = 4)$. Indeed, since $E(U)_n = \ker \alpha_n/U_1 \cdot \ker \alpha_{n-1}, \ \alpha : {\bf S}(U_1) \to U$ the canonical morphism, then $E(U)_n = 0$ for all $n \geq 2, \ n \neq 4, 7$ and $E(U)_4 = k^{\oplus 3}$ and $E(U)_7 = k$. Thus, ${\rm rt}(U) = {\rm s}(E(U)) = 7$. Since $\ker \alpha_8 \subset F_4(\ker \alpha)$, then, by Lemma 3.7, $E(U^{(2)})_n = \ker \alpha_{2n}/{\bf S}_2(U_1) \cdot \ker \alpha_{2(n-1)} = 0$ for all $n \geq 3$. Thus, ${\rm rt}(U^{(2)}) \leq 2$. Moreover, ${\rm rt}(U^{(2)}) = 2$ since U_2 is not locally cyclic (see Theorem 3.10). Besides, using Proposition 3.5, $E(U_+^2)_4 = \bigoplus_{q \geq 8} (\ker \alpha_q/{\bf S}_2(U_1) \ker \alpha_{q-2}) = 0$, so ${\rm rt}(U_+^2) \leq 3$. But, since $\ker \alpha_7 \neq {\bf S}_2(U_1) \cdot \ker \alpha_5$, $E(U_+^2)_3 = \bigoplus_{q \geq 6} (\ker \alpha_q/{\bf S}_2(U_1) \ker \alpha_{q-2}) \neq 0$. Hence, ${\rm rt}(U_+^2) = 3$.

4 Conditions on the generators

In this section we characterize, in terms of a system of generators, which ideals have module of effective n-relations zero. Our work here is inspired in previous results by Costa, see [5] and [6]. Concretely, in [6], it was defined a sequence of linear type as a sequence of elements x_1, \ldots, x_d such that the ideals (x_1, \ldots, x_i) are of linear type for $i = 1, \ldots, d$. As a consequence of the main result of this section (see 4.7), we get a new characterization of sequences of linear type involving annihilator ideals (see 4.9). For an ideal I generated by d elements x_1, \ldots, x_d , we will denote by I_{i_1, \ldots, i_s} the ideal generated by the x_j , where $j \notin \{i_1, \ldots, i_s\}$. For an A-module M, we will denote by $\mathcal{A}_d(M)$ the set of alternating $d \times d$ matrices with coefficients in M.

Lemma 4.1 Let I be generated by d elements x_1, \ldots, x_d and take $n \geq 2$. Then, $E(I)_n = 0$ if, and only if, for all $(a_1, \ldots, a_d) \in (I^{n-1})^{\oplus d}$ with $a_1x_1 + \ldots + a_dx_d = 0$, there exists $(b_{i,j}) \in \mathcal{A}_d(I^{n-2})$ such that

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_d \end{pmatrix} = \begin{pmatrix} 0 & b_{1,2} & \dots & b_{1,d} \\ -b_{1,2} & 0 & \dots & b_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ -b_{1,d} & -b_{2,d} & \dots & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}.$$

Proof. By Corollary 2.7, $E(I)_n = H_1(\underline{xt}; \mathcal{R}(I))_n$, where $\mathcal{K}(\underline{xt}; \mathcal{R}(I))_n$ is the *n*-th component of the Koszul complex associated to the elements x_1t, \ldots, x_dt in $\mathcal{R}(I) = \bigoplus_{n \geq 0} I^n t^n$. That is, $\cdots \to (I^{n-2})^{\oplus \binom{d}{2}} \xrightarrow{\partial_2} (I^{n-1})^{\oplus d} \xrightarrow{\partial_1} I^n \to 0$, with $\partial_2(b_{1,2}, \ldots, b_{1,d}, b_{2,3}, \ldots, b_{d-1,d}) =$

$$(a_1,\ldots,a_d) \text{ defined by } \left(egin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_d \end{array}
ight) = \left(egin{array}{cccc} 0 & b_{1,2} & \ldots & b_{1,d} \\ -b_{1,2} & 0 & \ldots & b_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ -b_{1,d} & -b_{2,d} & \ldots & 0 \end{array}
ight) \left(egin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_d \end{array}
ight), \text{ and } \partial_1(a_1,\ldots,a_d) = 0$$

 $a_1x_1+\cdots+a_dx_d$.

