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Abstract. For a given system (A, B) and a subspace S, the Cover Problem consits of finding all (A, B)-invariant subspaces
containing S. For controllable systems, the set of these subspaces can be suitably stratified. In this paper, necessary and
sufficient conditions are given for the cover problem to have a solution on a given strata. Then the geometry of these solutions
is studied. In particular, the set of the solutions is provided with a differentiable structure and a parametrization of all solutions
is obtained through a coordinate atlas of the corresponding smooth manifold.
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1. Introduction. Given a time-invariant linear system

{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

a subspace V is said to be (A,B)-invariant (or controlled invariant as in[3]) if AV ⊂ V + ImB.
For a given subspace S, the cover problem consists of finding all (A,B)-invariant subspaces V such that

S ⊂ V. A number of important problems are related to the cover problem. For instance, the disturbance
decoupling problem calls for a state feedback transformation such that the output of the closed-loop system
does not depend on the input disturbance. As shown in [8, Th. 4.2] this is possible if and only if ImQ ⊂
Im(A,B; kerC) where Im(A,B; KerC) is the unique maximal (A,B)-invariant subspace contained in KerC,
and Q is the input disturbance matrix. Clearly an explicit solution of the cover problem will provide us
with an explicit solution for the disturbance decoupling problem. Some other important problems, like the
observer and model-matching problems, are related to the cover problem as well (see [1]). Actually, as said
by Antoulas in this paper: “The cover problems provide a unifying framework for the solution of a number
of important feedforwaad as well as feedback problems in linear system theory”.

Antoulas’ paper is one of the main contributions to the solution of the cover problem. Antoulas links
together the cover problem and the nice partial realization problem providing, through the last one, a
parametrization of the solutions. Our approach is completely different. We tackle this problem from a

geometrical point of view. Namely, by duality, the cover problem is equivalent to finding all
(

At

Bt

)

-invariant

subspaces (for notational convenience, from now on we will write (Bt, At) instead of
(

At

Bt

)

) V such that
V ⊂ S⊥. (Recall that V is (C,A)-invariant if A(V ∩ KerC) ⊂ V). Thus, if Grd(V ) denotes the Grassman
manifold of d-dimensional subspaces of V , the set of solutions of the cover problem is the intersectionGrd(S

⊥)
with the set of (Bt, At)-invariant subspaces of dimension d, both manifolds of Grd(Kn), K being the field
of real or complex numbers. Our goal is to compute explicitly this intersection. To this end, we partition
the set of (Bt, At)-invariant subspaces of dimension d into smooth strata by fixing the Brunovsky form of
the corresponding restriction of (Bt, At) (see [3]) and we use the parametrization of these strata given in
[4] in order to describe the solutions of the cover problem through the solutions of a set of linear algebraic
systems.

We will use the following notation. As said, K is the field of real or complex numbers and Grd(Kn)
denotes the Grassman manifold of d-dimensional subspaces of Kn. Mm,n is the set of m× n matrices with
elements in K, Mn is the set of the n-square ones and M∗

m,n is the subset of the full column rank m × n
matrices. If X ∈M∗

m,n then [X] denotes the subspace spanned by the columns of X. Finally, if X ∈Mm,n,
X∗ ∈Mn,m is its conjugate transpose.

The structure of this paper is as follows. In section 2 we recall the parametrization of the set of (B t, At)-
invariant subspaces given in [6]. In section 3 we describe the solutions of the cover problem in terms of the
solution of a set of algebraic linear systems on the parameters of the mentioned parametrization. From this
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description we derive explicit necessary and sufficient conditions for the cover problem to have a solution
with a given observability indices (Theorem 3.4). In section 4 we prove a simple necessary and sufficient
condition in order to ensure that the above conditions are satisfied generically (Theorem 4.9). In section 5
we show that the set of solutions of the cover problem is a stratified smooth manifold with an orbit space
structure similar to the set of (Bt, At)-invariant subspaces and we compute its dimension (Theorem 5.1).
Finally we parameterize this manifold by means of coordinate charts (Theorem 5.9) and we prove that it is
connected.

2. Preliminaries. All along this paper a pair (A,B) will be given and we will consider a fixed basis

of Kn: the Brunovsky basis with respect to
(

At

Bt

)

as given in [6]. Actually this is the basis for which system
(A,B) is in the Brunovsky form (dual to the usual one) as given in [2, Lemma 4.4]

On one hand recall that V is an (A,B)-controlled invariant subspace if and only if V⊥ is a (Bt, At)-
conditioned invariant subspace. And, on the other hand, notice that S ⊂ V if and only if any vector of V⊥

is orthogonal to any vector of S. This means that if V⊥ = [X] and S = [F ] then X∗F = 0. Thus, we can
restate the Cover Problem as follows: Given S ∈ Grd(Kn) and a matrix F ∈M∗

d,n such that S = [F ∗], find

all matrices X ∈M∗
n,δ such that [X] is a (Bt, At)-conditioned invariant subspace and FX = 0.

It turns out that the set of matrices X ∈ M∗
n,δ whose columns form a basis of some (B

t, At)-invariant
subspace has been parameterized in [6]. We will take advantage of this fact to characterize the solutions of
the matrix equation FX = 0 whose columns span a (Bt, At)-invariant subspace.

We recall first the basic results about the differentiable structure of the manifold of (Bt, At)-invariant
subspace with specific Brunovsky form for the restriction (see [6] for more details and proofs). Given
an observable pair (C,A) ∈ Mq,n ×Mn with observability indices k = (k1, . . . , kr) and a set of indices
h = (h1, . . . , hs) we will say that h is compatible with k if s ≤ r and hi ≤ ki for i = 1, 2, . . ..

Let the conjugate partitions of k and h be r = (r1, . . . , rk) and s = (s1, . . . , sh), respectively, with
r = r1 ≥ . . . ≥ rk > 0 and s = s1 ≥ . . . ≥ sh > 0. (Recall that if k = (k1, k2, . . .) then r = (r1, r2, . . .) is
its conjugate partition if and only if rj = #{i : ki ≥ j}, where # stands for cardinality). From now on we
will assume that si := 0 for i > h and ri := 0 for i > k. If (k1, . . . , kr) are the observability indices of (C,A)
then (r1, . . . , rk) are called the Brunovsky indices of (C,A) (see [4]).

Notice that ki ≥ hi for i = 1, 2, . . . , r if and only if ri ≥ si for i = 1, 2, . . . , k. In other words h and
k are compatible if and only if s and r are compatible. In the sequel we also assume that s and r are
compatible partitions and we denote by Inv (r, s) the set of (C,A)-conditioned invariant subspaces for which
the restriction of (C,A) to each one of them has Brunovsky indices s (see [5] or [6] for the definition of this
restriction).

Definition 2.1. .- (i) Let M(r, s) denote the set of matrices X ∈ Mn,d which are partitioned into
blocks X = (Xij), 1 ≤ i ≤ k, 1 ≤ j ≤ h in such a way that

(a) Xij ∈Mri,sj .
(b) Xij = 0 if i < j.

(c) If i ≥ j, Xij can be partitioned into blocks Xij = (Z
i−j+1
iα ), 1 ≤ α ≤ h− j + 1, where

Zi−j+1
iα =

(

Y i−j+1
iα

0

)

with Y i−j+1
iα having size rh−α+i−j+1 × (sh−α+1 − sh−α+2).

(d) Xi+1,j+1 is obtained from Xij by removing the last sj − sj+1 columns and the last ri− ri+1 rows for
1 ≤ i ≤ k, 1 ≤ j ≤ h.

(e) rankXii = si, 1 ≤ i ≤ k.
The block decomposition of Xij in (c) will be called its standard block decomposition.

