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Abstract

The paper deals with different kinds of invariant motions (periodic orbits, 2D
and 3D invariant tori and invariant manifolds of periodic orbits) in order to analyze
the Hamiltonian direct Hopf bifurcation that takes place close to the Lyapunov
vertical family of periodic orbits of the triangular equilibrium point L4 in the 3D
restricted three-body problem (RTBP) for the mass parameter, µ, greater than
(and close to) µR (Routh’s mass parameter). Consequences of such bifurcation,
concerning the confinement of the motion close to the hyperbolic orbits and the 3D
nearby tori are also described.
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1 Introduction

Our framework is the spatial circular restricted three body problem (RTBP from now on)
as a Hamiltonian system of three degrees of freedom. This paper deals with the motion
close to the so called vertical family of periodic orbits of the triangular points L4 and L5

of the RTBP.

Actually, there are several works devoted to the vertical family for values of the mass
parameter µ with µ < µR (the Routh critical value) – we mention [6], [8], [10] and [28]
and references therein– but not as many for µ > µR (see for instance [13]). Thus, in this
work, we will concentrate on the case µ > µR (but close to µR), and we will study the
motion related to the Hopf bifurcation of the vertical family which appears if we consider
a mass parameter µ > µR and we follow the family for big enough amplitudes.

This bifurcation takes place when a one parameter family of periodic orbits, of a
Hamiltonian system with three degrees of freedom, undergoes a transition from stability
to complex instability by means of a collision of characteristic multipliers in the unit
circle. According to the value of the characteristic multipliers at the collision, we will
distinguish between a the rational and irrational collision, and according to the effect
of the nonlinear terms of the Hamiltonian, the bifurcation can be direct or inverse. In
the case of the vertical family the bifurcation has always direct character, which means
that stable objects (periodic orbits in the rational case and 2D tori in the irrational one)
bifurcate on the unstable side (around complex unstable periodic orbits).

In this paper, we will consider different kinds of “invariant motions”close to the critical
periodic orbit in order to analyze the Hopf bifurcation (both rational and irrational cases).
More precisely, we will consider periodic orbits, 2D and 3D invariant tori and the unstable
and stable invariant manifolds of the hyperbolic periodic orbits. These objects will be
used to show, near the bifurcation, the strong confinement of the solutions close to the
invariant manifolds of the hyperbolic periodic orbits, due to the approximate coincident
character of the stable and unstable manifolds.

Actually the Hopf bifurcation for a Hamiltonian system of three degrees of freedom has
been analyzed (both numerically and analytically) by several authors, either considering
the Hamiltonian itself or a one parameter family of 4D symplectic mappings having a fixed
point undergoing a Hopf bifurcation for a critical value of the parameter (for example,
a suitable Poincaré map of the Hamiltonian using the energy as a parameter). More
precisely, their analytical approach consists in considering the Hamiltonian (the mapping)
around the transition periodic orbit (fixed point for the critical value) and reduce it to a
normal form up to a finite order plus a remainder; afterwards, they analyze the dynamics
from the truncated normal form (which turns out to be integrable).

In the context of symplectic mappings, we mention [4] for an analysis of the rational
collision and [3] for the irrational one –from an analytical point of view–, and [12], [15]
and [22] –from a numerical one–. Concerning the Hamiltonian itself and the irrational
collision situation, we refer first to [9], where the normal form of the Hamiltonian, around
the critical orbit, is obtained up to degree four. An analytical and complete treatment
of this case has been recently carried out in [21] (see also [17] and [18]). In [21] a tricky
algorithm to transform the Hamiltonian to normal form up to an arbitrary (finite) order
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is described, giving also quantitative estimates of the remainder (not in normal form)
as function of the normalizing order and the distance to the critical orbit. The normal
form is used to give an approximate description of the dynamics, and the bounds for the
remainder are used to prove the existence of a cantor family of bifurcating 2D tori (with
big relative measure) when the whole (non integrable) Hamiltonian is considered. We also
mention some papers dealing numerically with a Hamiltonian in the planetary mechanics
context (see [16]) and in the galactic one (see [7], [20], [23] and [24]).

The aim of this paper is thus to show such bifurcation and the intricate dynamics
related to it, for the vertical family of periodic orbits of the triangular points of the
RTBP with µ > µR. This will be done from the numerical point of view, without any
reduction to normal form. In this sense, let us point that a rigorous identification of the
character of the bifurcation (direct or inverse) forces to do a nonlinear analysis of the
normal form, but, from the numerical point of view, we will show the direct character by
studying the stability of the bifurcated 2D tori.