Lemma 4.2 Let I be generated by d elements x_1, \ldots, x_d and take $n \geq 2$. If $E(I)_n = 0$, then $I_1I^{n-1}: x_1^n = I_1I^{n-2}: x_1^{n-1}$.

 $\begin{array}{c} \textit{Proof.} \ \ \text{If} \ a \in I_{1}I^{n-1} : x_{1}^{n}, \ \text{then} \ ax_{1}^{n} = a_{2}x_{2} + \cdots + a_{d}x_{d}, \ a_{i} \in I^{n-1}. \ \ \text{In particular, (by 4.1)} \\ \begin{pmatrix} ax_{1}^{n-1} \\ -a_{2} \\ \vdots \\ -a_{d} \end{pmatrix} = \begin{pmatrix} 0 & b_{1,2} & \dots & b_{1,d} \\ -b_{1,2} & 0 & \dots & b_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ -b_{1,d} & -b_{2,d} & \dots & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{d} \end{pmatrix}, \ b_{i,j} \in I^{n-2}. \ \ \text{Thus} \ ax_{1}^{n-1} \in I_{1}I^{n-2}. \ \ \blacksquare$

Remark 4.3 If d = 1, then the necessary condition of Lemma 4.2 becomes $0 : x_1^n = 0 : x_1^{n-1}$, which is known to be sufficient to assure $E(I)_n = 0$ (see Example 3.1).

Lemma 4.4 Let I be generated by d elements $x_1, \ldots, x_d \ (d \ge 2)$ and $n \ge 2$. If $E(I)_n = 0$, then

$$(0:x_1)\cap I^{n-1}=\left\{\sum_{i=2}^d a_ix_i\mid a_i\in I^{n-2}, x_1\left(egin{array}{c}a_2\ dots\ a_d\end{array}
ight)=(b_{i,j})\left(egin{array}{c}x_2\ dots\ x_d\end{array}
ight) ext{ for } (b_{i,j})\in \mathcal{A}_{d-1}(I_1^{n-2})
ight\}.$$

In particular, if d=2 and $E(I)_n=0$, then $(0:x_1)\cap I^{n-1}=x_2((0:x_1)\cap I^{n-2})$ and $(0:x_1x_2)\cap I^{n-2}=(0:x_1)\cap I^{n-2}+(0:x_2)\cap I^{n-2}$.

$$\textit{Proof.} \ \, \text{If} \, \, a \in (0:x_1) \cap I^{n-1}, \, \, \text{then (by 4.1)} \, \left(\begin{array}{c} a \\ 0 \\ \vdots \\ 0 \end{array} \right) = \left(\begin{array}{cccc} 0 & b_{1,2} & \dots & b_{1,d} \\ -b_{1,2} & 0 & \dots & b_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ -b_{1,d} & -b_{2,d} & \dots & 0 \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_d \end{array} \right) \, \, \text{for} \, \,$$

some $(b_{i,j}) \in \mathcal{A}_d(I^{n-2})$. Thus, $a = b_{1,2}x_2 + \cdots + b_{1,d}x_d$ and

$$x_1 \left(egin{array}{c} b_{1,2} \ b_{1,3} \ dots \ b_{1,d} \end{array}
ight) = \left(egin{array}{cccc} 0 & b_{2,3} & \dots & b_{2,d} \ -b_{2,3} & 0 & \dots & b_{3,d} \ dots & dots & \ddots & dots \ -b_{2,d} & -b_{3,d} & \dots & 0 \end{array}
ight) =$$