(ii) We denote G(s) :=M(s, s).
Perhaps a more intuitive description of a matrix X ∈ M(r, s) is as follows: X = (Xij), 1 ≤ i ≤ k,

1 ≤ j ≤ h where:
1. Xij ∈Mri,sj .
2. Xij = 0 if i < j.
3. For ` = 1, . . . , k, X`1 = (X

`
ij), 1 ≤ i ≤ k− `+1, 1 ≤ j ≤ h, X`

ij of size (rk−i+1− rk−i+2)× (sh−j+1−

sh−j+2), and X
`
ij = 0 for i > k − h− `+ j + 1. That is to say, if we divide X`,1 into (k − `+ 1)× h

blocks of size (rk−i+1− rk−i+2)× (sh−j+1− sh−j+2), 1 ≤ i ≤ k− `+1, 1 ≤ j ≤ h, then X`,1 is block
upper triangular.
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4. Xij is obtained from Xi−1,j−1 by deleting the last row and column blocks.
Example 2.2. .- If k = 4 and h = 3 a matrix X ∈M(r, s) would have the following general form

r4
r3 − r4
r2 − r3
r1 − r2
r4
r3 − r4
r2 − r3
r4
r3 − r4
r4



































X1
11 X1

12 X1
13

X1
21 X1

22 X1
23

0 X1
32 X1

33 0 0
0 0 X1

43

X2
11 X2

12 X2
13 X1

11 X1
12

0 X2
22 X2

23 X1
21 X1

22 0
0 0 X2

33 0 X1
32

0 X3
12 X3

13 X2
11 X2

12 X1
11

0 0 X3
23 0 X2

22 X1
21

0 0 X4
13 0 X3

12 X2
11



































And, in this example, a typical element of G(s) would be:

s3
s2 − s3
s1 − s2
s3
s2 − s3
s3



















T 1
11 T 1

12 T 1
13

0 T 1
22 T 1

23 0 0
0 0 T 1

33

0 T 2
12 T 2

13 T 1
11 T 1

12

0 0 T 2
23 0 T 1

22 0
0 0 T 3

13 0 T 2
12 T 1

11



















Notice that if ri = ri+1 or si = si+1 then some blocks X
`
ij vanish. For example if k = (4, 3, 2, 1, 1) and

h = (3, 2, 2), then k = 4, h = 3, r = (5, 3, 2, 1) and s = (3, 3, 1). In this case, a matrix in M(r, s) has the
following form for any choice of the nonzero parameters:







































x1 y1 y2

x2 y3 y4

0 y5 y6 0 0
0 0 0
0 0 0
z1 t1 t2 x1 y1 y2

0 t3 t4 x2 y3 y4 0
0 0 0 0 y5 y6

0 u1 u2 z1 t1 t2 x1

0 0 0 0 t3 t4 x2

0 0 0 0 u1 u2 z1







































.

and so X`
i3 vanishes because s1 = s2 = 3.

Notice also that rankXii = si if and only if rankX11 = s1.
Theorem 2.3. .- With the notation of Definition 2.1:
1. G(s) is a subgroup of Gl(Kd).
2. G(s) acts freely on M(r, s) on the right by matrix multiplication.
3. If X ∈M(r, s), T ∈ Gl(Kd) and XT ∈M(r, s), then T ∈ G(s).
4. The orbit space M(r, s)/G(s) has a differentiable structure such that the natural projection M(r, s)
−→ M(r; s)/G(s) is a submersion.

There is a natural bijection between Inv (r, s) andM(r, s)/G(s) given by

M(r, s)/G(s) −→ Inv (r, s)
{XP |X ∈M(r, s), P ∈ G(s)} Ã [X]

(In other words every (C,A)-conditioned invariant subspace with s as Brunovsky indices for the restriction
is spanned by the columns of a matrix in M(r, s)). We consider in Inv (r; s) the differentiable structure
defined through this bijection.
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Corollary 2.4. .- If for j = 1, . . . , h, mj = sj − sj+1 then

dim Inv (r, s) =
h
∑

i=1

k
∑

j=1

mi(ri+j−1 − si+j−1)

.

Definition 2.5. .- A matrix Y ∈M(r, s) is said to be in reduced form if there exists a set of pairwise
different positive integers n = {nij , 1 ≤ i ≤ h, 1 ≤ j ≤ mh−i+1} such that for i = 1, 2, . . . , h

1 ≤ ni1 < ni2 < . . . < nimh−i+1
≤ rh−i+1

and Y can be partitioned into blocks Y = (Yij), 1 ≤ i ≤ k, 1 ≤ j ≤ h, satisfying the following conditions

1. Yij ∈Mri,sj .
2. Yij = 0 if i < j.
3. For i = 1, 2, . . . , h, Yii can be partitioned into blocks Yii = (L

1
iβ), 1 ≤ β ≤ h − i + 1 in such a way

that for β = 1, 2, . . . , h− i+ 1, L1
iβ ∈Mri,mh−β+1

is a matrix whose last ri − rh−β+1 rows are zero,
the rows nij , 1 ≤ i ≤ β − 1, 1 ≤ j ≤ mh−i+1 are also zero, and the rows nβ1, nβ2, . . . , nβmh−β+1

are

unit vectors eβ1 , e
β
2 , . . . , e

β
mh−β+1

:

eβj = (0 . . . 0
(j

1 0 . . . 0) ∈ Kmh−β+1 .

4. For i > j, Yij can be partitioned into blocks Yij = (L
i−j+1
iβ ), 1 ≤ β ≤ h − j + 1 in such a way that

Li−j+1
iβ ∈ Mri,mh−β+1

is a matrix whose last ri − rh−β+i−j+1 rows are zero and for β ≥ i − j + 1,
the rows npq, 1 ≤ p ≤ β − i + j, 1 ≤ q ≤ mh−p+1 are also zero. (Note that the entries of Yij are
prescribed by the entries of Yi−j+1,1).

5. The number of parameters of Y coincide with the dimension of Inv (r, s).

Proposition 2.6. .- For every X ∈ M(r, s) there exists a matrix P ∈ G(s) such that XP is a matrix
in reduced form. Then, the set of integres n is called an admissible set of indices for X and XP a reduced
form of X.

This admissible set of indices for X depends only on the block X11 and completely determines the
structure of the reduced form Y . However, they are not uniquely determined by X11; that is to say, several
sets may be admissible for the same matrix. In fact, 1 ≤ n11 < n12 < · · · < n1sh ≤ rh are sh linearly
independent rows of the matrix











X1
11

X1
21
...

X1
k−h+1,1











,

1 ≤ n11 < n12 < · · · < n1sh ≤ rh, 1 ≤ n21 < n22 < · · · < n2sh−1−sh ≤ rh−1 are sh−1 linearly independent
rows of















X1
11 X1

12

X1
21 X1

22
...

...
X1

k−h+1,1 X1
k−h+1,2

0 X1
k−h+2,2















,

and so on. Of course, there may be several different forms of choosing these linear independent rows.
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Example 2.7. .- For the matrix in example 2.2 if x1 6= 0, a reduced form of X is





































1 0 0
x 1 0
0 0 1
0 0 0
0 0 0

0 0

y 0 0
0 z t
0 0 0

1 0 0
x 1 0
0 0 1

0

0 u v
0 0 0

y 0 0
0 z t

1
x

0 0 0 0 u v y





































where n11 = 1, n21 = 2 and n22 = 3. And if x2 6= 0, another reduced form of X is





































x 1 0
1 0 0
0 0 1
0 0 0
0 0 0

0 0

y z t
0 0 0
0 0 0

x 1 0
1 0 0
0 0 1

0

0 u v
0 0 0

y z t
0 0 0

x
1

0 0 0 0 u v y





































where n11 = 2, n21 = 1, n22 = 3. Actually, these are the only two possible cases.

Proposition 2.8. .- (i) Let X ∈ M(r, s) and Q ∈ G(s). If n is an admissible set of indices for X, it
is also an admissible set of indices for XQ.

(ii) Let Y and Y be matrices of M(r, s) in reduced form with the same set of indices n. If there is a
matrix P ∈ G(s) such that Y = Y P , then Y = Y .

