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1 Introduction

Let A be a commutative ring. We denote by a standard A-algebra a commutative graded
A-algebra U = @,>0U, with Uy = A and such that U is generated as an A-algebra by
the elements of U;. Take z a set of (possibly infinite) generators of the A-module U;. Let
V' = A[t] be the polynomial ring with as many variables ¢ (of degree one) as z has elements
and let f : V — U be the graded free presentation of U induced by the z. For n > 2,
we will call module of effective n-relations the A-module E(U),, = kerf,/V; - kerf,,_1. The
minimum positive integer » > 1 such that the effective n-relations are zero for alln > r 41
is known to be an invariant of U. It is called the relation type of U and is denoted by
rt(U). For an ideal I of A, we define E(I), = E(R(I)), and rt(I) = rt(R(I)), where
R(I) = ®p>ol™t™ C Alt] is the Rees algebra of I.

In this paper, we give two descriptions of the A-module of effective n-relations. In terms
of André-Quillen homology we have that E(U), = H1(A,U, A), (see 2.3). It turns out that
this module does not depend on the chosen z. In terms of Koszul homology we prove that
EWU), = Hi(z;U)y, (see 2.4). Using these characterizations, we show later some properties
on the module of effective n-relations and the relation type of a graded algebra. Meanwhile,
our line of disquisition approaches us to several earlier works on the subject (see [2], [5], [6],
(7], [9], [10], [13] and [14]).

Section 2 is devoted to state the above mentioned (co)homological characterizations of
the A-module of effective n-relations and compare them with some already known results.
In section 3, we give some applications. The interest is specially centered on the module
of n-relations of powers of an ideal and the module of n-relations of Veronese subrings. In
particular, one concludes that rt(U®)) < rt(U%) but, in general, rt(U®)) # rt(U?), where
U, = ®p>0oU, is the irrelevant ideal of U and U = ®n>0Unp is the p-th Veronese subring
of U (see 3.12). Finally, in section 4 we characterize, in terms of a system of generators,
which ideals have module of effective n-relations zero. In particular, a new characterization

of sequences of linear type is obtained.
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2 Homological description of effective relations

Let U = ®n>0U, be a standard A-algebra. Put U, = @,>oU, its irrelevant ideal. If
E = &p>1Fy, is a graded U-module and r > 1, we denote by F,.(E) the submodule of F
generated by the elements of degree at most r. Put (possibly infinite)

s(F) =min{r > 1| E, =0foralln > r+1}.

Since (E /U4 E),, = E, /U1 E,_1, then the following three conditions are equivalent: F,(E) =
E,s(E/ULE)<r,and, E, =U1E,_q for alln > r + 1.

Given h : W — U, a surjective graded morphism of standard A-algebras, we are inter-
ested in the graded A-module E(h) = kerh/W - kerh. The following is an elementary, but

useful lemma:

Lemma 2.1 Let f:V — U and g : W — V be two surjective graded morphisms of standard

A-algebras. Then, there exists a graded exact sequence of A-modules:
E(g) = E(f og) * E(f) = 0. (1)

In particular, s(E(f)) < s(E(f og)) < max(s(E(f)),s(E(g))). Moreover, if V and W are
two symmetric algebras, then E(g), =0 and E(f o g)p = E(f)n for alln > 2.

Proof. Exact sequence (1) follows from the snake lemma applied to the commutative dia-

gram:

1 ®gn71
W1 Q®kergn1 —— Wi Qker(fog)n_1 Wi®kerfp—1— (

| | |

0o —— kergy, —— ker(fog), — kerf, —— 0

gn

Moreover, if W = S(W;) and V = S(V}), then kerg = Fj(kerg). g

Definition 2.2 Let U be a standard A-algebra and let o : S(U1) — U be the graded
morphism of standard A-algebras induced by the identity on U;. Given n > 2, the module
of effective n-relations of U is defined to be E(U), = kera, /U - keray,—1. Put E(U) =
®n>2E(U),, = kera/S (Uy) - kera. Then, the relation type of U is defined to be rt(U) =
s(E(U)). Remark that if h : W — U is any symmetric presentation of U, that is, W is
a symmetric algebra and h is a surjective graded morphism of standard A-algebras, then
h can be factorized into h = f o g, where g : S(W;) — S(U1) is the induced morphism
by h; : Wi — Uy and f = a. Thus, applying Lemma 2.1, E(U),, = E(h), for all n > 2
and s(E(U)) = s(E(h)). If I is an ideal of A, the module of effective n-relations of I is
E(I), = E(R(I)), and the relation type of I is rt(I) = rt(R(I)), where R(I) = ®p>ol"t"
is the Rees algebra of I. An ideal with module of effective 2-relations zero is called syzygetic.

An ideal of relation type 1 is called of linear type (see, e.g., [8]).



Remark 2.3 In fact, sequence (1) is part of a long exact sequence of André-Quillen ho-
mology. Indeed, the Jacobi-Zariski sequence associated to the morphisms g : W — V and
f:V — U, with respect to the U-module A = U/U., gives rise to

..o HH(W,V, A) - Hi(W,U,A) —» H1(V,U, A) — Ho(W,V,A) > ....