$$= \left(egin{array}{cccc} 0 & c_{2,3} & \dots & c_{2,d} \ -c_{2,3} & 0 & \dots & c_{3,d} \ dots & dots & \ddots & dots \ -c_{2,d} & -c_{3,d} & \dots & 0 \end{array}
ight) \left(egin{array}{cccc} x_2 \ x_3 \ dots \ x_d \end{array}
ight) + x_1 \left(egin{array}{cccc} 0 & e_{2,3} & \dots & e_{2,d} \ -e_{2,3} & 0 & \dots & e_{3,d} \ dots & dots & \ddots & dots \ -e_{2,d} & -e_{3,d} & \dots & 0 \end{array}
ight) \left(egin{array}{cccc} x_2 \ x_3 \ dots \ \ddots & dots \ x_d \end{array}
ight)$$

with $c_{i,j} \in I_1^{n-2}$, $e_{i,j} \in I^{n-3}$ and $b_{i,j} = c_{i,j} + x_1 e_{i,j}$ (if n = 2, $I^{n-3} = 0$). Put

$$\begin{pmatrix} a_2 \\ a_3 \\ \vdots \\ a_d \end{pmatrix} = \begin{pmatrix} b_{1,2} \\ b_{1,3} \\ \vdots \\ b_{1,d} \end{pmatrix} - \begin{pmatrix} 0 & e_{2,3} & \dots & e_{2,d} \\ -e_{2,3} & 0 & \dots & e_{3,d} \\ \vdots & \vdots & \ddots & \vdots \\ -e_{2,d} & -e_{3,d} & \dots & 0 \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ x_d \end{pmatrix}.$$

Then
$$x_1 \begin{pmatrix} a_2 \\ a_3 \\ \vdots \\ a_d \end{pmatrix} = \begin{pmatrix} 0 & c_{2,3} & \dots & c_{2,d} \\ -c_{2,3} & 0 & \dots & c_{3,d} \\ \vdots & \vdots & \ddots & \vdots \\ -c_{2,d} & -c_{3,d} & \dots & 0 \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ x_d \end{pmatrix}$$
 and $a = a_2 x_2 + \dots + a_d x_d$. Conversely,

$$\text{if } a = a_2 x_2 + \dots + a_d x_d, \ a_i \in I^{n-2}, \ \text{with } x_1 \begin{pmatrix} a_2 \\ a_3 \\ \vdots \\ a_d \end{pmatrix} = \begin{pmatrix} 0 & b_{2,3} & \dots & b_{2,d} \\ -b_{2,3} & 0 & \dots & b_{3,d} \\ \vdots & \vdots & \ddots & \vdots \\ -b_{2,d} & -b_{3,d} & \dots & 0 \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \\ \vdots \\ x_d \end{pmatrix},$$

 $b_{i,j} \in I_1^{n-2}$, then clearly $ax_1 = 0$. In particular, for d = 2, we have that $(0:x_1) \cap I^{n-1} = x_2((0:x_1) \cap I^{n-2})$. Moreover, if $a \in (0:x_1x_2) \cap I^{n-2}$, then $ax_2 \in (0:x_1) \cap I^{n-1}$ and hence $ax_2 = x_2b$ for some $b \in (0:x_1) \cap I^{n-2}$. Thus, a = b + (a - b) where $b \in (0:x_1) \cap I^{n-2}$ and $(a - b) \in (0:x_2) \cap I^{n-2}$.

Proposition 4.5 Let I be generated by x_1, x_2 and $n \ge 2$. Then, $E(I)_n = 0$ if, and only if,

(i)
$$x_2I^{n-1}: x_1^n = x_2I^{n-2}: x_1^{n-1},$$

(ii)
$$(0:x_2) \cap I^{n-1} = x_1((0:x_2) \cap I^{n-2}).$$

Proof. By Lemmas 4.2 and 4.4, $E(I)_n = 0$ implies conditions (i) and (ii). Conversely, suppose (i) and (ii) are fulfilled and let us prove $E(I)_n = 0$ via Lemma 4.1. Take $(a_1, a_2) \in$