The contents of the paper are organized as follows. In Section 2 we introduce the
vertical family of periodic orbits and discuss its linear character, showing it to be a natural
candidate to have the transition stability-complex instability. Section 3 shows the typical
behaviour of the bifurcation in the rational case. In section 4 we explore the irrational
collision: on the one hand, the numerical computation and evolution of the 2D invariant
tori as well as the stable and unstable 2D invariant manifolds of the complex unstable
periodic orbit are described. On the other hand, the consequences of the bifurcation on
the dynamics close to the periodic orbits before, at and after the transition are shown.
In particular a strong confinement close to the hyperbolic periodic orbits and a change of
topology on the nearby 3D tori are also described.

2 Linear stability of the vertical family of periodic

orbits of L4

The circular spatial restricted three body problem (RTBP) describes the motion of a
particle in a 3D (position) space under the gravitational attraction of two bodies (called
primaries); we assume that the particle has negligible effect on the motion of the primaries,
and that they describe circular orbits around their common center of mass (the origin of
coordinates). It is usual to describe this problem in a rotating (synodical) system of
coordinates such that, in suitable units of distance, mass and time, the primaries have
masses µ ∈ (0, 1/2] and 1−µ, and are fixed at the points (µ−1, 0, 0) and (µ, 0, 0). Denoting
by (x, y, z) the position of the massless particle in the synodical system, we define the
corresponding momenta as px = ẋ − y, py = ẏ + x and pz = ż. Then, the equations of
motion for the particle can be written as an autonomous Hamiltonian system of three
degrees of freedom, whose Hamiltonian reads (see [27])

H(x, y, z, px, py, pz) =
1

2
(p2

x + p2
y + p2

z) + ypx − xpy − 1 − µ

r1

− µ

r2

(1)
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being r1 and r2 the distances between the particle and the big and small primaries res-
pectively, that is, r2

1 = (x − µ)2 + y2 + z2 and r2
2 = (x − µ + 1)2 + y2 + z2.

It is well known that the RTBP has five equilibrium points: L1,2,3, the so called
Eulerian or collinear points (which lie on the x axis) and L4,5, the Lagrangian or triangular
points, each of which form an equilateral triangle with the primaries in the (x, y) plane,

that is, they are located at points L4,5 = (µ − 1
2
,±

√
3

2
, 0,∓

√
3

2
, µ − 1

2
, 0). As the motion

around L4 and L5 is symmetric, we will concentrate on the point L4.
The Jacobian matrix at the triangular points has the characteristic exponents

λ1 = i, λ2,3 =

√
−1

2
± 1

2

√
1 − 27µ(1 − µ), (2)

and λj+3 = −λj, j = 1, 2, 3. The pair ±i gives rise to vertical oscillations with angular
frequency equal to 1; and we also recall that the characteristic exponents are purely
imaginary and different for 0 < µ < µR = 1

2
(1 − √

23/27) ≈ 0.03852 (Routh’s mass
parameter) and L4 is linearly stable. For µ = µR the planar frequencies collide on the
imaginary axis; this produces a change in the linear stability and for µR < µ ≤ 1/2, L4

becomes complex-unstable.
On the other hand, for any value of the mass parameter 0 < µ ≤ 1/2, the linear

vertical oscillations associated with the pair ±i become a family of periodic orbits of the
RTBP (due to Lyapunov’s center theorem, see [25]): the so called vertical family of L4.
This family can be locally parametrized by its vertical amplitude or by the value of ż
when the orbit cuts the hyperplane z = 0 in positive sense.

Along the paper, we shall use extensively the following Poincaré section:

Σ = {(x, y, z, px, py, pz) ∈ R6|z = 0}.
Furthermore, the family can be parametrized by means of the energy level of its orbits
(defined by the value of the Hamiltonian H), which turns out to be an increasing function
of the vertical amplitude. Thus, if we consider Σh the 4D manifold defined by Σh =
Σ ∩ {H = h}, then there is (locally) only one vertical orbit crossing Σh for h > hL4 .