Using Hq(A,A/I,M) = I/I? ® M and Hy(A,A/I,M) = 0 for any ideal I of A and any
A/I-module M, we get (1) (see [1]).

On the other hand, the Jacobi-Zariski sequence associated to the morphisms A — S(Uy)
and a : S(U;) — U, with respect to the U-module A, is

e — H1(A,S(U1),A) — H1(A, U,A) — H1(S(U1),U, A) — Ho(A,S(U1),A) — ..

Using Hq(A,S(Uy),A) = 0 and Hy(A,S(U1),A) = Hy(A,U, A), we get the graded iso-
morphism of A-modules Hy(A,U,A) = H(S(U;),U,A) = kera/S, (Uy) - kera. Thus,
H,(A,U,A), = E(U), is the module of effective n-relations of U. In particular, rt(U) =
s(H1(A,U, A)).

There is also a description of the module of effective n-relations in terms of Koszul
(co)homology. Let f : V. — U be a surjective graded morphism of standard A-algebras.
For each p > 1, consider the map V, ® U — U sending z @ y to fp(z)y and let K(f,p)
be the Koszul complex associated to this U-linear form (see 1.6.1 of [3]). Since it is an
homogeneous form of degree zero, IC(f,p) is a complex of graded U-modules having differ-
entials homogeneous morphisms of degree zero. Concretely, K(f,p) = ®n>0K(f,p),, where
K(f,p),, is the following subcomplex (U, = 0 for n < 0):

o= AA(V,) @4 Un2p 25 Vo @4 Up_p 25 U — 0,

where 9,((z1 A ... A2g) ®Yy) = S0 (1) tzy AL AT AL AT ® fp(zy)y, for all z; €V,
and y € U,_¢p. In particular, for every ¢ > 0, Ho(K(f,p)) is a graded A-module with
Hy(K(f,p))n = Hy(K(f,P)p)-

Theorem 2.4 Let f : V — U and g : W — V be two surjective graded morphisms of
standard A-algebras. Let o : S(Uy) — U be the canonical morphism and suppose W is a
symmetric algebra. Given (n > 2,p =1) or (n > 2p+ 1,p > 2), there are isomorphisms of

A-modules

B ker(f o g)n B kera,
HI(K(f7p)n) - Wp . ker(f o g)n—p o Sp(Ul) . keran_p '

In particular, the module of effective n-relations of U is E(U), = Hi(K(f,1),,) and the
relation type of U is rt(U) = s(H1(K(f,1)))-

Proof. Put h = f og. Since n —p > p, then W,,_,, - kerg, C W), - kerg,_, C W), - kerhy_,.

Applying the snake lemma to the commutative diagram of exact rows



9p ® hn—p
kergp, @ Wp_p ® Wy @ kerthp—p — W@ Wr_p Vo®Unp —— 0

| ¥ i

0O —— kerh, —_— Wha e Un — 0

we get the exact sequence of A-modules
0— (9p ® hn—p)(Z:(lw,p),) = Z1(f,p),, = kerh, /W, - kerh,_, — 0,

where Z1(1w,p),,, Z21(f,p),, stand for the n-th component of the 1-cycles module of (1, p),
K(f,p). If Zi(lw,p),, = Bi(lw,p),, (the n-th component of the 1-boundaries module of
K(lw,p)), then (gp ® hn—p)(Z1(1w,p),) = Bi(f,p), Thus, the first isomorphism is demon-
strated provided we prove H; (K(1w,p))n = 0 for a symmetric algebra W (see next lemma).
In particular, if we take V = U and f = 1y, then h = f o g = g and one of the possible
choices of h is the canonical morphism «. Hence, applying twice the first equality to o and

to any h: W — U arising from a symmetric algebra W, we have

keray, kerh,,
p—y . I
S,(U1) - keray,_p ~ Wy - kerhy_p

H\(K(1y,p),) =

Lemma 2.5 Let M be an A-module and W = S(M) the symmetric algebra of M. Then,
for (n >1,p= 1) or (n >2p+1,p> 2)7 HI(K(IWap))n =0.

Proof. Put T(M) the tensorial algebra of M and ¢ = n — p. Applying the snake lemma to

the commutative diagram of exact rows

T,(M)® Ty(M) =— T,(M) —— 0
v £ i e
0O — kerw E— W, ®@ Wy _— Whn — 0
w

we get the exact sequence 0 — kerv — kere — kerw — 0. Thus, Z;(lw,p), = kerw =

v(kere) is the A-module generated by the elements

(1 2p_12p) @ (Y1y2° -+ Yg) — (1 Tp_191) ® (Tpy2*** Yq)

where z;,y; € M and - - -z, stands for the product in W = S(M). Clearly, if (n > 1,
p = 1), then Z,(1w,p), = Bi(lw,p),. Suppose (n > 2p + 1, p > 2), i.e.,, ¢ > p. Then,
H,(K(1w,p),) = 0 follows from the equality:

(Y1---yq) — (@1---2p_1y1) ® (Tpy2---yq) =
(Y1---yq) — (W2 Ypt1) ® (T1 - TpY1Ypr2 -~ Yq) +
(Y2 Yp+1) @ (T1 - Tp_1Y1ZpYpt2 - Yq) — (T1°+ Tp_1Y1) ® (Tpy2 - Yq) -0

(@1 ---2p)



Remark 2.6 Let f : S(F) — S(M) be the induced morphism on the symmetric algebras
by an epimorphism 7 : F — M of A-modules. Then, the last three nonzero terms of

K(f,p)prq 42> p > 1, define the sequence:

AL(S,(F) @48, (M) B S, (F)©4S,(M) 3 S, (M) 0, (2)

ptq

with Oa((z1 -+ 2p) A(y1---4p) @ 2) = (Y1~ 4p) @ fl@1---2p)z — (w1~ 2p) ® fly1---yp)2
and 01((z1 - 7p) ®t) = f(z1-- - 2p)t, Tiyy; € F, 2 €S, _,(M) and t € S (M).
On the other hand, Micali and Roby defined (in [10]) the sequence of A-modules

A

TL (F) 5 S,(F) ®48,(M) 5 S

p+q (M) —0 ) (3)

p+q
with A(1®. . .@Tpiq) = (#1- - 2p) O f (Tpt1 - - - Tptq) = (@1 -~ Tp—1Tp41) O f (TpTpr2 - - Tptq)
and g = 0;. By a similar argument to that one of the end of Lemma 2.5, one can prove
that Imd, is always contained in ImA and that if ¢ > p, then both modules are equal. Thus,
the exactness of (2) (settled by Theorem 2.4 either for ¢ > p = 1 or either for ¢ > p > 2)
assures the exactness of (3). Nevertheless, if ¢ = p > 2, then (2) might not be exact (see

proof of Lemma 3.8) while (3) is always exact (see [10]).

Corollary 2.7 Let U be a standard A-algebra and let z be a (possibly infinite) set of forms
of degree one generating U,.. If Hy(z;U) denotes the first Koszul homology group associated
to z, then E(U), = H1(z;U), for all n > 2. In particular, vt(U) = s(Hy(z;U)).

Proof. Take in Theorem 2.4, f : S(F) — U induced by a free presentation F — U
associated to x. Then, I(f,1) = K(z;U) is the usual Koszul complex associated to the

elements z. g

Remark 2.8 Using duality between Koszul homology and cohomology (see 1.6.10 of [3])

we recover Schenzel’s result rt(U) = s(H? 1(z;U)) + d, when z is finite of cardinal d (see

[13]).

Remark 2.9 Let I be an ideal of A and R(I) = ®,>0I"t" its Rees algebra. Take f = 1z,
the identity on R(I), in Theorem 2.4. Then,

Z1(f,p), = ker (IP @ I"™P — I") = Tor{"(A/I?,I"?),

which is known to be isomorphic to Z; N I" PF/I" PZ;, where 0 - Z; - F — IP - 0 is
a presentation of I? with F free (see, e.g., 2.5 of [8]). Moreover, via the same isomorphism

Bi(f,p), = Im (Ag‘(IP) RI"? PR I"*P) =" %R /I 77,

Thus, by Theorem 2.4, we have

keray, LN I"PE
S,(I) -kerap, , I B ’

Hl(fvp)n =

which reproves an earlier result of Kiihl (see 1.2 of [9]).



3 Some applications
The purpose of this section is to give some applications of Lemma 2.1 and Theorem 2.4.

Example 3.1 CYCLIC STANDARD ALGEBRAS Let U be a cyclic standard A-algebra gener-
ated by a degree one form z € Uy. Put f: A[t]| — U with f(¢) = z in Theorem 2.4. Then,
EU), = Hi(K(f,1),) =(0:2) NUp_1 and rt(U) = min{r > 1| (0:2" ") = (0: z")}.

Example 3.2 CHANGE OF BASE RING Let U be a standard A-algebra and let ¢ : A —
B be a homomorphism of rings. Take f : V — U any surjective graded morphism of
standard A-algebras in Theorem 2.4. It induces f® 1 : V®4 B — U ®4 B. Since
K(f®1,p),, = K(f,p),, ®a B, one can deduce rt(U ®4 B) < rt(U). If ¢ is flat, then
H,(K(f ®1,p),) = Hi(K(f,p),,) ®a B. In particular, rt(U) = sup{rt(Uy,) | p € Spec(4)}.
If o is faithfully flat, then rt(U ® 4 B) = rt(U). In particular, via the Nagata morphism
A— A[t]m[t] = B, m a maximal ideal of A, one can always suppose, when calculating the

relation type of U, that A is a local ring of maximal m and residual field A/m = k infinite.

Let I be an ideal of A and G(I) = @®p>oI™/I™*! its associated graded ring. Since
G(I) =R(I)®4 A/I, then (by 3.2) rt(G(I)) < rt(R(I)) = rt(I). In [14], Valla showed that
if rt(G(I)) = 1, then rt(I) = 1 too. Next proposition is a generalization of that result.

Proposition 3.3 If I is an ideal, there exists E(I)p+1 — E(I)n — E(G(I))n, — 0, ezact
sequence of A-modules, for all n > 2. In particular, if rt(I) < oo, then rt(G(I)) = rt(I).