 $(I^{n-1})^{\oplus 2}$ with $a_1x_1+a_2x_2=0$. Since $I^{n-1}=Ax_1^{n-1}+x_2I^{n-2},\ a_1=b_1x_1^{n-1}+b_2x_2$ with $b_1\in A$ and $b_2\in I^{n-2}$. Then, $0=a_1x_1+a_2x_2=b_1x_1^n+(a_2+b_2x_1)x_2$ and $b_1\in x_2I^{n-1}:x_1^n=x_2I^{n-2}:x_1^{n-1}$ (by (i)). So $b_1x_1^{n-1}=c_2x_2,\ c_2\in I^{n-2},\ and\ a_1=(b_2+c_2)x_2.$ Therefore, $0=a_1x_1+a_2x_2=(a_2+b_2x_1+c_2x_1)x_2.$ So, by $(ii),\ (a_2+b_2x_1+c_2x_1)\in (0:x_2)\cap I^{n-1}=x_1((0:x_2)\cap I^{n-2}).$ We thus have $a_2+b_2x_1+c_2x_1=c_1x_1$ with $c_1\in I^{n-2}$ and $c_1x_2=0.$ That is, $a_2=(c_1-b_2-c_2)x_1$ and $a_1=(b_2+c_2)x_2=(b_2+c_2-c_1)x_2.$

Remark 4.6 Proposition 4.5 generalizes Theorem 2 of [5] and his later improvement in Theorem 4 of [6]. Remark that for an ideal $I = (x_1, x_2)$, be of linear type does not imply $I_1 = (x_2)$ or $I_2 = (x_1)$ be of linear type (see Example 3.3 of [12] where $I = (x_1, x_2)$ of linear type is constructed with $0: x^2 \neq 0: x$ for all $x \in I$).

Theorem 4.7 Let I be generated by d elements x_1, \ldots, x_d $(d \ge 3)$ and take $n \ge 2$. Then $E(I)_n = 0$ if, and only if,

(i) $I_iI^{n-1}: x_i^n = I_iI^{n-2}: x_i^{n-1} \text{ for all } i = 1, \ldots, d,$

$$(ii) \left(\left(\sum_{1 \leq i < j \leq d-1} x_i x_j I_d^{n-2} \right) : x_d \right) \cap I^{n-1} = \sum_{i=1}^{d-1} x_i \left((I_{i,d} I_d^{n-2} : x_d) \cap I^{n-2} \right) ,$$

Proof. By Lemmas 4.2 and 4.1, $E(I)_n=0$ clearly implies conditions (i) and (iii). Let us prove (ii) provided $E(I)_n=0$. Take $a\in\sum_{i=1}^{d-1}x_i\left((I_{i,d}I_d^{n-2}:x_d)\cap I^{n-2}\right)$, so $a=a_1x_1+\cdots+a_{d-1}x_{d-1}$ with $a_i\in I^{n-2}$ and

$$x_d \left(egin{array}{c} a_1 \ a_2 \ dots \ a_{d-1} \end{array}
ight) = \left(egin{array}{cccc} 0 & b_{1,2} & \dots & b_{1,d-1} \ b_{2,1} & 0 & \dots & b_{2,d-1} \ dots & dots & \ddots & dots \ b_{d-1,1} & b_{d-1,2} & \dots & 0 \end{array}
ight) \left(egin{array}{c} x_1 \ x_2 \ dots \ x_{d-1} \end{array}
ight),$$

 $b_{i,j} \in I_d^{n-2}$. Therefore, $a \in I^{n-1}$ and $ax_d = \sum_{i,j\neq d}^{i\neq j} b_{i,j} x_i x_j \in \left(\sum_{1\leq i< j\leq d-1} x_i x_j I_d^{n-2}\right)$. Conversely, take $a \in \left(\left(\sum_{1\leq i< j\leq d-1} x_i x_j I_d^{n-2}\right) : x_d\right) \cap I^{n-1}$. So there exist $b_{i,j} \in I_d^{n-2}$ such that $ax_d = x_1 c_1 + \dots + x_{d-1} c_{d-1}$ where

$$\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_{d-1} \end{pmatrix} = \begin{pmatrix} 0 & b_{1,2} & \dots & b_{1,d-1} \\ b_{2,1} & 0 & \dots & b_{2,d-1} \\ \vdots & \vdots & \ddots & \vdots \\ b_{d-1,1} & b_{d-1,2} & \dots & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{d-1} \end{pmatrix}.$$