For numerical purposes, it will be convenient to work both in the flow context (using
the canonical variables in R6) and in the map context (in the 4D manifold Σh). For the
latter, we first remark that given an initial point p = (x0, y0, 0, px0 , py0 , pz0) ∈ Σh, pz0 is
obtained from x0, y0, px0 , py0 and the value of h fixed; so from now on we shall write
–abusing notation– p = (x0, y0, px0 , py0) for those points p on the surface of section Σh.
Now we define the Poincaré map Ph : Σh → Σh by Ph(p) = q where q = (x, y, px, py) ∈ Σh

such that the solution of the 3D RTBP, starting at p, crosses the Poincaré section at
the second passage. Since the flow comes from a Hamiltonian system, the map Ph is
symplectic. In particular, a family of periodic orbits, 2D tori and 3D tori in the flow
context, becomes a family of fixed points, invariant curves and 2D tori for the map.

The numerical continuation of the family can be done using the arc step method,
which we briefly recall: a family of periodic points is regarded as a curve parametrized by
the arc parameter s, that is,

p(s) = (x0(s), y0(s), px0(s), py0(s))
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such that

G(s) = Ph(p(s)) − p(s) = 0;

however, it is known that p(s) also satisfies a suitable system of differential equations;
therefore we may predict the successive points on the curve by a (low order) Adams-
Bashforth and we refine them using a modified Newton method (see [2], [8] and [26] for
more details).

Concerning the stability of the periodic orbits of the vertical family, we note that if
µ �= µR, and at least for small vertical amplitudes, the linear stability of the periodic
orbits of the family is the same as L4. In particular, for a fixed 0 < µ < µR, the periodic
orbits (for small amplitudes) of the vertical family are linearly stable, that is, for each
periodic orbit, the corresponding four nontrivial – different from one – eigenvalues (λ, 1/λ,
σ, 1/σ) of the monodromy matrix lie on the unit circle; however, for µ > µR, the periodic
orbits of the vertical family are (for small amplitudes) complex unstable, that is, the four
eigenvalues leave the unit circle on a complex quadruple (λ, σ = λ̄, 1/λ, 1/λ̄ = 1/σ).

Nevertheless, the linear character may change for large enough amplitudes of the
orbits, and, in fact, it does. In order to determine the stability or instability of the
periodic orbits of a vertical family, we have computed – for each periodic orbit – the four
nontrivial eigenvalues of the monodromy matrix, or equivalently, the stability parameters
α and β (see [5]) defined by the coefficients of the characteristic polynomial p(z) of the
monodromy matrix:

p(z) = (z − 1)2(z4 + αz3 + βz2 + αz + 1),

and they satisfy

α = −(λ + 1/λ + σ + 1/σ), β = 2 + (λ + 1/λ)(σ + 1/σ).

We plot in figure 1 the changes on the linear character of the orbits of the vertical
families for any value of µ ∈ (0, 0.5] and increasing values of ż –ż = 0 corresponds to the
equilibrium point L4–. (see also [13]). In this figure we remark that, for a fixed value
of µ > µR (and close to µR), the corresponding vertical family of periodic orbits has a
transition from stability to complex instability (when decreasing ż), therefore there will
be a critical (transition, resonant) orbit for which the four eigenvalues will collide in pairs
on the unit circle (that is, λ = 1/λ̄ = exp(i 2πκ)). We will show in the next sections that
this collision gives rise to a direct Hopf-like bifurcation pattern and we will distinguish
between the rational and irrational character of the collision. More precisely, we can
choose suitable values of the mass parameter in order to obtain from figure 1 critical
orbits with a rational or irrational collision of multipliers. According to the value of κ,
rational (κ = m/n) or irrational, then n-periodic orbits (that is, periodic orbits with a
period close to n times the period of the critical orbit) or 2D invariant tori, respectively,
may bifurcate on the unstable side (around the complex unstable periodic orbits).
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Figure 1: Change of the linear character of the orbits of the vertical family of L4. We
plot the mass parameter, µ, on the horizontal axis and the positive vertical velocity, ż,
when z = 0 on the vertical one. S stands for stable (two couple of conjugate characteristic
multipliers of modulus 1); Cu: complex-unstable (two conjugate eigenvalues outside the
unit circle and their inverse ones); Du: double-unstable (two couple of positive eigenva-
lues); Su: semi-unstable (two conjugate eigenvalues of modulus 1 and a couple of positive
eigenvalues).

3 Rational collision

In this section we want to discuss briefly the case of rational collision and the bifurcation of
n-periodic orbits linked to it (see also [4] and [22]). In order to illustrate this phenomena,
we select µ = 0.069608... > µR for which we have κ = 1/4 at the transition orbit, that
corresponds to a rational collision.