In other words, once an admissible set of indices (i.e. linearly independent rows in the (1,1)-block) of X ∈
M(r, s) has been fixed, the reduced form, Y , of X is unique and the free parameters of Y completely parame-
terizes the (Bt, At)-invariant subspace [X]. This parameterization can be used to provide the differentiable
manifold Inv (k, h) with a coordinate atlas (for the details see [6]).

The above proposition shows that all bases of the same (C,A)-invariant subspace have the same admis-
sible set of indices.

Definition 2.9. .- Given a (C,A)-invariant subspace V, a multiindex of V is any admissible set of
indices for any matrix X ∈M(r, s) such that V = [X].

3. The solution of the Cover Problem. Let S ∈ Grd(Kn) and let (A,B) ∈ Mn ×Mn,m be a
controllable pair. As said in Section 2, we provide Kn and Kn+m with bases so that (A,B) is a Brunovsky
canonical matrix pair as given in [2, Lemma 4]. With regard to these bases we identify S with [F ∗], F ∈M∗

d,n.

Recall that the cover problem consits of finding all matrices X ∈ M∗
n,δ such that [X] is a (B

t, At)-
conditioned invariant subspace and FX = 0. Assume that k = (k1, . . . , kr) are the controllability indices of
(A,B) and fix a partition h = (h1, . . . , hs) compatible with k. Let r and s be the conjugate partitions of k
and h, respectively. We will restrict ourselves to find matrices X ∈ M(r, s) such that FX = 0. As shown
in Section 2, for such matrices, [X] is a (Bt, At)-conditioned invariant subspace and S ⊂ [X]⊥ as desired.
In order to know all (Bt, At)-conditioned invariant subspace containing S we only have to check all possible
partitions compatible with k, finite in number.

Let X ∈M(r, s) and put Xj = (Xij)1≤i≤k, j = 1, . . . , h. For i = 1, 2, . . . , h let Xi denote the submatrix
of X whose j-th column block is the i-th column block of X j . For example, for the matrix in Example 2.2
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we would have

X1 =



































X1
11

X1
21 0 0
0
0
X2

11 X1
11

0 X1
21 0

0 0
0 X2

11 X1
11

0 0 X1
21

0 0 X2
11



































X2 =

































X1
12

X1
22 0

X1
32

0
X2

12 X1
12

X2
22 X1

22

0 X1
32

X3
12 X2

12

0 X2
22

0 X3
12

































X3 =

































X1
13

X1
23

X1
33

X1
43

X2
13

X2
23

X2
33

X3
13

X3
23

X4
13

































.

Also put

Ri
j =











Xi
1j

Xi
2j
...

Xi
k−h−i+j+1,j











, j = 1, . . . , h, i = 1, . . . , k − h+ j,

and

Rj =











R1
j

R2
j

...

Rk−h+j
j











, j = 1, . . . , h.

Rj is of size (rh−j+1 + · · · + rk) × (sh−j+1 − sh−j+2) and will be said to be the condensed form of Xj ,
j = 1, . . . , h. Also the sequence of all these matrices (R1, . . . , Rh) will be called the condensed form of X.
Notice that by knowing the condensed form of X we can easily reconstruct X ∈M(r, s). (The information
about r and s is inside the condensed form).

In the previous example

R1
1 =

(

X1
11

X1
21

)

, R2
1 = X2

11, R1 =

(

R1
1

R2
1

)

=





X1
11

X1
21

X2
11





R1
2 =





X1
12

X1
22

X1
32



 , R2
2 =

(

X2
12

X2
22

)

, R3
2 = X3

12, R2 =

















X1
12

X1
22

X1
32

X2
12

X2
22

X3
12

















etc.

The (1,1)-block of X, X11, will be also denoted by R:

R :=

















R1
1

R1
2

· · ·

0 R1
h−1

0 R1
h

0

















=































X1
11 X1

12 X1
1h

X1
21 X1

22 X1
2h

...
...

...
X1

k−h+1,1 X1
k−h+1,2 · · · X1

k−h+1,h

X1
k−h+2,2 X1

k−h+2,h

0
...

0
...

X1
k,h































(3.1)
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Now we split the columns of F according to the sizes of the row blocks of X:

F =
(

F11 F12 · · · F1k F21 F22 · · · F2,k−1 · · · Fk−1,1 Fk−1,2 Fk1

)

with Fij of size d× (rk−j+1 − rk−j+2), i = 1, . . . , k, j = 1, . . . k − i+ 1.
Now, FX = 0 if and only if FXj = 0 for j = 1, . . . , h. In these homogeneous linear systems the unknown

matrix Xj has some repeated entries and other ones must be compulsory zero. However with the help of the
matrices Rj we can avoid these inconveniences. We introduce the following notation: For α = 1, . . . , k and
β = 1, . . . k − α+ 1 let

H(α, β) =
(

Fα,1 Fα,2 · · · Fα,β
)

∈Md,rk−β+1
.

And for j = 1, . . . , h let

Hj =











H(1, k − j + 1) H(2, k − j) · · · H(k − j + 1, 1)
H(2, k − j + 1) H(3, k − j) · · · H(k − j + 2, 1)

...
... · · ·

...
H(j, k − j + 1) H(j + 1, k − j) · · · H(k, 1)











.

Thus Hj is of size jd × (rj + rj+1 + · · · + rk). Notice that this matrix is a kind of truncated block Hankel
matrix. In fact

H(2, k − j + 1) =
(

H(2, k − j) F2,k−j+1

)

,
H(3, k − j) =

(

H(3, k − j − 1) F3,k−j

)

,

and so on.
Matrices H1,. . . , Hh only depend on the selected basis for S and the Brunovsky structure of (A,B). We

will say that (H1, . . . , Hh) is the block-Hankel structure associated to F , or a block-Hankel structure of S,
with regard to (A,B). (Notice that H1 = F ).

Now it is easily computed that FXj = 0 for j = 1, . . . , h if and only if

Hh−j+1Rj = 0, j = 1, . . . , h

As said above, the advantage of this expression is that all elements of Rj can be seen as arbitrary unknowns.
Following with our example we have that

F =
(

F11 F12 F13 F14 F21 F22 F23 F31 F32 F41

)

and FX = 0 if and only if

H3R1 =





F11 F12 F21

F21 F22 F31

F31 F32 F41









X1
11

X1
21

X2
11



 = 0

H2R2 =

(

F11 F12 F13 F21 F22 F31

F21 F22 F23 F31 F32 F41

)

















X1
12

X1
22

X1
32

X2
12

X2
22

X3
12

















= 0

H1R3 =
(

F11 F12 F13 F14 F21 F22 F23 F31 F32 F41

)

































X1
13

X1
23

X1
33

X1
43

X2
13

X2
23

X2
33

X3
13

X3
23

X4
13

































= 0
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As a conclusion we have the following result whose proof is immediate
Proposition 3.1. .- With the above notation there is a matrix X ∈ M(r, s) such that FX = 0 if and

only if there are matrices R1,. . . , Rh such that Hh−j+1Rj = 0, j = 1, . . . , h and rankR = s1.
Thus the existence of solutions for the Cover Problem is reduced to the compatibility of a finite number

of homogeneous linear systems with the additional restriction rankR = s1. In what follows we aim to give
a more explicit condition with the help of the reduced form introduced in Definition 2.5.

First we pay attention to matrices Hj that form a block-Hankel structure of the subspace S. Let
tj = rankHj , j = 1, . . . , h. In particular t1 = rankH1 = rankF = d.

Definition 3.2. .- An increasing sequence of positive integers 1 ≤ `j1 < · · · < `jtj ≤ rj + · · ·+ rk is said

to be a multiindex for Hj if columns `
j
1, . . . , `

j
tj
are linearly independent.

Proposition 3.3. .- Let F,G ∈ M∗
d,n be matrices such that [F ∗] = [G∗] = S. Let (H1, . . . , Hh) and

(G1, . . . , Gh) be two block-Hankel structures associated to F and G (with regard to (A,B)), respectively.
Then rankHj = rankGj and (`j1, . . . , `

j
tj
) is a multiindex for Hj if and only if it is a multiindex for Gj,

j = 1, . . . , h.
Proof.- In fact [F ∗] = [G∗] = S if and only if there is an invertible matrix P ∈M∗

d such that G = PF .
Thus Gj = Diag(P, . . . , P )Hj and the proposition follows.