Since $E(I)_n = 0$, then (by Lemma 4.1)

$$\begin{pmatrix} -c_1 \\ -c_2 \\ \vdots \\ -c_{d-1} \\ a \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & 0 & \dots & 0 & e_{1,d} \\ 0 & 0 & \dots & 0 & e_{2,d} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & e_{d-1,d} \\ -e_{1,d} & -e_{2,d} & \dots & -e_{d-1,d} & 0 \end{pmatrix} + \begin{pmatrix} 0 & f_{1,2} & \dots & f_{1,d-1} & 0 \\ -f_{1,2} & 0 & \dots & f_{2,d-1} & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -f_{1,d-1} & -f_{2,d-1} & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

$$+x_d \left(egin{array}{ccccc} 0 & g_{1,2} & \dots & g_{1,d-1} & 0 \ -g_{1,2} & 0 & \dots & g_{2,d-1} & 0 \ dots & dots & \ddots & dots & dots \ -g_{1,d-1} & -g_{2,d-1} & \dots & 0 & 0 \ 0 & 0 & \dots & 0 & 0 \end{array}
ight)
ight] \left(egin{array}{c} x_1 \ x_2 \ dots \ x_{d-1} \ x_d \end{array}
ight)$$

where $e_{i,d} \in I^{n-2}$, $f_{i,j} \in I_d^{n-2}$ and $g_{i,j} \in I^{n-3}$. Put

$$\begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_{d-1} \end{pmatrix} = \begin{pmatrix} -e_{1,d} \\ -e_{2,d} \\ \vdots \\ -e_{d-1,d} \end{pmatrix} - \begin{pmatrix} 0 & g_{1,2} & \dots & g_{1,d-1} \\ -g_{1,2} & 0 & \dots & g_{2,d-1} \\ \vdots & \vdots & \ddots & \vdots \\ -g_{1,d-1} & -g_{2,d-1} & \dots & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{d-1} \end{pmatrix}.$$

$$\text{Then, } x_1h_1+\dots+x_{d-1}h_{d-1}=a \text{ and } x_d \left(\begin{array}{c} h_1 \\ \vdots \\ h_{d-1} \end{array}\right)=x_d \left(\begin{array}{c} -e_{1,d} \\ \vdots \\ -e_{d-1,d} \end{array}\right)-x_d(g_{i,j}) \left(\begin{array}{c} x_1 \\ \vdots \\ x_{d-1} \end{array}\right)=$$

$$\begin{pmatrix} c_1 \\ \vdots \\ c_{d-1} \end{pmatrix} + (f_{i,j}) \begin{pmatrix} x_1 \\ \vdots \\ x_{d-1} \end{pmatrix} = (b_{i,j} + f_{i,j}) \begin{pmatrix} x_1 \\ \vdots \\ x_{d-1} \end{pmatrix}. \text{ Thus, } a \in \sum_{i=1}^{d-1} x_i \left((I_{i,d} I_d^{n-2} : x_d) \cap I^{n-2} \right).$$

Now, suppose that (i), (ii) and (iii) hold and let us prove $E(I)_n = 0$ by using Lemma 4.1. Take $(a_1, \ldots, a_d) \in (I^{n-1})^{\oplus d}$ such that $a_1x_1 + \cdots a_dx_d = 0$. Fix $i \in \{1, \ldots, d\}$. Since $a_i \in I^{n-1} = Ax_i^{n-1} + I_iI^{n-2}$, then $a_i = b_ix_i^{n-1} + \sum_{j \neq i} b_jx_j$ with $b_i \in A$ and $b_j \in I^{n-2}$. Since $0 = \sum_{j=1}^d a_jx_j = b_ix_i^n + \sum_{j \neq i} (a_j + b_jx_i)x_j$, then $b_i \in I_iI^{n-1}: x_i^n = I_iI^{n-2}: x_i^{n-1}$ (by (i)). Thus $b_ix_i^{n-1} = \sum_{j \neq i} c_jx_j$, $c_j \in I^{n-2}$ and $a_i = \sum_{j \neq i} (b_j + c_j)x_j \in I_iI^{n-2}$. Hence, we can

write
$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_d \end{pmatrix} = \begin{pmatrix} 0 & b_{1,2} & \dots & b_{1,d} \\ b_{2,1} & 0 & \dots & b_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ b_{d,1} & b_{d,2} & \dots & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$
 where $b_{i,j} \in I^{n-2}$. For $i, j \neq d, i \neq j$, put