Proof. If 1, 1g, denote the identity on R(I), G(I), respectively, then for each n > 1,
there is an exact sequence of complexes K(1%,1),,,; — K(1%,1),, = K(1g,1),, — 0. Since
the 0-th component of the first morphism is injective and Ho(K(1%, 1), ;) = 0, we have
enough to deduce the exact sequence E(I)p+1 — E(I), = E(G(I))n — 0. In particular, if

rt(I) < oo, one can proceed by decreasing induction. y

Remark 3.4 If rt(I) = oo, then 3.3 might be false as Example 4.4 of [11] shows. Note that,
as a consequence of next proposition, we will see that for the irrelevant ideal of a standard

algebra hypothesis rt(I) < oo can be removed.

Proposition 3.5 Let U be a standard A-algebra and let Uy = ®p,~oU, denote its irrelevant
ideal. Take f : W — U a surjective graded morphism of standard A-algebras with W
a symmetric algebra. Given (n > 2,p = 1) or (n > 3,p > 2), the module of effective
n-relations of U is
kerf
EU?), = ——7_
U= D W, - kerfy

g>np

In particular, E(UY), = 0 if, and only if, tt(UY) < n—1. Forp =1, rt(U) = rt(Uy).

Moreover, Uy s a syzygetic ideal if, and only if, U is a symmetric algebra.



Proof. Let g : SY(U,®4U) — R(U?) be induced by the natural epimorphism of A-
modules U, ®4 U — U%. It is not hard to see K(g,1),, = ®i>0K(1v,p),p, ;- Moreover, if
(n>2,p=1), thennp+i> 2 and if (n > 3,p > 2), then np +1i > 2p + 1. Therefore, by
Theorem 2.4,

ker frp+i ker f,
E(U?)n = H( Hi(K( P __kerfy
E(UY)n = H( ) =D MK, p) ) @W ket fn_npre @ W, kerfy_p

>0

In particular, E(U%), D E(U%)n41. Thus, E(UY), = 0 is equivalent to rt(U}) < n — L.
Forp =1land n > 2, E(Uy ), = ®i>okerfri/Wi-kerfn 11i = ®i>0E(U)nti = @g>nE(U)q.
In particular, rt(U) = s(E(U)) = s(E(Uy)) = rt(Uy). Moreover, E(Uy)2 = ®¢>2E(U)q =
E(U). Thus, U, be syzygetic is equivalent to U be a symmetric algebra. g

Now, let us focus our attention into the relation type of Veronese subrings. Let U
be a standard A-algebra. Recall that the p-th Veronese subring of U is defined to be
the standard A-algebra U®) = ®n>0Unp. Clearly, if f : V' — U is a (surjective) graded
morphism of standard A-algebras, then it induces f® : V(®) — U®) another (surjective)
graded morphism of standard A-algebras.

Lemma 3.6 Let f : V — U be a surjective graded morphism of standard A-algebras. Then,
for allp > 1, s(E(f®)) <14 [(s(E(f)) — 1)/p] ( [a] is the integer part of a).

Proof. Write s(E(f)) —1 =pa+bwith 0 <b < p. So [(s(E(f))—1)/p] = a. Take n > 2+a.
Then (n—1)p > pa+p > s(E(f)). Thus, kerf,p, = Vi -kerfpp_1=... =V, kerf, 1), and
hence s(E(f®)) <1 +a.y

Lemma 3.7 Let U be a standard A-algebra and let f : V — U be a symmetric presentation
of U. If (n>2,p=1) or (n>3,p > 2), then the module of effective n-relations of U®) is

ker fpp

Py —_ > Jnp
EUW®), V, ket fon 1)

Proof. Take g : S(V,,) — U® induced by fp : Vp = Up in degree one. We have K(g,1), =
IC(f,p)np. Moreover, if (n > 2,p = 1), then np > 2, and if (n > 3,p > 2), then np >
2p + 1. Thus, by Theorem 2.4, E(U),, = H,(K(g, 1),) = Hl(lC(f,p)np) = (kerfnp)/(Vp
kerf(n,_1)p)- 1

Lemma 3.8 Let M be an A-module and S(M) its symmetric algebra. Then, for allp > 1,
rt(S(M)P)) < 2. Moreover, if p > 2 and M is finitely generated, then rt(S(M)®) =1 4,
and only if, M is locally cyclic.

Proof. By Lemma 3.7, E(S(M)®),, = 0 for all n > 3. Thus, rt(S(M)®) < 2. Suppose
p > 2 and (A4, m,k) is local (see 3.2). If M is cyclic, then S(M)(p) = S(S,(M)) and
rt(S(M )(p)) = 1. Conversely, suppose M finitely generated, but not cyclic. Take z,y
part of a basis of M ® k and zP,yP, 2P 1y in S,(M) ® k. Then, z = 2P ® y? — P ly ®



zy?~! € Z1(f ® 1, 1),. Moreover, looking at the components of an element in a k-basis of
Bi(f ® 1§, 1),, one sees that z ¢ Bi(f ® 1;,1),. Thus, Hi(K(f ® 1§,1),) # 0, hence (by
3.2) Hy(K(f,1),) # 0 and rt(S(M)P) = 2.