We have computed the vertical family of L4 for this particular value of the mass
parameter. Let us denote this family by C. Figure 2 (left) shows the path of the family C
on Broucke’s diagram in the (α, β) plane (see also [5]). There the marked points P1,..., P6

correspond to rational collisions k = 1/n with n = 1,..., 6 from which families of n-periodic
orbits might bifurcate. In this case, the critical orbit of the family C corresponds to the
point P4. This 1/4 rational collision produces two bifurcating families of 4-periodic orbits,
that we will call QP1 and QP2. In figure 2 (right) we we consider the (x, h) plane, being x
the initial condition (corresponding to z = 0 and positive ż) and h the value of the energy;
we plot the evolution of the vertical family C which starts at L4 for µ = 0.069608... and
the branches QP1 and QP2 (which start at the critical orbit). The branch QP1 starts with
periodic orbits that are stable and then become unstable, whereas all the periodic orbits
of the branch QP2 are unstable (see also similar results for symplectic maps in [4] and
[22]). For the details concerning the computation of the bifurcating branches of periodic
orbits, we refer the interested reader to [2], [16], [23] and [26]. We have selected a member
orbit of each family (the marked points in figure 2 right) and we also plot in figure 3 the
(x, y, z) projection of each orbit. Clearly, it can be seen that the bifurcating orbits have
a period close to 4T where T is the period of the transition orbit.
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Figure 2: Left. Broucke’s diagram. Stability of the vertical family C for µ = 0.069608...
and of the bifurcated branches QP1, QP2 as well. Right. Again families C, QP1 and QP2;
on the horizontal axis we plot the value x of the initial condition (corresponding to z = 0
and positive ż); and on the vertical one the value of the energy. A member (the marked
point) of each family is also chosen (see figure 3).
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Figure 3: (x, y, z) projection of a selected orbit of each family C, QP1 and QP2 respectively
(see figure 2). Left: h = −1.116234, T = 6.335791; middle: h = −1.124786, T =
25.337930; right: h = −1.1411396, T = 25.309643.
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Figure 4: Broucke’s diagram for the vertical family of L4 for µ = 0.04.

4 Irrational collision

Let us now concentrate on the irrational collision. To illustrate the related behaviour,
we take µ = 0.04, and we continue numerically the vertical family starting at L4 (and
increasing values of ż when z = 0, or equivalently increasing h). For each orbit in the
family, we have computed also the associated stability parameters α, β and represented
on Broucke’s diagram (see figure 4). Therein, the transition (S-CU) orbit appears, now
with an irrational κ = 0.291678572.... We select two orbits (one complex-unstable and
one stable, marked with dots 1 and 3 in figure 4) and we plot their (x, y, z) projection in
figure 5. We clearly see how the vertical amplitude increases as ż grows.

Our aim in this section is to describe what happens around this transition. First,
we summarize the results obtained: for h > hcrit, the vertical periodic orbit is (linearly)
stable, so there are plenty of 3D invariant tori around this orbit; there are also the two
families of elliptic 2D tori that are born at the periodic orbit – the so called Lyapunov
families of 2D tori – (see [12], [13] and [14]). For h = hcrit, both families become one
family and it detaches, from the critical periodic orbit when h < hcrit, as a single family
of elliptic 2D invariant tori. Here, we remark that when h decreases and crosses the
critical value hcrit, the periodic orbit becomes hyperbolic: on the one hand, the elliptic
2D tori unfold on the unstable side (at a finite distance of the periodic orbit) and, on
the other hand, the 3D unstable and stable invariant manifolds of each periodic orbit of
the family become almost coincident (when h is very close to and less than hcrit) and as
a consequence, the motion is confined for a very long time in a small neighborhood of
the unstable periodic orbit. The just described pattern of motion is known as the direct
Hamiltonian-Hopf bifurcation in dimension three (see [3], [17], [21]), and it resembles
the standard (direct) Hopf bifurcation in dimension two, where an elliptic periodic orbit
detaches from the equilibrium point when this equilibrium point becomes unstable.

In the following subections we will show this behavior in detail.
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Figure 5: (x, y, z) projection of a complex unstable orbit (left) and a stable one (right)
that belong to the vertical family at L4 for µ = 0.04 (see the marked points 1 and 3 on
figure 4).

4.1 Parameterization and numerical computation of invariant
curves

First, we want to study the behavior of 2D tori (in the flow context), so we will compute
the corresponding invariant curves for the Poincaré map (see definitions in section 2). We
will assume, throughout the paper, that an invariant curve with frequency ω �∈ 2πQ can
be parameterized by θ ∈ T1 = R/2πZ �→ X(θ) ∈ Σh such that

Ph(X(θ)) = X(θ + ω).