 $b_{i,j} = e_{i,j} + x_d h_{i,j}$ with $e_{i,j} \in I_d^{n-2}$ and $h_{i,j} \in I^{n-3}$. For $i \neq d$, put $c_{i,d} = b_{i,d} + \sum_{j \neq i,d} h_{i,j} x_j$. Then,

$$\begin{pmatrix} a_1 \\ \vdots \\ a_{d-1} \\ a_d \end{pmatrix} = \begin{pmatrix} 0 & \dots & 0 & c_{1,d} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & c_{d-1,d} \\ b_{d,1} & \dots & b_{d,d-1} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{d-1} \\ x_d \end{pmatrix} + \begin{pmatrix} 0 & \dots & e_{1,d-1} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ e_{d-1,d} & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{d-1} \\ x_d \end{pmatrix}$$

Since $\sum_{i=1}^{d} a_i x_i = 0$, then $x_d(\sum_{i=1}^{d-1} (b_{d,i} + c_{i,d}) x_i) = -\sum_{i,j \neq d}^{i \neq j} x_i x_j e_{i,j} \in \sum_{1 \leq i < j \leq d-1} x_i x_j I_d^{n-2}$ and, by hypothesis (ii), $(b_{d,1} + c_{1,d}) x_1 + \cdots (b_{d,d-1} + c_{d-1,d}) x_{d-1} = f_1 x_1 + \cdots + f_{d-1} x_{d-1}$

where
$$f_i \in I^{n-2}$$
 and $x_d \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_{d-1} \end{pmatrix} = \begin{pmatrix} 0 & g_{1,2} & \dots & g_{1,d-1} \\ g_{2,1} & 0 & \dots & g_{2,d-1} \\ \vdots & \vdots & \ddots & \vdots \\ g_{d-1,1} & g_{d-1,2} & \dots & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{d-1} \end{pmatrix}, \ g_{i,j} \in I_d^{n-2}.$

Therefore,

$$\begin{cases} a_d &= b_{d,1}x_1 + \dots + b_{d,d-1}x_{d-1} = (f_1 - c_{1,d})x_1 + \dots + (f_{d-1} - c_{d-1,d})x_{d-1} \\ a_{d-1} &= e_{d-1,1}x_1 + \dots + e_{d-1,d-2}x_{d-2} + c_{d-1,d}x_d = \\ & (e_{d-1,1} + g_{d-1,1})x_1 + \dots + (e_{d-1,d-2} + g_{d-1,d-2})x_{d-2} + (c_{d-1,d} - f_{d-1})x_d \\ \vdots & \vdots & \vdots & \vdots \\ a_1 &= e_{1,2}x_2 + \dots + e_{1,d-1}x_{d-1} + c_{1,d}x_d = \\ & (e_{1,2} + g_{1,2})x_2 + \dots + (e_{1,d-1} + g_{1,d-1})x_{d-1} + (c_{1,d} - f_1)x_d. \end{cases}$$

$$\text{We thus can write} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_{d-1} \\ a_d \end{pmatrix} = \begin{pmatrix} 0 & \tilde{c}_{1,2} & \dots & \tilde{c}_{1,d-1} & \tilde{b}_{1,d} \\ \tilde{c}_{2,1} & 0 & \dots & \tilde{c}_{2,d-1} & \tilde{b}_{2,d} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \tilde{c}_{d-1,1} & \tilde{c}_{d-1,2} & \dots & 0 & \tilde{b}_{d-1,d} \\ -\tilde{b}_{1,d} & -\tilde{b}_{2,d} & \dots & -\tilde{b}_{d-1,d} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{d-1} \\ x_d \end{pmatrix}, \text{ with } \tilde{b}_{i,d} \in \mathcal{C}$$