Then, the following definition makes sense. Let F ∈ M∗
d,n be such that [F

∗] = S and (H1, . . . , Hh) the

block Hankel-structure associated to F . Let `j = (`j1, . . . , `
j
tj
) with 1 ≤ `j1 < · · · < `jtj ≤ rj + · · · + rk a

multiindex for Hj . Then, we call ` = (`
1, . . . , `h) a multiindex of S with respect to (A,B).

Similarly we introduce a notation for the multiindices of a (C,A)-conditioned invariant subspace. If {(1 ≤
ni1 < ni2 < · · · < nimh−i+1

≤ rh−i+1)|1 ≤ i ≤ h} (recall that mh−i+1 = sh−i+1 − sh−i+2) is a multiindex
of a (C,A)-conditioned invariant subspace (Definition 2.9) then we will write ni = (ni1, . . . , nimh−i+1

) and
n = (n1, . . . , nh) denotes a multiindex of that subspace.

We will also use the following notation: if i = (i1, . . . , ir) and j = (j1, . . . .js) are sequences of positive
integers such that 1 ≤ i1 < · · · < ir ≤ m and 1 ≤ j1 < · · · < js ≤ n, then A(i, j) will denote the r × s
submatrix of A ∈ Mm,n formed with rows i1, . . . , ir and columns j1, . . . , js; and A[i, j] is the submatrix of
A obtained by removing rows i1, . . . , ir and columns j1, . . . , js. In particular, if j = (1, . . . , n) then A(i, ) is
the submatrix formed by rows i1, . . . , ir and all the columns of A and A[i, ] is the submatrix obtained by
deleting from A rows i1, . . . , ir and no columns. Similarly if i = (1, . . . ,m).

Now we can prove an explicit condition for the Cover Problem to have a solution:
Theorem 3.4. .- Let S ∈ Grd(Kn), (A,B) a controllable pair with r1 ≥ · · · ≥ rk > 0 as positive

Brunovsky indices and let s1 ≥ · · · ≥ sh > 0 be a partition compatible with (r1, . . . , rk). Then there exists
an (A,B)-controlled invariant subspace, V ∈ Grn−δ(Kn) such that the restriction of (Bt, At) to V⊥ has
(s1, . . . , sh) as positive Brunovsky indices and V ⊂ S if and only if there are multiindices ` = (`1 , . . . , `h)
and n = (n1, . . . , nh) for S and V⊥, respectively, such that `j ∩ nh−j+1 = ∅ for j = 1, . . . , h.

Proof.- Assume first that there is an (A,B)-controlled invariant subspace V ∈ Grn−δ(Kn) such that
S ⊂ V and let [F ∗] = S. For any matrix X ∈ M(r, s) (whose columns span V⊥) we have that FX = 0. By
Proposition 2.6 we can assume that X is in reduced form given by Definition 2.5.

Let n = (n1, . . . , nh) be a multiindex of V⊥ and then for X. Since X is in reduced form we have that

R1
j (n

j , ) = Imh−j+1
, j = 1, . . . , h.

Thus rankR = s1 independently of the remainder elements of R
1
i , i = 1, . . . , h. We only have to analyze

under what conditions systems Hh−j+1Rj = 0, j = 1, 2, . . . , h, are solvable.
Let us consider system Hh−j+1Rj = 0. As R

1
j (n

j , ) = Imh−j+1
, if Hh−j+1Rj = 0 then

Hh−j+1[ , n
j ]Rj [n

j , ] = −Hh−j+1( , n
j),

i.e. the columns of Hh−j+1 in nj are linearly dependent on the remainder columns of Hh−j+1. Since

rankHh−j+1 = th−j+1, there must be a multiindex for Hh−j+1, `
h−j+1 = (`h−j+1

1 , . . . , `h−j+1
th−j+1

) such that

`h−j+1 ∩ nj = ∅, as desired.
Conversely, if `h−j+1 ∩ nj = ∅ for j = 1, . . . , h then there are matrices Z1,. . . , Zh such that

Hh−j+1[ , n
j ]Zj = −Hh−j+1( , n

j), j = 1, . . . , h.
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For j = 1, . . . , h we construct a matrix Rj as follows

Rj [n
j , ] = Zj

Rj(n
j , ) = Imh−j+1

Thus Hh−j+1Rj = 0 and by defining R as in (3.1) we have that rankR = s1. Now the theorem follows from
Proposition 3.1.

It is worth noticing that in the proof of the above theorem we have not used the whole reduced form
of X; just the fact that the rows in nj are canonical vectors. Actually there are some hidden properties of
the admissible multiindices of Hj behind the block-Hankel structure of these matrices. The following one is
relevant:

Lemma 3.5. .- If for some j = 1, . . . , h there is a positive integer α, 1 ≤ α ≤ rj, such that column
α of Hj is a linear combination of the remainder columns of Hj then for i = 1, . . . , j − 1 columns α,ri +
α,. . . ,ri + · · ·+ rj−1 + α of Hi are also linear combinations of the remainder columns of Hi.

Proof.- Straightforward bearing in mind the block-Hankel structure of matrices Hj .

A consequence of this lemma is the following necessary condition for the Cover Problem to have a
solution.

Theorem 3.6. .- Under the assumptions of Theorem 3.4 let (H1, . . . , Hh) be any block-Hankel structure
of S with respect to (A,B). If there is an (A,B)-controlled invariant subspace, V ∈ Grn−δ(Kn) such that
the restriction of (Bt, At) to V⊥ has (s1, . . . , sh) as positive Brunovsky indices and S ⊂ V then

rankHj ≤
k
∑

i=j

(ri − si), j = 1, . . . , h.(3.2)

Proof.- We have seen in the proof of Theorem 3.4 that if n = (n1, . . . , nh) is a multiindex for V⊥ then
the columns of Hj in nh−j+1 are linear combination of the remainder columns of Hj . Thus, if we agree
that for a positive integer a, a+ nj = {a+ nj,1, a+ nj,2, . . . , a+ nj,mj

}, then, according to Lemma 3.5, the
following columns of Hj in

nh−j+1∪
nh−j ∪ (rj + nh−j)∪
nh−j−1 ∪ (rj + nh−j−1) ∪ (rj + rj+1 + nh−j−1)∪
· · ·
n1 ∪ (rj + n1) ∪ · · · (rj + · · ·+ rh−1 + n1)

are linear combination of the remainder columns of Hj . But all these sets of indices are pairwise disjoint
and

#(n1 ∪ n2 ∪ · · · ∪ nh−j+1) = sh +mh−1 + · · ·+mj = sj
#(rj + n1 ∪ rj + n2 ∪ · · · ∪ rj + nh−j) = sh +mh−1 + · · ·+mj+1 = sj+1

...
#(r1 + · · ·+ rh−1 + n1) = sh.

As the number of columns of Hj is rj + · · ·+ rk we conclude that

rankHj ≤ (rj + · · ·+ rk)− (sj + · · ·+ sh), j = 1, . . . , k.

as desired.

Condition (3.2) is not sufficient in general because it is not only important the number of linearly
independent columns of Hj but also their positions. For example, assume that r = (5, 3, 2, 1) and s =
(3, 3, 1) as in Example 2.7, and let S be the subspace of R11 generated by the matrix F ∗ where F =
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(

1 0 0 0 0 0 0 0 0 0 0
)

. Then

H1 = F =
(

1 0 0 0 0 0 0 0 0 0 0
)

H2 =

(

1 0 0 0 0 0
0 0 0 0 0 0

)

H3 =





1 0 0
0 0 0
0 0 0



 .

