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Abstract

Let I be an ideal of a commutative ring A, B = A/I. Given n > 2, we characterize
the vanishing of the André-Quillen homology modules H,(A, B, W) for all B-module
W and for all p, 2 < p < n, in terms of some canonical morphisms. As a corollary, we
obtain a new proof of a theorem of André. Finally, we construct an example of an ideal
I of a commutative ring A such that Hy(A4,B,W) = 0 and Hs(A4,B,W) = W for all
B-module W.

1 Introduction

Let I be an ideal of a commutative ring A and B = A/I. Let o : S(I) — R(I) de-
note the canonical morphism from the symmetric algebra of I onto its Rees algebra. Let
B : SB(I/1?) — G(I) denote the canonical morphism from the symmetric algebra of the
conormal module of I onto its associated graded ring. Let v : AB(I/I?) — TorZ(B, B)
denote the canonical morphism from the exterior algebra of I/I? to the anticommutative
graded B-algebra Tor2(B, B). Moreover, we stand 7, , : Tor;‘(B, A/IT) — Torg(B, A/1971)
for the canonical morphism for any two given integers p,q > 1.

Let H,(A, B,WW) denote the p-th André-Quillen homology module of the A-algebra B
with coefficients in the B-module W. The first purpose of this paper is to show the following
theorem:

Theorem 1.1 Given n > 2, the following conditions are equivalent:
(i) Hp(A,B,W) =0 for all B-module W and for all p, 2 <p <n.

(i) I/I? is a flat B-module, o is an isomorphism and 7,4 = 0 for all p, 3 < p < n, for
all ¢ > 2.

(i43) I/I? is a flat B-module, (3 is an isomorphism and 7,4 = 0 for all p, 2 < p < n, for
all ¢ > 2.

(iv) I/I? is a flat B-module and v, is an isomorphism for all p, 2 <p < n.



The equivalence between (¢) and (iv), for n = oo, is proved by Quillen in 10.3 of [8] (see
also 6.13 of [9]). The proof of this equivalence for a given n > 2 follows carefully that one
of [8].

The equivalence between (7) and (ii7), for n = oo, is due to André (see Théoreme A of
[2]). The proof of this equivalence for a given n > 2 consists in proving firstly that one of
(73t) with (iv). To do this, we shall recover a diagram build by Quillen in [8] and then apply
Theorem 4.2 of [7] (see also [6]). Since we will use this theorem several times we recall it

here:

Theorem (see 4.2 of [7]) The following conditions are equivalent:
(1) Ho(A,B,W) =0 for all B-module W .
(ii) I/I? is a flat B-module and « is an isomorphism.
(i43) I/I? is a flat B-module, 3 is an isomorphism and 124 = 0 for all ¢ > 2.

(iv) I/I? is a flat B-module, B2 is an isomorphism and T52 = 0.

In this way, Théoréeme A of André in [2] is obtained as a consequence of Theorem 4.2 of
[7] and the methods used by Quillen in [8].

Finally, the equivalence between (i7) and (7i7) in Theorem 1.1 is clearly a corollary of
the same Theorem 4.2 of [7].

When A is a noetherian ring, it is well-known that the vanishing of the second ho-
mology functor already implies the vanishing of all higher homology functors. In fact,
Hy(A,B,W) = 0, for all B-module W, is equivalent to I being locally generated by a
regular sequence (see 6.25 of [1] or 10.7 of [8]).

The second purpose of this paper is to give an example of the non-rigidity of the André-
Quillen homology when A fails to be noetherian. Concretely, we construct a commutative
local ring A of Krull dimension 2, with maximal ideal I generated by two elements, and such
that, if we denote by B = A/I the residual field, then Hy(A, B,W) = 0 and H3(A,B,W) =
W, for all B-module W. In particular, vo : AP(I/1?) — Torf(B, B) is an isomorphism,
but 73 it is not. Moreover, 7 4 = 0 for all ¢ > 2, but 732 7# 0 (see Proposition 2.2).
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2 Proof of the Theorem
Let I be an ideal of A, B = A/I. For every q > 1, the short exact sequence

0— I/ — A/T7T — A/T7 =0



leads to the correspondent long exact sequence of Tor2 (B, -):
.. B TorA(B, 19/17+1) 2% TorA(B, A/191) 55" Tord(B, A/17) 25 ... (1)
Let dp,q : Tor/}(B, I7/I71) — Torﬁ_l(B, 1971 /19%2) be defined as the composition
dpg : TorA(B, 19/191) 2% Tord(B, A/19+1) 225! Tord | (B, [7+1/19+2).