$$I^{n-2}, \text{ but } \tilde{c}_{i,j} \in I_d^{n-2}. \text{ Applying hypothesis } (iii) \text{ to} \begin{pmatrix} 0 & \tilde{c}_{1,2} & \dots & \tilde{c}_{1,d-1} \\ \tilde{c}_{2,1} & 0 & \dots & \tilde{c}_{2,d-1} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{c}_{d-1,1} & \tilde{c}_{d-1,2} & \dots & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{d-1} \end{pmatrix},$$

we finish. \blacksquare

Corollary 4.8 INDUCTION THEOREM Let I be generated by d elements x_1, \ldots, x_d $(d \ge 3)$ and take $n \ge 2$. Suppose that $E(I_d)_n = 0$. Then $E(I)_n = 0$ if, and only if,

(i)
$$I_iI^{n-1}: x_i^n = I_iI^{n-2}: x_i^{n-1} \text{ for all } i = 1, \ldots, d,$$

$$(ii) \ \left((\sum_{1 \leq i < j \leq d-1} x_i x_j I_d^{n-2}) : x_d \right) \cap I^{n-1} = \sum_{i=1}^{d-1} x_i \left((I_{i,d} I_d^{n-2} : x_d) \cap I^{n-2} \right).$$

Proof. By lemma 4.1, $E(I_d)_n = 0$ assures that condition (iii) of Theorem 4.7 is fulfilled.

Corollary 4.9 Let $\underline{x} = x_1, \ldots, x_d$ be d elements of A. Then, \underline{x} is a sequence of linear type if, and only if, for all $n \geq 2$

(i)
$$(x_1, \ldots, \widehat{x}_i, \ldots, x_k)(x_1, \ldots, x_k)^{n-1} : x_i^n = (x_1, \ldots, \widehat{x}_i, \ldots, x_k)(x_1, \ldots, x_k)^{n-2} : x_i^{n-1}$$
 for all $1 < i < k < d$,

(ii) For all $1 \le i < j < k \le d$,

$$\left(\left(\sum_{1 \le i < j \le k-1} x_i x_j (x_1, \dots, x_{k-1})^{n-2} \right) : x_k \right) \cap (x_1, \dots, x_k)^{n-1} = \sum_{i=1}^{k-1} x_i \left(((x_1, \dots, \widehat{x}_i, \dots, x_{k-1})(x_1, \dots, x_{k-1})^{n-2} : x_k) \cap (x_1, \dots, x_k)^{n-2} \right) ,$$

(understanding $\sum_{1 \leq i < j \leq k-1} (\ldots) = 0$ for $k \leq 2$ and $\sum_{i=1}^{k-1} (\ldots) = 0$ for k=1).

Remark 4.10 With the hypothesis $E(I_d)_n = 0$ of Corollary 4.8, it is not hard to prove that $E(I)_n = 0$ is equivalent to

- (i) $I_d I^{n-1} : x_d^n = I_d I^{n-2} : x_d^{n-1}$
- (ii) If $(a_1,\ldots,a_{d-1}) \in (I^{n-1})^{\oplus (d-1)}$ with $a_1x_1 + \ldots + a_{d-1}x_{d-1} = 0$, then there exists $(b_1,\ldots,b_{d-1}) \in (I^{n-2})^{\oplus (d-1)}$ and $(c_1,\ldots,c_{d-1}) \in (I_d^{n-1})^{\oplus (d-1)}$ such that $b_1x_1 + \ldots + b_{d-1}x_{d-1} = 0$ and $a_i = x_db_i + c_i$ for all $i = 1,\ldots,d-1$.

In fact, this is the expected generalization of Costa's Induction Theorem (see 4 of [6]).