Remark 3.9 Let I be an ideal of linear type finitely generated, but not locally principal.
Then, by Lemma 3.8, rt(I?) = 2 for all p > 2, which reproves 2.6 of [7].

Theorem 3.10 Let U be a standard A-algebra. Then, rt(U®P)) < max(1+[(ct(U)—1)/p],2)
for all p > 1. Moroever, if U is finitely generated and p > 2, then rt(U(p)) =1 if, and only
if, Up 15 locally generated by a d-sequence of length 1.

Proof. Let a : S(U1) — U be the canonical morphism. Put g : S(S,(U1)) — S(Ul)(p)
and f = a?), Then, by Lemma 2.1, rt(U®) < max(s(E(f)),s(E(g))) and, by Lemmas
3.6 and 3.8, we prove the inequality. Suppose p > 2 and U finitely generated. By 3.2, one
can suppose that (4, m, k) is a local ring of infinite residual field k. If U, is generated by
a d-sequence of length 1, then (by 3.1) rt(U®) = 1. Conversely, suppose rt(U®)) = 1.
Take V. = U ® k, so VP = UP) @ k and rt(V®) < rt(UP) = 1. Therefore, V) is
a polynomial ring of Krull dimension [ = u(V,) = dimV®) = dimV (since V) C V is
an integral extension). Take W C V a graded Noether normalization (it exists since k is
infinite, see 1.5.17 of [3]). Thus, dimW = dimV = [ and so (Hi’;l) = p(Wp) < u(Vp) =1,
which forces [ = 1. Hence, u(U,) = u(Vp) = 1, U, = Az is cyclic and, by 3.1 again, z is a

d-sequence.

Remark 3.11 The inequality of 3.10 was firstly proved by Backelin and Froberg for finitely
generated k-algebras (see [2]). Recently, Johnston and Katz showed a very similar statement
to that of 3.10, but for U = R(I) the Rees algebra of an ideal I (see [7]). Since Q(I)(p) =
R(I)?P) @ A/T = R(IP) ® A/I, then (by 3.2) rt(G(I)P)) < rt(I?). In particular, for I = U,
the irrelevant ideal of a standard algebra U, G(I) = U and rt(U®) < rt(U?). Thus,
Johnston-Katz’s result implies Backelin-Froberg’s result and the inequality of 3.10, when
U is a Noetherian ring. Nevertheless, the whole Theorem 3.10 can not be deduced directly

from earlier results since, in general, rt(U®)) # rt(U%) as next example shows.

Example 3.12 Put U = k[z,y,2]|/J with J = (23y, zy>, 2%, 22y?23). Then, rt(U) = 7,
rt(U?) = 2 and rt(U2) = 3 (remark that max(1 + [(rt(U) — 1)/2],2) = 4). Indeed, since
EU), = kera, /Uy - kerap_1, a : S(U1) — U the canonical morphism, then E(U), = 0
for all m > 2, n # 4,7 and E(U)y = k®3 and E(U); = k. Thus, rt(U) = s(E(U)) = T.
Since kerag C Fy(kera), then, by Lemma 3.7, E(U®),, = keras, /Sy (U1) - kerag(p,—1) = 0
for all n > 3. Thus, rt(U?)) < 2. Moreover, rt(U?) = 2 since Us is not locally cyclic (see
Theorem 3.10). Besides, using Proposition 3.5, E(U% )4 = @4>s (kerag/S,(Us )keray_s) = 0,
so rt(U?) < 3. But, since keray # S,(Uy) -keras, E(U?)3 = ®g>g(keray/Sy(Ur)keray o) #
0. Hence, 1t(U2) = 3.



4 Conditions on the generators

In this section we characterize, in terms of a system of generators, which ideals have module
of effective m-relations zero. Our work here is inspired in previous results by Costa, see
[5] and [6]. Concretely, in [6], it was defined a sequence of linear type as a sequence of
elements z1,...,zq such that the ideals (z1,...,z;) are of linear type for = 1,...,d. As
a consequence of the main result of this section (see 4.7), we get a new characterization
of sequences of linear type involving annihilator ideals (see 4.9). For an ideal I generated
by d elements zi,...,z4, we will denote by I;, _ ; the ideal generated by the z;, where
7 ¢ {i1,...,is}. For an A-module M, we will denote by A4(M) the set of alternating d x d
matrices with coefficients in M.