On one hand, rankH1 = 1 ≤ r1 + r2 + r3 + r4 − s1 − s2 − s3 = 4, rankH2 = 1 ≤ r2 + r3 + r4 − s2 − s3 = 2
and rankH3 = 1 ≤ r3 + r4 − s3 = 2. Thus condition (3.2) holds. However we have seen in Example 2.7
that the only possible multiindices for all invariant subspaces are ((1), (2, 3)) and ((2), (1, 3)). (Notice that
in this case n3 = ∅). But `1 = `2 = `3 = (1); and so either `3 ∩ n1 6= ∅ or `2 ∩ n2 6= ∅. That is to say there is
not (A,B)-controlled invariant subspace V such that the restriction of (Bt, At) to V⊥ has Brunovsky indices
s = (3, 3, 1) and S ⊂ V. This does not mean that there is no (A,B)-invariant subspaces of codimension 7
containing S. In fact, many other partitions s are compatible with r = (5, 3, 2, 1). For example s = (4, 2, 1)
is compatible with r and a possible multiindex may be n = ((2), (3), (4, 5)). Since `3−j+1 ∩ nj = ∅ for
j = 1, 2, 3 we conclude that there is at least one (A,B)-invariant subspace of codimension 7 containing
S. The orthogonal of such a subspace is generated by a matrix Y ∈ M(r, s) in reduced form as given in
Definition 2.5. Thus the orthogonal to the subspace spanned by

Y (y1, . . . , y9) =





































0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
y1 y2 y3 y4 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 y5 y6 y7 y1 y2 0
0 0 0 0 0 0 1
0 0 y8 y9 0 y5 y1





































has dimension 4, it is (A,B)-invariant and contains S. Notice that there are 9 free parameters in Y. So,
there are many other different choices for matrices Y in reduced form with the same properties.; i.e. each
one of them spans a (Bt, At)-conditioned invariant subspace of dimension 7 with Brunovsky indices for
the restriction s = (4, 2, 1) and whose orthogonal contains S. We will see in a later section that the set
of all (Bt, At)-conditioned invariant subspace with fixed Brunovsky indices for the restriction and whose
orthogonals contain a given subspace can be provided with a differentiable structure. As we will prove, the
number of free parameters in Y is just the dimension of the corresponding manifold.

To finish this section is worth mentioning that, generically, condition (3.2) is also sufficient as we will
show in the next section.

4. The generic case. The aim of this section is to show that, generically, that is to say for S belonging
to an open and dense subset S of Grd(Kn), condition (3.2) in Theorem 3.6 is a sufficient condition for the
Cover Problem to have a solution. We would like to emphasize that genericity is an interesting property
from a practical point of view. In fact, it means that if S 6∈ S we can obtain by a slight modification of S a
subspace S ′ ∈ S and that if S ∈ S the small perturbations of S remain in S.

We begin by recalling the definition of genericity. Given a property (P) concerning the elements of a
topological space T , (P) is said to be a generic property with respect to T if there exists an open and dense
subset O of T such that every element of O satisfies this property. Then, we also say that the set O satisfies
property (P) generically. For example, being invertible is a generic property with respect to the set of square
matrices. The following property will play an important role in the achievement of our objective.

(P) We say that a matrix A satisfies property (P) if A has full rank, say r, and all r × r submatrices of
A are invertible.

It is clear that (P) is a generic property with respect toMm,n. However, what we will need is that this
property keeps being generic with respect to a smaller set: the set of all block-Hankel structures (H1, . . . , Hh)
associated to F . The following particular case is essential to this end.
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Let Hp,q be the set of p× q Hankel matrices and ν the number of perpendiculars to the main diagonal.
From a topological point of view we identify Hp,q with Kν . Let H(x) be the Hankel matrix

H(x) =













x1 x2 x3 . . . xq
x2 x3 . . . . . . . . .
x3 . . . . . . . . . . . .
. . . . . . . . . . . . . . .
xp . . . . . . . . . xν













= (xi+j−2)

where x1, . . . , xν are indeterminates. We will also say that x1 . . . , xν are the parameters of H(x) and that
H(x) is a parametric Hankel matrix. A particular Hankel matrixH(a) is obtained by giving to the parameters
the values xi = ai, i = 1, . . . , ν. We will show that (P) is generic with respect to Hp,q. For this we need the
following result

Lemma 4.1. .- Let H(x) be a parametric Hankel matrix with p ≤ q. Let I = (i1, . . . , ip) be a given
sequence of indices, 1 ≤ i1 < . . . < ip ≤ q, and let ∆I(x) be the determinant formed with the columns in I.
Then ∆I(x) is not the zero polynomial of K[x].

Proof. By recurrence on the number of rows p. If p = 1 the lemma is obvious. Assume now that the
lemma is also true for p − 1 ≥ 2. Then, if p is the number of rows of H(x), we compute ∆I(x) by its first
column cofactor expansion:

∆I(x) = xi1∆1,i1(x) + · · ·+ xi1+p−1∆p,i1(x)

Notice that if we eliminate the first row of a Hankel matrix, the remaining matrix is still a Hankel matrix.
Hence, by applying the induction hypothesis we conclude that ∆1,i1(x) 6= 0. Then taking into account that
the indeterminate xi1 does not appear in any of the remainder summands we obtain that ∆I(x) 6= 0, as
desired.

Let VI denote the set of matrices H(a) ∈ Hp,q such that ∆I(a) 6= 0. The above lemma shows that VI is a
Zariski open (and hence dense) subset ofHp,q. When I runs over all i1, . . . , ip such that 1 ≤ i1 < . . . < ip ≤ q,
∩
I
VI is still open and dense. Since H ∈ Hp,q satisfies (P) if and only if H

t satisfies the same property, the

next lemma follows.

Lemma 4.2. .- (P) is a generic property with respect to Hp,q.

We will have to deal with matrices formed by a finite number of parametric Hankel matrices, one each
other with different parameters. For convenience we introduce the following definition.

Definition 4.3. Let Hij(xi,j) be a parametric Hankel matrices with different parameters (that is to
say, xi,j 6= xk,l if (i, j) 6= (k, l)). A matrix of the form

H(x) =











H11(x11) H12(x12) · · · H1n(x1n)
H21(x21) H22(x22) · · · H2n(x2n)

...
... · · ·

...
Hm1(xm1) Hm2(xm2) · · · Hmn(xmn)











will be called an H-matrix, For example,
















x1 x2 x3 y1 y2 v1 v2 v3 v4

x2 x3 x4 y2 y3 v2 v3 v4 v5

z1 z2 z3 u1 u2 t1 t2 t3 t4
z2 z3 z4 u2 u3 t2 t3 t4 t5
z3 z4 z5 u3 u4 t3 t4 t5 t6

















is an H-matrix. (For simplicity we have written xi11 = xi, x
j
12 = yj , . . .)

Lemma 4.4. .- (P) is a generic property with respect to the set of H-matrices.
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Proof. Let (x1
ij , . . . , x

nij
ij ) be the parameters of Hij(xij). Since x

α
ij 6= xαk` for (i, j) 6= (k, `) we can obtain

from H(x) a Hankel matrix as follows. In the first row block

(

H11(x11) H12(x12) · · · H1n(x1n)
)

we modify the parameters of the first column of each one of the blocks H12(x12), H13(x13), . . ., so that the
first row block becomes a Hankel matrix with different parameters. We illustrate this through the example
above. Replace y1 by x4 and v1 by y3:

(

x1 x2 x3 x4 y2 y3 v2 v3 v4

x2 x3 x4 y2 y3 v2 v3 v4 v5

)

Next we modify conveniently the parameters of the second row block

(

H21(x21) H22(x22) · · · H2n(x2n)
)

so that the resulting matrix formed by the two modified row blocks is a Hankel matrix with different
parameters. Again, we illustrate this procedure through the previous example

















x1 x2 x3 x4 y2 y3 v2 v3 v4

x2 x3 x4 y2 y3 v2 v3 v4 v5

x3 x4 y2 y3 v2 v3 v4 v5 t4
x4 y2 y3 v2 v3 v4 v5 t4 t5
y2 y3 v2 v3 v4 v5 t4 t5 t6

















Following this way we will obtain from H(x) a Hankel matrix, H(x) ∈ Hp,q. By Lemma 4.2 (P) is generic
with respect to Hp,q, and so it is with respect to the H-matrices.