Corollary 4.11 Let I be generated by x_1, x_2, x_3 and take $n \geq 2$. Then, $E(I)_n = 0$ if, and only if,

- (i) $I_i I^{n-1} : x_i^n = I_i I^{n-2} : x_i^{n-1}$ for all i = 1, 2, 3,
- $(ii) \ \ (x_1x_2I_3^{n-2}:x_3)\cap I^{n-1}=x_1\left((x_2I_3^{n-2}:x_3)\cap I^{n-2}\right)+x_2\left((x_1I_3^{n-2}:x_3)\cap I^{n-2}\right),$
- $(iii) \ \ (0:x_1) \cap I^{n-1} = \{a_2x_2 + a_3x_3 \mid a_i \in I^{n-2} \, , a_2x_1 = bx_3, a_3x_1 = -bx_2 \text{ for } b \in I_1^{n-2} \}.$

Moreover, if $(0: x_1x_2) \cap I_3^{n-2} = (0: x_1) \cap I_3^{n-2} + (0: x_2) \cap I_3^{n-2}$ (for instance, if $E(I_3)_n = 0$) then condition (iii) can be skipped.

Proof. Suppose $E(I)_n=0$. Then, Lemma 4.2 assures (i), Lemma 4.4 assures (iii) and Theorem 4.7 assures (ii). Conversely, suppose (i), (ii) and (iii) hold and let us prove $E(I)_n=0$ by proving (iii) of Theorem 4.7. So take $\binom{a_1}{a_2}=\binom{0}{c}\binom{0}{c}\binom{x_1}{x_2}$ with $a_1x_1+a_2x_2=0$ and $b,c\in I_3^{n-2}$. Since $(b+c)x_1x_2=0$, then $(b+c)x_2\in (0:x_1)\cap I^{n-1}$ and, by hypothesis (iii), $(b+c)x_2=ex_2+fx_3$ with $e,f\in I^{n-2}$ and $ex_1=gx_3$, $fx_1=-gx_2$ for some $g\in I_1^{n-2}$. Thus, $\binom{a_1}{a_2}=\binom{0}{c-e}\binom{e-c-f}{c-e}\binom{x_1}{x_2}$. Analogously, one could prove that $(0:x_1x_2)\cap I_3^{n-2}=(0:x_1)\cap I_3^{n-2}+(0:x_2)\cap I_3^{n-2}$ implies (iii) of 4.7.

ACKNOWLEDGEMENTS: I am very grateful to J.M. Giral and S. Zarzuela for the very helpful discussions concerning this paper.

References

- [1] M. André. Homologie des algèbres commutatives. Grundlehren no. 206 (Springer-Verlag, 1974).
- [2] J. Backelin and R. Fröberg. Koszul algebras, Veronese subrings and rings with linear resolutions. Rev. Roumaine Math. Pure Appl. 30 (1985), 85-97.
- [3] W. Bruns and J. Herzog. *Cohen-Macaulay rings*. Cambridge Studies in Advanced Math. no. 39 (Cambridge University Press, 1993).
- [5] D. L. Costa. On the Torsion-Freeness of the Symmetric Powers of an Ideal. J. Algebra 80 (1983), 152-158.

- [6] D. L. Costa. Sequences of linear type. J. Algebra 94 (1985), 256-263.
- [7] B. Johnston and D. Katz. On the relation type of large powers of an ideal. *Mathematika* 41 (1994), 209-214.
- [8] J. Herzog, A. Simis and W. V. Vasconcelos. Koszul homology and blowing-up rings. Lecture Notes in Pure and Applied Math. vol. 84 (Marcel Dekker Inc., 1982), pp. 79-169.
- [9] M. Kühl. On the symmetric algebra of an ideal. Manuscripta Math. 37 (1982), 49-60.
- [10] A. Micali and N. Roby. Algèbres symétriques et syzygies. J. Algebra 17 (1971), 460-469.
- [11] F. Planas Vilanova. Sur l'annulation du deuxième foncteur de (co)homologie d'André-Quillen. Manuscripta Math. 87 (1995), 349-357.
- [12] F. Planas Vilanova. On the vanishing and non-rigidity of the André-Quillen (co)homology. J. Pure and Appl. Alg. (To appear).
- [13] P. Schenzel. Castelnuovo's index of regularity and reduction numbers. Banach Center Publications 26 (2) (1990), 201-208.
- [14] G. Valla. On the symmetric and Rees algebra of an ideal. Manuscripta Math. 30 (1980), 239-255.