Lemma 4.1 Let I be generated by d elements x1,...,zq and take n > 2. Then, E(I), =0

if, and only if, for all (a1,...,aq) € (I" 1) with ayx1 + ... + agrqg = 0, there exists
(bij) € Aa(I"2) such that

ai 0 b1,2 .. bl,d T1
az —b1,2 0 e b27d o
ad _bl,d —bzyd - 0 Td

Proof. By Corollary 2.7, E(I), = Hy(zt; R(I))n, where K(zt; R(I)), is the n-th component

of the Koszul complex associated to the elements z1t,...,z4t in R(I) = ®p>ol"t". That
> >
iS, e —> (In_2)®(2) &) (In—l)ﬂad i) Im — 0, with 32(b172, . ,bl,d, b273, . abd—l,d) =
ai 0 b1,z . bl,d 1
az —b1,2 0 . bz,d T2
(ai,...,aq) defined by ) = ) . _ . .|, and &1 (a1,...,aq) =
ad _bl,d —bz,d e 0 rd

a1z1 + -+ +aqgxq. 1

Lemma 4.2 Let I be generated by d elements z1,...,zq and take n > 2. If E(I), = 0,
then LI" ' : g = [T 2 gt

Proof. If a € LI ! : 27, then az?] = asxs + - -+ + agzq4, a; € I" 1. In particular, (by 4.1)

G/CE?_I 0 b1,z . bl,d 1

—asz —b1,2 0 [ bz,d r2
= . L |, bij € I"2 Thus az} * € LI" 2.

—aq —bi,g —bag ... 0 T4

Remark 4.3 If d = 1, then the necessary condition of Lemma 4.2 becomes 0 : z7 = 0 :

27, which is known to be sufficient to assure E(I), = 0 (see Example 3.1).

Lemma 4.4 Let I be generated by d elements x1,...,zq (d > 2) and n > 2. If E(I), =0,
then

4 a: T2

(0 : .771) N 1t= Zaimi | a; € Iniz,xl = (bi,j) for (bi,j) € .Ad_1(1'1n72)

i=2
aqd Td



In particular, if d = 2 and E(I), = 0, then (0 : z1) N I""! = 25((0 : z1) N I""2) and
(0 : :111.’1,'2) NnNI2= (0 : .’1,'1) NnNI"2 4 (0 : :1:2) NnI"2,

a 0 bi2 ... big 1
1 —blyz 0 - b27d o
Proof. If a € (0 : z1) N I™ | then (by 4.1) = for
0 _bl,d —bzyd ... 0 Td
some (b; ;) € Aq(I"72). Thus, a = by sz + - + bi,qzq and
b1,2 0 ba2,3 .. b2
bi,3 —ba,3 0 ... bag
T1 . = . . . =
b1,4 —ba,g —b3zaqa ... 0
0 €23 ... Cad T2 0 €23 ... €24 2o
—c2,3 0 ... C3,d T3 —e2,3 0 ... esd T3
= +z1
—C24 —C3d ... O zq —ezq —e€sd ... O T4
with ¢; ; € If_2, eij € I"3 and bij = cij+ zie;; (ifn =2, "3 =0). Put
a2 b1,2 0 €23 ... €24 2o
as b1,3 —e2,3 0 ... e3d T3
ad bi,q —€2,d —€3d ... 0 Tq
asz 0 C2,3 - C2,d o
as —C2,3 0 ... C3.d 3
Then z; . = ) ) ) : . and a = asx2+- - -+agrq. Conversely,
ad —c2,d —¢€3d4 --- 0 x4
asz 0 b213 s bz,d p)
. n2 . as —ba,3 0 .. b3g T3
ifa =asws+---+agzq, a; € T , with z; ) = ] . . ) ) ,
ad —bzyd —bgyd e 0 rd

bi;j € I'2, then clearly az; = 0. In particular, for d = 2, we have that (0 : z;) N I" ! =
z2((0 : 1) N I™2). Moreover, if a € (0 : zy22) N I™ 2, then azz € (0: z;) N I" ! and hence
azy = Tob for some b € (0: 1) N I"2. Thus,a = b+ (a — b) where b€ (0: z1) N I""2 and
(a—b) € (0:z)NI"2.,

Proposition 4.5 Let I be generated by x1,x2 and n > 2. Then, E(I), = 0 if, and only if,
(i) zoI™ 12l = xoI™ 2 T,
(i) (0:2a)NI" 1 =21((0:22) NI 2).

Proof. By Lemmas 4.2 and 4.4, E(I), = 0 implies conditions (¢) and (i¢7). Conversely,
suppose (z) and (i7) are fulfilled and let us prove E(I), = 0 via Lemma 4.1. Take (a1, a2) €
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(I"1)®? with a;z; + agzy = 0. Since I = A:ET_l + o2 a4y = blx?_l + bozs with
by € A and by € I" 2. Then, 0 = a;x1 + asz2 = b127 + (a2 + bozy)z2 and by € z2I™ 1 :
R Y L x?*l (by (7). So blx?*l = cox3, co € "2, and a; = (b + c2)z2. Therefore,
0 = a1 + azxa = (ag + bazy + cozy)z2. So, by (i4), (az + bazy + cozy) € (0: z2) NI =
21((0 : z2) N I"2). We thus have as + baz; + cox1 = c121 with ¢; € I 2 and ciz2 = 0.

That is, az = (c1 — by — c2)x1 and a1 = (by + c2)x2 = (b + ¢c2 — c1)x2-

Remark 4.6 Proposition 4.5 generalizes Theorem 2 of [5] and his later improvement in
Theorem 4 of [6]. Remark that for an ideal I = (z1,x2), be of linear type does not imply
I = (z2) or Iy = (z1) be of linear type (see Example 3.3 of [12] where I = (z1,z2) of linear
type is constructed with 0: 22 # 0 : z for all z € I).