We remark that if (ω1, ω2) is a suitable vector of frequencies of the 2-dimensional torus, for
the flow, then ω = 2πω1/ω2 for the map. Equivalently, let C(T1, R4) denote the space of
continuous functions from T1 to R4; then X(θ) is a zero of the functional F : C(T1, R4) →
C(T1, R4) defined by

F (X)(θ) = Ph(X(θ)) − X(θ + ω).

The numerical method used to compute invariant curves has already been described
in the flow context in [6] and for mappings in [11], [12] and [15]. We just recall that if we
write X(θ) as a real Fourier series,

X(θ) = a0 +
∑
k>0

ak cos(kθ) + bk sin(kθ), k ∈ N, ak, bk ∈ R4

then we should determine the Fourier coefficients such that they verify the equation
F (X) = 0. Actually we compute (numerically) a truncation of this series, that is

XN(θ) = a0 +
N∑

k=1

ak cos(kθ) + bk sin(kθ), N ∈ N,
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(N ≤ 50 in our computations) and we determine the 2N + 1 unknown coefficients a0, ak,
bk (in R4) as a solution of the discretized version of the equation F (X) = 0 obtained when
we impose that the equation F (XN) = 0 is satisfied only at the mesh of 2N + 1 points on
T1: θj = 2πj

2N+1
, 0 ≤ j ≤ 2N .

Let us remark finally that if X(θ) is a Fourier series corresponding to an invariant
curve then, for any ψ ∈ T1, Y (θ) ≡ X(θ + ψ) is a different Fourier series (i.e. with
different Fourier coefficients) corresponding to the same invariant curve as X(θ). This
introduces numerical difficulties when taking the linear system obtained and one applies
the Newton method to solve the equation F (XN) = 0. In order to avoid this problem, we
simply add an extra condition imposing that a component of X(θ) has a prescribed value
when θ = 0. This will overcome the lack of uniqueness problem.

4.2 Hopf bifurcation of a family of invariant curves

It is well known that if the eigenvalues (also called characteristic multipliers) of the mo-
nodromy matrix associated with a periodic orbit are λi, for i = 1, ..., 6, with λ5 = λ6 = 1,
then the eigenvalues of the differential of the Poincaré map, DPh at a fixed point are
γi = λi, i = 1, 2, 3, 4. For h > hcrit, the periodic orbit of the vertical family is (linearly)
stable, therefore, the eigenvalues of the matrix DPh at the corresponding fixed point are
given by λ1,2 = exp(±i ω1), λ3,4 = exp(±i ω2). The linear dynamics around this fixed
point is given by the product of two harmonic oscillators, and it is proved that (under
generic conditions) each linear oscillation gives rise to a Cantorian 1-parametric family
of invariant curves with a frequency that tends to ωi, i = 1, 2, when the invariant curves
tend to the fixed point (see [14]). We refer to these two families as Lyapunov families of
invariant curves – 2D tori for the flow itself – (see also [13], [12]).

For each invariant curve computed we consider its parameterization X(θ), its frequency
ω and the initial point X(0) = (x̃, ỹ, p̃x, p̃y); for all the invariant curves we fix the value
of x̃ (as explained above) and we take x̃ = −0.462 (close to the value x = µ − 1

2
of the

point L4). In order to represent each invariant curve, we consider two coordinates (ω, ỹ);
therefore, a family of invariant curves may be regarded as a curve in the plane (ω, ỹ).

We compute several families of invariant curves to show the direct Hopf bifurcation
pattern. Actually, these are Cantorian families of invariant curves, but the holes are too
small to be detected with the standard double precision arithmetic of the computer; so,
from the numerical point of view, we deal with these families as if they were continuous.
Figure 6 shows the two Lyapunov families of invariant curves (in the plane (ω, ỹ)) for a
fixed h = −1.457018 > hcrit (the lowermost curves in the figure). For each family, we
see how the frequency tends to ωi, i = 1, 2, that is, the two families of invariant curves
tend to the same fixed point (which is the critical periodic orbit for the flow) that has
two different characteristic multipliers (λ1 = exp(i ω1) and λ3 = exp(i ω2)).