Finally, let Oj be the set of all matrices F ∈Md,n such that if (H1 . . . Hh) is the block Hankel structure
associated to F,Hj satisfies (P) and set O = ∩

j
Oj .

Proposition 4.5. .- Oj is an open and dense subset of Md,n.
Proof. Recall that matrices Hj , as defined in Section3, are almost block Hankel matrices. Actually we

can permute the blocks in Hj in order to obtain a matrix with the form

HjP =
(

H1
j H2

j · · · H
kj
j

)

(P a permutation matrix) such that each submatrix H i
j is a block Hankel matrix for i = 1, . . . , kj .

Following our example in Section 3 we would have

H1
1 =

(

F11 F21 F31 F41

)

H2
1 =

(

F12 F22 F32

)

H3
1 =

(

F13 F23

)

H4
1 = F14

H1
2 =

(

F11 F21 F31

F21 F31 F41

)

H2
2 =

(

F12 F22

F22 F32

)

H3
2 =

(

F13

F23

)

H1
3 =





F11 F21

F21 F31

F31 F41



 H2
3 =





F12

F22

F32





Now, by a suitable permutation of the rows of HjP we can obtain an H-matrix. The proposition follows
from Lemma 4.4 taking into account that the parameters of F not being in Hj are free.

Corollary 4.6. .- O is an open and dense subset of Md,n.
From this corollary we derive the following result which is basic to attain our objective.

Proposition 4.7. .- Let S be the set of subspaces S ∈ Grd(Kn) such that S = [F ∗] with F ∈ O. Then
S is an open and dense subset of Grd(Kn).

Proof. Let F,G ∈Md,n be matrices such that [F
∗] = [G∗] = S, and (H1, . . . , Hh), (K1, . . . ,Kh) be the

block Hankel structures associated to F and G, respectively. From Proposition 3.3 one has that F ∈ O if and
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only if G ∈ O. Then the proposition follows from the above corollary and the fact that in the description of
Grd(Kn) as the orbit spaceM∗

d,n/Gl(K
d), the natural projectionM∗

d,n −→M∗
d,n/Gl(K

d) is an open map.

Lemma 4.8. .- If S ∈ S and H1, . . . , Hh is a block Hankel structure of S satisfying condition (3.2) in
Theorem 3.6 then

rankHj = jd .

Proof. Since S ∈ S, Hj has full rank. Therefore,

rankHj = min{jd, rj + · · ·+ rk}

and from condition (3.2) we have

min{jd, rj + · · ·+ rk} ≤
k
∑

i=j

(ri − si) .

Hence, rankHj = jd.

We are now in position to show the main result of this section.

Theorem 4.9. .- Under the assumptions of Theorem 3.4 and with the above notation, for every S ∈ S

there is an (A,B)-controlled invariant subspace V ∈ Grn−δ(Kn) such that the restriction of (Bt, At) to V⊥

has (s1, . . . , sh) as positive Brunovsky indices and S ⊂ V if and only if

0 ≤
k
∑

j=h

rj − sh − hd .(4.1)

Proof. (if) Condition (4.1) can be written as

hd ≤
k
∑

i=h

(ri − si)

and from this relation and bearing in mind that ri ≥ si, we conclude that for j = 1, . . . , h

jd ≤ hd ≤
k
∑

i=h

(ri − si) ≤
k
∑

i=j

(ri − si) .(4.2)

But by the above lemma, jd = rankHj = tj . Hence,

tj +mj = jd+ sj − sj+1 ≤ rj + · · ·+ rk , j = 1, . . . , h.(4.3)

Since S ∈ S, if (H1, . . . , Hh) is a block-Hankel structure of S, for j = 1, . . . , h any set of columns of Hj is
linearly independent. Thus any multiindex is available to be chosen, and, in order to apply Theorem 3.4,
we only have to check that tj +#n

h−j+1 is less than or equal to the number of columns of Hj . And this is
just what relation (4.3) shows.

(only if). From Theorem 3.6 we know that condition (3.2) is satisfied, so that for j = h we have

th ≤
k
∑

j=h

rj − sh

and from Lemma 4.8 rankHh = hd. Hence, condition (4.1) is satisfied.
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Remark 4.10. Given S ∈ Grd(Kn), the existence of an (A,B)-controlled invariant subspace V ∈
Grn−δ(Kn) such that the restriction of (Bt, At) to V⊥ has (s1, . . . , sh) as positive Brunovsky indices and
S ⊂ V is equivalent to the following relation

Grδ(S
⊥) ∩ Inv (r, s) 6= ∅ .(4.4)

According to Thom Transversality Theorem a necessary condition in order the above relation to be
satisfied is that

dimGrδ(S
⊥) + dim Inv (r, s) ≥ dimGrδ(K

n) .

That is to say, if η = dim Inv (r, s) then

δ(n− d+ δ) + η ≥ δ(n− δ)

or

δd ≤ η(4.5)

We know that δ = s1 + · · ·+ sh and η =
h
∑

i=1



(si − si+1)
k
∑

j=1

(ri+j−1 − si+j−1)



 (see Corollary 2.4).

Hence relation (4.5) is equivalent to

d

(

h
∑

i=1

si

)

≤
h
∑

i=1



(si − si+1)

k
∑

j=i

(rj − sj)



 .

But
h
∑

i=1

si =
h
∑

i=1

i(si − si+1) so that, finally, (4.5) is equivalent to

h
∑

i=1



(si − si+1)



id−
k
∑

j=i

(rj − sj)







 ≤ 0 .

We then conclude that (4.1) (see (4.2)) implies (4.5). Therefore condition (4.1) in Theorem 4.9 gives a
necessary condition for (4.4) to be satisfied generically. This is interesting because Thom Theorem tells us
more than this. In fact, it states that the intersection in (4.4) is transversal which implies that Grδ(S

⊥) ∩
Inv (r, s) is a manifold and also that its dimension is given by η − δd. We will prove this two statements by
direct methods in the next section, but not only for generic subspaces but in general.

Theorem 4.9 can be used to provide a solution, in the generic case, to the original cover problem; that
is to say, without prescribing the Brunovsky indices of the restriction, s. This is stated in the following
problem whose proof follows from the following observation. Assume that s′ = (s′1, . . . , s

′
h′) is such that

h′ < h. Then,

k
∑

j=h

rj − sh − hd <
k
∑

j=h′+1

rj − h′d <
k
∑

j=h′

rj − s′h′ − h′d.

Corollary 4.11. .- With the notation of the above theorem, for every S ∈ S there is an (A,B)-
controlled invariant subspace V ∈ Grn−δ(Kn) such that S ⊂ V if and only if

0 ≤
k
∑

j=h

rj − sh − hd .(4.6)

for the unique s compatible with r having minimal h.
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We will give an example applying this result. First notice that the unique partition s compatible with r
(i.e., si ≤ ri for all i) having minimal h can be explicitly constructed as follows (recall that s1+ · · ·+sh = δ):

(i) s1 = min{r1, δ}
(ii) for j = 2, 3 . . . , s1 + · · ·+ sj = min{r1 + · · ·+ rj , δ}

and h = min{j : r1 + · · · rj ≥ δ}.
Example 4.12. Let r = (3, 3, 2) and d = 3. We are going to determine when the cover problem has

generically solution for the possible values of δ. Since n = 8, we have 1 ≤ δ ≤ 4. We examine the inequality
of (4.6) for the partitions s compatible with r having minimal h, that is to say, for δ = 1, s = (1), for δ = 2,
s = (2), for δ = 3, s = (3) and for δ = 4, s = (3, 1). We conclude that for δ = 1, 2, 3 the cover problem has
generically solution and for δ = 4, it does not.