Theorem 4.7 Let I be generated by d elements x1,...,24 (d > 3) and take n > 2. Then
E(I), =0 if, and only if,

(i) LI" Y2l = LI 22?7 foralli=1,...,d,

d—1
iy —2 -1 -2 -2
(73) | ( Z zixily ") txg | NI = Z z; ((Ii,dIg rxg) NI ) s
1<i<j<d—1 i=1
a1 0 .o biaa z1 d—1
(230) If : = : : : with Z a;z; =0 and b; j € Ig_2, then
aq—1 ba—1,1 0 Ta—1 =1
al 0 v Ci1,d—1 Ci,d 1
- : E : : : for some (c; ;) € Ag(I"2).
ad—1 —C1,d-1 .- 0 Cd—1,d Tq_1
0 —C1,d e —Cd—1,d 0 Tq

Proof. By Lemmas 4.2 and 4.1, E(I), = 0 clearly implies conditions (i) and (i¢). Let
us prove (i7) provided E(I), = 0. Take a € Zg;ll z; ((Ii,dIg_2 1 xq) ﬂI”*Z), so a =
a1y + - + ag_124_1 with a; € I"2 and

al 0 b1,2 . blydfl r1
az b2,1 0 cee bagoa T2
Td = )
ad—1 ba—1,1 ba—12 ... 0 Td—1

b;; € Ig*2. Therefore, a € I ! and azg = Zﬁ?;dbi,jxixj € (Zlgiqu_l xiijgd).

Conversely, take a € ((Zl<i<j<d—1 1.21,]151472) : l'd) N In_l. So there exist bl,] c Ig72 such
that axgy = x1c1 + -+ - + x4_1¢4_1 where

C1 0 b1,2 e b17d_1 1
c2 b2,1 0 cee bagoa T2
Cd—1 ba—1,1 ba—12 ... 0 Td—1
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Since E(I), = 0, then (by Lemma 4.1)

—c1 0 0 . 0 e1,d 0 fi,2 ... fl,d—l 0
—C2 0 0 e 0 €2.d _f1,2 0 - fZ,d—l 0
: = : S : : + : : - : :
—Cd-1 0 0 0 €d-1,d —fia1 —fra1 .. 0 0
a —€1,d —€2d --.- —€d-1,d 0 0 0 0 0
0 g1,2 cer g1a-1 0 T1
—g1,2 0 -ee g24-1 0 T2
+zq : .
—91,d-1 —9g2,d-1 ... 0 0 Tq_1
0 0 e 0 0 Tq
where e; 4 € In_z, fij € IQL*Q and g; ; € I"=3. Put
h1 —€1,d 0 g1,2 e g1d-1 T1
ha —€2,d —g1,2 0 cee g2,d-1 T2
ha—1 —e4-1,d —g1,d—1 —9g2,d—1 .- 0 Tg_1
h1 —€1,d T1
Then, z1hy + -+ + x4_1hg—1 = a and z4 : = z4 : — za(gi,;) : =
hd—1 —€d—1,d Td—1

Cc1 T1 1

. . d—1 -2 _
+(fi.4) : = (bi,j+fi) : . Thus,a € 077 @ ((Iz—,dIg txg) N IT 2).
Cd—1 Td—1 Td—1

Now, suppose that (), (i7) and (#¢7) hold and let us prove E(I), = 0 by using Lemma
4.1. Take (a1,...,aq) € (I""1)®4 such that ajz; + -+-aqzg = 0. Fix i € {1,...,d}. Since
a; € I = Ax?il +I;I™2, then a; = bile*l + 32 bjz; with b; € A and b; € I"2, Since
0= Z?:l ajrj = bzl + 3 4(a; + bjzi)z;, then b; € LIl gl = L2 x?il (by (4)).
Thus biw?_l = >4 CiTj, ¢j € I"? and a; = E#i(bj + ¢j)z; € LI" 2. Hence, we can

ai 0 b1,2 s bl,d 1
. a b2y 0 ... bag T2 9 .. . .
weite | | =0 7 " | where byj € I" 2. Fori,j #d, i # j, put
ad bai ba2 ... 0 T4

bi,j =e;;+ .’L’dhi,j with €;j € Ig_2 and hi,j € I"3. For i # d, put Cid = bi,d + Zj;éi,d hi,j.’L'j.
Then,

a1 0 0 Ci,d 1 0 €1,d—1 0 T
= +
aqd—1 0 e 0 Cd—1,d Td—1 €d—1,d “a 0 0 Td—1
aqd bd,l e bd,d—l 0 T4 0 N 0 0 Td
Si d 4.z —0.th (X9 (bg i4-ciq) .)__Zi;éj Tieii €Y o [2
mce ZZ:l A;T; — 3 en xd i=1 d,Z CZ,d ;) — Z,]#d xlx] 617‘7 1SZ<]Sd_1 xlx] d

and, by hypothesis (ii), (bg,1 + c1,a)21 + -+ - (bga—1 + Cd—1,d)Ta—1 = fizr + -+ fa—1241
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fi 0 g1,2 cee g1,d-1 z1