As mentioned above, when h decreases and tends to hcrit = −1.45714146, the two
families get closer and become a single family for h = hcrit. For h < hcrit, this family
detaches from the periodic orbit in the sense that the family of invariant curves exists at
a finite (and different from zero) distance from the periodic orbit which now is complex
unstable. We see the evolution of this single family in figure 6 for for h = −1.458308 <
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Figure 6: µ = 0.04. The two Lyapunov families of invariant curves (in the (ω, ỹ) plane)
for h = −1.457018 > hcrit; these are the two lowermost curves in the figure. We also plot
the single family (for h = hcrit) and the detached family for h = −1.458308 < hcrit.

hcrit; as h decreases the distance of the invariant curves to the periodic orbit increases.
We also show in figure 7 (left) an invariant curve of the Lyapunov family near the

stable vertical periodic orbit (h = −1.457018, ω = 1.93) and another one of the family
on the unstable region for the same value of ω and h = −1.458308. If we follow the flow,
the corresponding 2D tori are plotted in figure 7 (right).

4.3 Linear normal behavior around the invariant curves

Now we assume that θ ∈ T1 → X(θ) ∈ Σh is an invariant curve with frequency ω of
the Poincaré map Ph. Then its linearized behavior is described by the 4-dimensional
dynamical system

X̄ = A(θ)X
θ̄ = θ + ω

}
, (3)

where A(θ) = DPh(x(θ)). This kind of system is sometimes known as linear quasi-periodic
skew-product.

The system (3) is called reducible if there exists a 2π periodic (and maybe complex)
change of variables X = C(θ)Y , θ ∈ T1, such that (3) becomes

Ȳ = BY
θ̄ = θ + ω

}
, (4)

where the matrix B ≡ C−1(θ+ω)A(θ)C(θ) does not depend on θ. Of course the dynamics
of (4) can be easily described by computing the eigenvalues of B. As we do not know
a direct method to compute the matrix C(θ), we will consider an alternative method to
compute the spectrum of B.
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Figure 7: µ = 0.04. 2D torus of the Lyapunov family of invariant tori on the stable
region (top, with ω = 1.90052495) and on the complex unstable zone (bottom, with
ω = 1.79602495). Left: (x, y) projection of the invariant curve in the Poincaré section
z = 0. Right: (x, y, z) projection of the corresponding torus under the flow.

Let us discuss the general n-dimensional case. Given ψ ∈ C(T1, Cn), we define the
linear operator Lω by

(Lωψ)(θ) = A(θ − ω)ψ(θ − ω). (5)

It turns out that the reducibility of (3) can be characterized in terms of the spectrum of
Lω. That is, we first solve numerically the generalized eigenvalue problem

(Lωψ)(θ) = λψ(θ), (6)

and afterwards we take into account the following properties (the details and proofs can
be found in [11]):

Proposition 1. Let λ ∈ C be an eigenvalue of Lω. Then, for any k ∈ Z, λ exp(i kω) is also
an eigenvalue of Lω.

Definition. Two eigenvalues λ1 and λ2 of Lω are said to be ω-unrelated if λ1 �= λ2 exp(i kω)
for all k ∈ Z.
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Figure 8: Eigenvalues of the discretized operator for N = 8 (left) and N = 50 (right).

Proposition 2. Assume that there exists n ω-unrelated eigenvalues λ1, . . . , λn for Lω.
Then, (3) can be reduced to (4), where B = diag(λ1, . . . , λn).

From these results we conclude that an alternative way to compute the eigenvalues of
B is to approximate numerically the spectrum of Lω. We have followed this approach in
this paper since we know that most of the invariant curves computed are reducible, that
is, the corresponding linear dynamical system (3) is reducible (see [14] and [21]).

In particular, proposition 1 implies that the eigenvalues of the operator Lω fill densely
circles centered at the origin, and since we are in a Hamiltonian context, we remark that
B is a symplectic matrix therefore its eigenvalues are 1, 1, λ, 1/λ. So an easy way to
numerically determine the elliptic or hyperbolic character of an invariant curve is the
following: we state that the invariant curve will be (linearly) stable if the eigenvalues of
the operator Lω lie on the unit circle of radius one, and unstable if the closure of the
eigenvalues are three circles of radius one, 0 < c < 1 and 1/c.

In order to implement numerically these results, we need a procedure to approximate
the solutions of the generalized eigenvalue problem (6). The computations are based on
the same discretization used in subsection 4.1 to compute invariant curves. This is, given
a truncation value N , it is not difficult to derive the matrix (of dimension 4(2N + 1))
which represents the truncation of Lω. Finally, the eigenvalues and eigenvectors of this
matrix are computed by a standard numerical procedure. As an example we consider an
invariant curve of the family with h = −1.457018, and we show in figure 8 the eigenvalues
(in the complex plane) of the associated discretized operator Lω for a truncation value
N = 8 (figure 8 left) and N = 50 (figure 8 right). Since the eigenvalues lie on the unit
circle, we conclude that this invariant curve is (linearly) stable.