5. The differentiable structure of the solutions. Along this section we are given a subspace
S ∈ Grd(Kn) for what there is at least one V ∈ Inv (r, s) such that S ⊂ V⊥. A necessary and sufficient
condition for such a property to hold was given in Theorem 3.4. Our aim in this section is to show that for
subspace S the set Inv (r, s,S) = {V ∈ Inv (r, s)|S ⊂ V⊥} can be provided with a differentiable structure,
to compute its dimension and to find an atlas of coordinate charts. This will allow us to parameterize the
solutions of the Cover Problem.

To begin with let F ∈M∗
d,n be a matrix such that S = [F

∗] and let X ∈M(r, s) be such that V = [X]
with V ∈ Inv (r, s,S). Then FX = 0. Let

N (r, s,S) := {X ∈M(r, s)|FX = 0}.

Notice that if F,G ∈ M∗
d,n such that S = [F

∗] = [G∗] then {X ∈ M(r, s)|FX = 0} = {X ∈ M(r, s)|GX =
0}. For notational simplicity we will write N := N (r, s,S) andM :=M(r, s). Let G := G(s) be the group
defined in Definition 2.1. By Theorem 2.3 this group acts freely onM on the right by matrix multiplication
and so does it on N . In addition we can identify Inv (r, s,S) with N/G by means of the bijection

N/G −→ Inv (r, s,S)
{XP |X ∈ N , P ∈ G(s)} Ã [X]

Through this bijection a differentiable structure on Inv (r, s,S) can be defined:
Theorem 5.1. .- (i) The orbit space N/G has a differentiable stucture such that the natural projection

π : N → N/G is a submersion.
(ii) dim(N/G) = dimN − dimG.
Proof.- (i) According to [7, Th 2.9.10] we have to prove:
(a) Γ = {(X,X ′) ∈ N ×N|X ′ = XP,P ∈ G} is closed in N ×N , and
(b) the map γ : N × G → Γ defined by γ(X,P ) = (X,XP ) is a homeomorphism.

In order to prove (a) notice that if Γ1 = {(X,X ′) ∈M×M|X ′ = XP,P ∈ G} then Γ = Γ1 ∩ (N ×N ). As
Γ1 is closed inM×M (see [5]), Γ is closed in N ×N .

On the other hand, γ is clearly bijective due to the free action of G on N , and it is continue because it
is the restriction of the homeomorphism γ1 :M× G → Γ1 defined by γ1(X,P ) = (X,XP ) (see again [5]).
Its inverse is also continue for the same reason.

(ii) The dimension formula follows from (i) as in [5].

Now we compute the dimension of N/G. On one hand (see [6])

dimG =
k
∑

i=1

h
∑

j=1

(si − si+1)si+j−1.

And on the other hand X ∈ N if and only if X ∈M and FX = 0. As shown in the previous section this is
equivalent to

Hh−j+1Rj = 0, j = 1, . . . , h,

where (R1, . . . , Rh) is the condensed form of X and (H1, . . . , Hh) is a block-Hankel structure of S with
respect to (A,B). This is equivalent, in turns, to

Hh−j+1Rj( , i) = 0, j = 1, . . . , h, i = 1, . . . , sh−j+1 − sh−j+2,
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where, as in Section 3, Rj( , i) is the ith column of Rj . The set of solutions of this linear homogeneous
system is a vector space of dimension (rh−j+1 + · · · + rk) − rankHh−j+1; i.e. the solutions depend on
(rh−j+1 + · · · + rk) − rankHh−j+1 parameters. Thus the solutions of Hh−j+1Rj = 0 depend on (sh−j+1 −

sh−j+2)

(

k
∑

i=h−j+1

ri − rankHh−j+1

)

parameters. Since we have h of these systems,

dimN =

h
∑

j=1

(sj − sj+1)





k
∑

i=j

ri − rankHj



 =

h
∑

j=1

(sj − sj+1)

(

k
∑

i=1

ri+j−1 − rankHj

)

.

Hence we have proved

Proposition 5.2. .- dimN/G =
h
∑

j=1

(sj − sj+1)

(

k
∑

i=1

(ri+j−1 − si+j−1)− rankHj

)

.

Recall that (see [6])

dimM/G =
h
∑

j=1

k
∑

i=1

(sj − sj+1)(ri+j−1 − si+j−1).

Hence

dimN/G = dimM/G −
h
∑

j=1

(sj − sj+1) rankHj .

Notice that, in the generic case, by Lemma 4.8 rankHj = jd, and so

h
∑

j=1

(sj−sj+1) rankHj = d

h
∑

j=1

j(sj−

sj+1) = d

h
∑

j=1

sj = dδ. Since η = dim Inv (r, s) = dimM/G, we recover the result in Remark 4.10.

Since N/G ⊂ M/G and the topology of N/G is the induced one by that ofM/G (N is a submanifold
ofM and the projectionM→M/G is an open map), we have the following

Proposition 5.3. N/G is a regular submanifold of M/G.
We are going now to parameterize N/G by means of a coordinate atlas.
First we recall an elementary fact from linear algebra. If the homogeneous linear system Ax = 0 has a

solution, {ai1 , . . . , air} is a basis of the column span of A and {j1, . . . , jn−r} = {1, . . . , n}\{i1, . . . , ir} then

ajk =

r
∑

t=1

αktait , k = 1, . . . , n− r

if and only if

xit = −
n−r
∑

k=1

αtkxjk , t = 1, . . . , r.

Consider now a matrix X ∈ M(r, s) in reduced form (Definition 2.5) such that FX = 0, and for
j = 1, . . . , h let (R1, . . . , Rh) be the condensed form of X. Let ` = (`1, . . . , `k) and n = (n1, . . . , nh) be
compatible multiindices of S and X, respectively; i.e.

`j ∩ nh−j+1 = ∅, j = 1, . . . , h.

If `j = (`j1, . . . , `
j
tj
), tj = rankHj , then `j1, . . . , `

j
tj
are linearly independent columns of Hj , (H1, . . . , Hh)

being a block-Hankel structure of S with respect to (A,B).
Since X is in reduced form, the rows of Rh−j+1 in n

h−j+1 are canonical vectors; i.e. Rh−j+1(n
h−j+1, ) =

Imj
. And the rows of Rh−j+1 in the set of indices p

h−j+1 = n1∪· · ·∪nh−j∪(rj+n
1)∪· · ·∪(rj+n

h−j)∪(rj+1+

rj + n1) ∪ · · · ∪ (rj+1 + rj + nh−j−1) ∪ · · · ∪ (rk + · · · + rj + n1) are zero rows; i.e. Rh−j+1(p
h−j+1, ) = 0.
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(Compare with the indices in the proof of Theorem 3.6). But FX = 0 is equivalent to HjRh−j+1 = 0,
j = 1, . . . , h. So, if sj = #ph−j+1 = 2sj+1 + sj+2 + . . .+ sh, r

j = rj + · · ·+ rk and

{gj1, . . . , g
j

rj−tj−sj
} = {1, . . . , rj}\(`j ∪ ph−j+1)

then columns Hj( , g
j
i ) are linear combinations of the columns `

j
1, . . . , `

j
tj
of Hj . We can write

Hj( , g
j
i ) =

tj
∑

q=1

αiqHj( , `
j
q), i = 1, . . . , rj − tj − sj ,(5.1)

and so

Rh−j+1(`
j
i , ) = −

rj−tj−s
j

∑

q=1

αqiRh−j+1(g
j
q , ), i = 1, . . . , tj .(5.2)

This proves the following
Theorem 5.4. .- For any matrix X ∈ N (r, s,S) there are multiindices ` = (`1, . . . , `h) of S and

n = (n1, . . . , nh) of X such that
(i) `j ∩ nh−j+1 = ∅, j = 1, . . . , h.
(ii) Y = XP is in reduced form, as give by Definition 2.5, for some P ∈ G(s).
(iii) if (H1, . . . , Hh) is a block-Hankel structure of S, (R1, . . . , Rh) the condensed form of Y , {gj1, . . . ,

gj
rj−tj−sj

} = {1, . . . , rj}\(`j ∪ ph−j+1) for j = 1, . . . , h and Hj( , g
j
i ) is given by (5.1) then matrix

Rh−j+1(`
j
i , ) is given by (5.2).