f2 g2,1 0 cee g2,d-1 T2 -~
where f; € I"2 and T4 = . . y 9ij € Ig 2,
fa1 9d—1,1 9gd-1,2 --- 0 Td—1
Therefore,
4
ag = bagizi+---+bag-12a—1 = (fi —cr,a)z1+ -+ (fa—1 — ca—1,d)Ta—1
ag-1 = edg-11T1+ - +ed-1,d-2Td—2+ Cd—1,dTd =
(ea—1,1 + ga—1,1)z1 + -+ + (€a—1,d-2 + ga—1,d—2)Ta—2 + (ca—1,d — fa—1)Td
ai = e12x2+---+e€1,d-1T4d-1+ C1,4Tq =
L (e1,2 +91,2)z2 + -+ (e1,a-1 + g1,d-1)Ta—1 + (c1,a — f1)za-
ax 0 €2 ... Crd-1 b1,4 z1
a2 C21 0 ... C2a-1 b2,q T2
We thus can write : = : : : : : , with b; g €
aqg—1 C4—1,1 Cd—1,2 ... 0 bg—1,4 Tq—1
aq —b1,a  —b2a ... —ba-1,4 0 Z4
0 61,2 e 511,171 r1
52,1 0 - 52711_1 o

I"2 but & ; € I""2. Applying hypothesis (iii) to , . : : ;

Cd—1,1 Cd—1,2 --- 0 Tq—1
we finish. y

Corollary 4.8 INDUCTION THEOREM Let I be generated by d elements x1,...,zq (d > 3)
and take n > 2. Suppose that E(I3), =0. Then E(I), = 0 if, and only if,

(i) LI" ' 2Pl = LI 22l foralli=1,....,d,

d—1
@) [ Y wly ) iea| 007 =Y a (gl 2 wa) N IV72).
1<i<j<d—1 i=1

Proof. By lemma 4.1, E(I;), = 0 assures that condition (¢i¢) of Theorem 4.7 is fulfilled. g

Corollary 4.9 Let x = z1,...,zq be d elements of A. Then, x is a sequence of linear type
if, and only if, for alln > 2

1

(3) (T1yeee s Tiyee oy @) (@1ye ey )L 2P = (D10, By e ooy ) (1, oy p)" 2 x?il for

all1<i<k<d,

(13) Foralll <i<j<k<d,

( Z xixj(xl,...,xk_l)n_z) : Ty, ﬂ(xl,...,xk)"_l =
1<i<j<k—1
k—1

Z T; (((wl, ey Ty 1) @1y, o) 2 ) N (21, . . ,xk)n_z) ,
i=1

understanding Y 1 <;cicp_1(-..) =0 for k <2 and SELC.)=0fork=1).
1<i<j<k—1 i=1
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Remark 4.10 With the hypothesis E(I), = 0 of Corollary 4.8, it is not hard to prove
that E(I), = 0 is equivalent to

(i) IgI™ ' :a? = IIn2 2t

(i) If (a1,...,aq4-1) € (I"1)®@1) with ayzy + ... + ag_124_1 = 0, then there exists
(b1,...,ba-1) € (I"2)®@"1) and (cy,...,cq 1) € (If 1)®@D) such that byzg + ...+
bg_1xg_1 =0 and a; = xgb; +¢; foralli =1,...,d — 1.

In fact, this is the expected generalization of Costa’s Induction Theorem (see 4 of [6]).

Corollary 4.11 Let I be generated by z1,z2,23 and take n > 2. Then, E(I), = 0 if, and
only if,

(i) GI":a? = I"2:2? ! for alli = 1,2,3,
(i6) (wrwedl 2 i zg) NIVL =gy ((@Ig—2 L23) N IH) + 2 ((xlfg—2 c23) N IH),
(iii) (0:21) NIt = {asxs +azxs | a; € I" 2, asz; = bx3,a3z; = —braford e If_2}.

Moreover, if (0 : zy22) NIy~ 2 = (0: z1) NIF ™2 4+(0 : 22) NIF2 (for instance, if E(I3), = 0)

then condition (ii1) can be skipped.

Proof. Suppose E(I), = 0. Then, Lemma 4.2 assures (¢), Lemma 4.4 assures (4i7) and

Theorem 4.7 assures (7). Conversely, suppose (i), (¢4) and (4¢7) hold and let us prove

E(I), = 0 by proving (7i7) of Theorem 4.7. So take ( “ ) = ( 0 g ) ( o ) with
a2 C T2

a1y + agxy = 0 and b,c € I}™2. Since (b + c)z1z2 = 0, then (b4 c)zp € (0 : 1) NI 1
and, by hypothesis (iii), (b+c)zs = exy + fz3 with e, f € I" 2 and ex; = gz3, fz1 = —gT2

a1 0 e—c —f z1
for some g € I{L_z. Thus, [ as | =| c—e 0 g z2 |. Analogously, one could

0 f —g 0
prove that (0 : zyze) N I3 % = (0:21) NIF 2+ (0: ) NIy 2 implies (iii) of 4.7. g

I3
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