It is also possible to derive heuristic estimates on the truncation error of the eigenfunc-
tions from the decay of their Fourier coefficients and their size at the truncation point.
Therefore, it is also possible to select, among the computed eigenfunctions, the most
accurate ones –and, hence, the most accurate representants of the classes of ω-related
eigenvalues– for the actual truncation. We refer to [11] for a more complete description
of these ideas and procedures.

This computation of the normal behavior has been carried out for all the Lyapunov
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families of invariant curves obtained and they turn out to be (linearly) stable (i.e. the
eigenvalues of the corresponding matrix B are 1, 1, λ = exp(i δ) and 1/λ). Therefore we
conclude that the Lyapunov families of (linearly) stable invariant curves persist on the
unstable side (around the complex unstable periodic orbits) and they remain (linearly)
stable. That is, we conclude that the irrational collision gives rise to the direct Hopf
bifurcation pattern.

4.4 Dynamics in the neighborhood of the periodic orbits close
to the transition

A natural question that arises is about the consequences –concerning the dynamics– of
such direct Hopf bifurcation in the neighborhood of the family of periodic orbits close to
the transition. In summary, we mention the following two features: the existence of the
stable and unstable manifolds of the complex unstable periodic orbits produce a powerful
confinement on the motion close to such periodic orbits. At the same time, the bifurcating
elliptic 2D tori on the hyperbolic side give rise to secondary tori (3D tori close to the
periodic orbits –after the transition to complex instability–) with a different topology
from the 3D KAM tori. We describe the details below.

4.4.1 Invariant manifolds of the complex unstable periodic orbits

Let us show the behavior of the invariant manifolds -which are 3-dimensional- of the
complex unstable periodic orbits. In order to approximate them numerically we regard
again a periodic orbit as a fixed point of the Poincaré map Ph and we compute the 2-
dimensional invariant manifolds (in the map context) of this fixed point. So, let us fix the
value of H = h < hcrit and let p = (x0, y0, px0 , py0) ∈ Σh be the fixed point associated with
the complex unstable periodic orbit. We compute the eigenvalues of the differential of the
Poincaré map, DPh, at the fixed point p; they are, λ1,2 = r1,2 exp(iω), with 0 < r1 < 1,
r2 > 1 and λ3,4 = r1,2 exp(−iω), ω ∈ R. In order to approximate the unstable manifold of
the fixed point p, we first select the eigenvalue λ2 and we denote by u + iv (u and v are
unitary vectors in R4) the associated eigenvector. As it is well known, the plane generated
by u and v is a linear approximation to the 2D real unstable manifold, therefore it is a
good approximation to the manifold in a small neighborhood of the point. As we want to
see how this manifold evolves also outside this small neighborhood, we consider the closed
curve –called from now on the initial curve– on the linear approximation to the manifold
given by (x0, y0, px0 , py0) + σ(s), with σ(s) defined by

σ(s) = c
σ̃(s)

‖σ̃(s)‖ , where σ̃(s) = cos(s)u + sin(s)v, s ∈ [0, 2π], (7)

and c is a small quantity. In order to see how the manifold behaves, we compute the
iterates -through the map Ph- of this curve (following the flow for fixed h).

We remark that the same computation can be done for the stable manifold, taking
the eigenvalue λ1, the corresponding eigenvector and following the flow through negative
time; therefore using the map P−1

h .
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Figure 9: µ = 0.04. (x, y) projection of the k-iterate, using Ph, of the initial curve (7)
on the unstable (left) and stable (right) manifolds of the complex periodic orbit with
h = −1.4577796221 < hcrit. Top: k = 100, middle: k = 200 and bottom: k = 300.