Definition 5.5. .- With the notation of the above theorem we will say that Y is a reduced form of
X ∈ N (r, s,S) with respect to n and `.

Let us compute now the number of free parameters in a reduced form of X ∈ N (r, s,S). We will show
that this is the dimension of N/G. In fact, the number of free parameters of any reduced form is the same
as the number of free parameters in its condensed form. And this is the number of free parameters in
the condensed form of the reduced form of X ∈ M(r, s) minus the number of elements in Rh−j+1(`

j
i , ),

j = 1, . . . , h, i = 1, . . . , tj . Bearing in mind that the number of free parameters in any reduced form
Y ∈ M(r, s) is dimM/G (see [6]), we conclude that the number of free parameters in Y ∈ N (r, s,S) is
(recall that the number of columns of Rh−j+1 is sj − sj+1)

dimM/G −
h
∑

j=1

tj(sj − sj+1) = dimN/G.

Definition 5.6. .- A multiindex n = (n1, . . . , nh) for X ∈ M(r, s) will be said an admissible set
of indices (or a multiindex) for X ∈ N (r, s,S) if there is a multiindex ` = (`1, . . . , `h) of S such that
`j ∩ nh−j+1 = ∅, j = 1, . . . , h.

The following lemmas follow immediately from Lemmas 3 and 4 of [6] (see Proposition 2.8.
Lemma 5.7. .- Let X ∈ N and Q ∈ G. If n is an admissible set of indices for X it is also an admissible

set of indices for XQ.
Lemma 5.8. .- Let Y and Ỹ be matrices of N (r, s,S) in reduced form with the same multiindex n. If

there is a matrix P ∈ G such that Ỹ = Y P then P is the identity matrix.
In order to define the coordinate charts of N/G we start as in [6]. Let Λ be the set of multiindices

n = (n1, . . . , nh) for which there is a multiindex, ` = (`1, . . . , `k), of S with respect to (A,B) such that
`j ∩ nh−j+1 = ∅, j = 1, . . . , h; i.e. compatible with n. For n ∈ Λ let Un denote the set of matrices
X ∈ N (r, s,S) with n as a set of admissible indices. Since all matrices in N (r, s,S) close enough to
X have n as a set of admissible indices (because these are just linear independent rows), we have that
{Un|n ∈ Λ} is an open covering of N (r, s,S). If π : N → N/G is the natural projection then π is open and

{Ũn = π(Un)|n ∈ Λ} is an open covering of N/G.
We must notice that for a multiindex n ∈ Λ, there may be several multiindices ` compatible with it. To

define the coordinate charts we aim to find a differentiable onto mapping φn : Un → KN , N = dimN/G,

for each n ∈ Λ. We proceed as follows. If n ∈ Λ admits several compatible multiindices ` = (`1 , . . . , `h)
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we take the one such that for i = 1, . . . , h, `i is the smallest in the lexicographical order. In other words,
as the elements of `i are linearly independent columns of Hi, we are taking its first ti linearly independent
columns compatible with n. Then for X ∈ Un we define φn(X) as the point of KN defined by the free
parameters of the reduced form of X corresponding to n and `, Y , in a certain order. For example, if
(R1, . . . , Rh) is the condensed form of Y , then the free parameters of Y are in the rows {f

j
1 , . . . , f

j

rj−tj−s′j
} =

{1, . . . , rj}\(`j ∪ ph−j+1 ∪ nh−j+1) (s′j = sj + sj+1 + · · ·+ sh) of Rh−j+1, j = 1, . . . , h. Thus we may define

φn(X) = (R1(f
1
1 , ) R1(f

1
2 , ) · · ·R1(f

1
rj−t1−s′1

, ) R2(f
2
1 , ) · · ·R2(f

2
rj−t2−s′2

, ) · · ·Rh(f
h
rj−th−s′h

, )).

In this way φn is well defined and onto. The differentiability follows from the fact that Yn is obtained form

X by means of rational operations. This mapping induces the mapping θn : Ũn → KN .

Theorem 5.9. .- With the above notation θn is a diffeomorphism and {Ũn; n ∈ Λ} is a coordinate atlas
of N/G.

Proof. As in [6].
Example 5.10. .- Consider a slight modification of the example at the end of the Section 3: r =

(5, 3, 2, 1), s = (3, 3, 1) and S = [F ∗] where F =
(

1 0 0 0 0 2 0 0 0 0 0
)

. Then

H1 = F =
(

1 0 0 0 0 2 0 0 0 0 0
)

H2 =

(

1 0 0 2 0 0
2 0 0 0 0 0

)

H3 =





1 0 2
2 0 0
0 0 0



 .

An admissible multiindex inM(r, s) is n = ((2), (3), (4, 5)). But now this multiindex is compatible with two
multiindices `: `1 = ((1), (1, 4), (1, 3)) and `2 = ((6), (1, 4), (1, 3)). The one to be chosen to construct the
coordinate chart is `1. The reduced form corresponding to n and `1 is

Y =





































0 0 −2a2 −2a3 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 a2 a3 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 a1 a4 a5 0 0 0
0 0 0 0 0 0 1
0 0 a6 a7 a4 a5 0





































,

and so φn(Ũn) = {(a1, a2, a3, a4, a5, a6, a7) ∈ R7} = R7.
Our last results is about the connection of the manifold N/G
Theorem 5.11. .- If K = C, the manifold N/G is connected.
Proof.- It is sufficient to prove that N is connected.
Assume, on the contrary, that there are open sets U1, U2 ∈ N such that U1 ∪ U2 = N and U1 ∩ U2 = ∅.

Let X1 ∈ U1 and X2 ∈ U2 and let n be an admissible multiindex for X1. For a given matrix X ∈ N , let
Mn(X) denote the submatrix of X formed by the rows in n and the first s1 columns. As n is a multiindex
admissible for X1 we have that detMn(X1) 6= 0.

For z ∈ C define p(z) = detMn(X1 + z(X2 −X1)). Since p(0) = detMn(X1) 6= 0, p(z) is not the zero
polynomial, and so p(z) has finitely many zeros. This allows us to define a trajectory z(t) : [0, 1]→ C such
that z(0) = 0, z(1) = 1 and p(z(t)) 6= 0 for all t ∈ [0, 1). In other words, if X(t) = X1 + z(t)(X2 − X1)
then detMn(X(t)) 6= 0 for all t ∈ [0, 1). Notice that for t ∈ [0, 1), X(t) ∈ N = U1 ∪ U2. Furthermore, since
X1 ∈ U1, {X(t) | t ∈ [0, 1)} is connected (because it is the image of a connected set by a continuous map)
and U1 ∩ U2 = ∅ we conclude that {X(t) | t ∈ [0, 1)} ⊂ U1.

Now as X2 ∈ U2 and U2 is open there is a neibourhood of X2 contained in U2. But X2 is the limit of a
sequence of matrices in {X(t) | t ∈ [0, 1)}. This means that in that neibourhood of X2 there are matrices of
this set. Thus U1 ∩ U2 6= ∅. A contradiction. .
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6. Conclusions. In this paper the solutions of the cover problem has been studied by taking a geo-
metric approach. The main tool is the stratification of the set of (C,A)-conditioned invariant subspaces
according to the Brunovsky indices of the restriction, each strata being a differentiable manifold. The
structure of the matrices whose columns form a basis of such (C,A)-invariant subspaces (with respect to
the dual Brunovsky basis of Kn and Kn+m) has been used to produce a necessary and sufficient condition
for the cover problem to have a solution in each strata. This condition has been used to provide the set of
solutions with a differentiable structure in such a way that this set is a regular submanifold of the previous
one. Then, an atlas of coordinate charts for the set of solution has been given, obtaining a parameterization
of all solutions of the cover problem on each strata. The generic case has been also considered. In this case
a simple and very easily computable condition for the cover problem to have a solution has been shown to
hold.
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