As an example, we consider the hyperbolic periodic orbit with h = −1.4577796221 <
hcrit and the initial curve (7) on the unstable manifold. We compute the iterates (by
means of Ph) of this initial curve and in figure 9 (left) we plot the k-th iterate ((x, y)
projection) for k = 100, 200 and 300. These curves (all of them belonging to the unstable
manifold) show the intricate to and fro behavior of the iterates on the invariant manifolds:
the iterates go far away and then back (close) to the fixed point, repeatedly, in a chaotic
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Figure 10: µ = 0.04. (px, py) projection of the slice x = x0 (see the text) of the invariant
unstable (left) and stable (right) manifolds of the complex unstable periodic orbit of figure
9.

way. A similar computation is done for the stable manifold (see figure 9 right).
Another numerical approach to show that the invariant manifolds go far away and

come back is by means of slices of the manifolds: given, as above, the fixed point p =
(x0, y0, px0 , py0) ∈ Σh (corresponding to the hyperbolic periodic orbit), we compute the
slice of the invariant manifold defined by x = x0. This slice turns out to be a curve and we
plot (a piece of) it in figure 10 for the invariant unstable manifold (left) and for the stable
one (right) of the complex unstable periodic orbit used in figure 9; apparently both slices
coincide but they do not. This happens since we have only plotted the slice obtained
when the unstable manifold leaves the fixed point and goes back near it for the first
time. Actually, we know from the analytical results (see [18] and [21]), that if we consider
the truncated and integrable normal form of the Hamiltonian around the critical orbit,
then the unstable and stable invariant manifolds of a complex unstable periodic orbit
coincide; however, when the complete (non integrable) Hamiltonian is regarded (that is,
the truncated normal form plus the remainder), the splitting of separatrices appears and
this produces the chaotic behavior of the iterates on the invariant manifolds observed in
figure 9.

4.4.2 Confinement and 3D tori

On the one hand, the almost coincidence of the manifolds somewhat trap the motion
inside them giving rise to a powerful confinement in the sense that a point close to the
unstable (or stable) manifold may follow the shape of the manifolds and remain confined
near them for a long time (many iterates in the map context).

In order to show this behaviour, we consider the evolution of a 2D KAM torus in Σh

(3D torus in the flow context) before, at and after the transition. For h = −1.44908826 >
hcrit, the fixed point (periodic orbit for flows) is stable so there are plenty of 2D KAM tori;
we plot in figure 11 (top left) the 5000 iterates –through Ph– of an initial condition of a
2D torus near the stable fixed point. In figure 11 (top right), we do the same computation
for h = hcrit = −1.45714146; we remark now the bigger size in the plot window since for
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Figure 11: 5000 iterates ((x, y)-projection) of initial conditions on a 2D torus close to a
stable (top left) and critical (top right) fixed point. 20000 iterates of the initial condition
p+ ε (see the text) close to a complex unstable periodic orbit; ε = 10−6 (bottom left) and
ε = 10−4 (bottom right). We remark the different size for the frame in each case.

h < hcrit the fixed point becomes complex unstable and its invariant manifolds play a key
role. For h = −1.45777962 < hcrit, we consider the corresponding hyperbolic fixed point
p = (x0, y0, px0 , py0) and we take initial conditions p = (x0 + ε, y0 + ε, px0 + ε, py0 + ε) (for
ε > 0 small) close to it. We plot the 20000 iterates (using Ph) in figure 11 (bottom left
with ε = 10−6, and bottom right with ε = 10−4 ). We remark again the even bigger size
of both plots window since there do exist invariant manifolds in this case; we observe in
figure 11 (bottom left) how the iterates follow the invariant manifolds shape and describe
a chaotic orbit; actually the same picture is obtained if we plot the iterates of a point in
the unstable manifold. On the other hand, for a bigger value of ε = 10−4, the iterates in
figure 11 (bottom right) seem to remain in a 2D torus (either one 2D KAM torus that
survives the bifurcation or a secondary 2D torus which is born from the existence of the
stable bifurcating invariant curves); in any case, however, the k-iterates are confined for
a large value of k.

We remark finally that, if the iterates are on a 2D torus, they would be confined
forever; but also Arnol’d diffusion (see [1]) may appear (see Nekhoroshev’s type estimates
of diffusion for a symplectic mapping in [19]).
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On the other hand, we also remark that the effect of the bifurcation is local in the
following sense: concerning the 3D KAM tori (in the flow context) existing around a
stable periodic orbit (before the transition), two different behaviors have been shown in
figure 11: those tori close enough to the periodic orbit are sensitive to the bifurcation
and they change the topology after the transition, since the 2D bifurcating stable tori
(after the transition) give rise to the secondary 3D tori which have nothing to do with
the KAM tori before the transition. Nevertheless, the 3D KAM tori far enough from
the periodic orbit remain just after the transition as they are; however, as soon as the
energy decreases, the invariant manifolds also increase and may reach the further 3D tori
anyway.
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