It is shown (see 8.2 of [8]) that d,, defines in the bigraded B-algebra Tord(B, G.(I)) a
differential. Moreover, the isomorphism I /I? ~ Tor1 (B, B) extends naturally to a canonical

morphism of differential bigraded B-algebras:
Ypq : AB(I/I?) ® SE(1/1%) — Tor}(B,I7/I71),

where the left side is endowed with the Koszul differential. In other words, for every p,q > 1,

one has the following commutative diagram:

Torjy 1 (B, A/I7%) Tor; (B, A/I™1)
7'p+1q/ yﬁlq 2 Zpt/ %\'I 1
- TOI'p+1(B I93/1972) p+1q 3 B 1972 /197h) Torp (B, 1719 — -
Pp+1,4-3 Yp,q—2 Pp—1,4-1

AP (/1) @85 (I/ 1) — AJ(I/T?) @ S7o(I/1%) — A1 (I/1°) © 871 (T/1%)

p+1,q—3 P,q—2

Quillen’s diagram: QDp 142

The bottom row of the diagram QD,;, 2 is the homogeneous part of degree p + g — 2 of
the Koszul complex AB(I/I?) ® SB(I/I?). It is known to be acyclic whenever I/I? is a flat
B-module or A contains the field of rational numbers (see, for instance, 9.3 of [4]).

Remark also that for each p,q > 0, the morphism 1), , factorizes through

Ynat AP I/1D) @ SP(I/1) "2 228 Tord(B, B) ©I/1"" — Tor(B,19/1%").
Notice that the second morphism is bijective if I9/I9t! is a flat B-module.
Lemma 2.1 If I/I? is a flat B-module, then v is a monomorphism.

Proof. Let us prove, by induction on p > 1, that v, : AE(I/I2) — Tor;‘(B,B) is a
monomorphism. For p = 1, it is clear. Suppose p > 2 and 7,_1 is a monomorphism.
Consider the diagram QD,.



dp,0

dp-1,1

0 — Tor, (B, B) Tor; 1(B,1/1?) Torp 5(B,I?/I%) — ---

Tp Yp-1,1 Pp—2,2

p,0 p—1,1

Al L (I/1%) ® SZI/T?) ...

Since the bottom row is exact, then Jp ¢ is injective. Since y,_; is injective, then t,_1; is

also injective. Therefore, by the commutativity of QD,, v, is injective too. g

Proposition 2.2 Givenn > 2 and if I/1? is a flat B-module, then the following conditions

are equivalent:
(i) B is an isomorphism and 4 =0 for all p, 2 < p <mn, for all ¢ > 2.
(i1) B2 is an isomorphism and Tp2 =0 for all p, 2 <p < n.

(i13) vp is an isomorphism for all p, 2 <p < n.

Proof. 1t is clear that (i) implies (i7). Let us prove (i¢) implies (i7¢) by induction on p > 2.
If p = 2, we have that 11 and 192 = (2 are two isomorphisms. Since 755 = 0 and
d2o = c2,1, then Kerds g = Im7p 5 = 0. Therefore, using QD», one deduces that v is an
epimorphism. Suppose p > 3. Since I/I? is a flat B-module and 7,_1, 7p—2 and (2 are
all three isomorphisms, then ), ;1 and ¢, 32 are two isomorphisms. Since 7,2 = 0 and
dpo = ¢p1, then Kerd, g = Im7, 2 = 0. Thus, using QD, and the same argument used in
the case p = 2, one deduces that 7, is an epimorphism. Remark that by Lemma 2.1, v is a
monomorphism since I/I? is a flat B-module.

Let us prove now (i¢) implies (¢). Since 7, and v, 1 are isomorphisms and 0, is
injective, then, by the commutativity of QD,, dpo is injective. In particular, 7,2 = 0.
Moreover, for p = 2, 992 = (B2 and by similar arguments to the lemma of five applied to
QD3, we deduce that (2 is an isomorphism. In particular, using Theorem 4.2 of [7], we
deduce that 3 is an isomorphism. To finish it suffices to prove, by induction on g > 2 and

for every given p, 2 < p < n, the following
CLAIM: If 3, yp—1 and 7y, are isomorphisms, then 7, , = 0.

For ¢ = 2, we have already seen 7,2 = 0. Suppose ¢ > 3. Since I/I? is a flat B-module,
the bottom row of the diagram QD,,_» is exact, and, as 3, y,—1 and v, are isomorphisms,
the morphisms 1, , 2 and v, 141 are isomorphisms. In particular, a piece of the top
row of the diagram QD,4_2 is exact. Concretely, the following short complex is an exact

sequence:

Tor4

A (B, 1973/19-2) 2470 morA(B, -2 /[a-1) 2952 opd (B [9-1/ 9. 2)



Let us see 7, ;, = 0. Since (1) is an exact sequence, then Im7, ;, = Kerc, ;1 and, therefore,
it suffices to prove that c, 41 is a monomorphism. Take x € Kerc,,_1. The induction
hypothesis on ¢ > 3, assures that 7,4, 1 = 0 and the exactness of (1) says that Imip,, o =
Ker7,, 1. Therefore, ip4 o is an epimorphism. So, there exists y € Tor;‘(B,Iq_z/Iq_l)
such that i, 4_2(y) = . Thus, dpe—2(y) = 0. As (2) is an exact sequence, there exists
z € Tor;‘_i_l(B,Iq*?’/IqQ) with dpt1,4-3(2) = y. Since (1) is exact, ipq—2 0 Cpr1,9-2 = 0,

and, therefore z = 15 4_2(dp11,¢-3(2)) = ip,g—2° pr1,4-2°ipt1,4-3(2) = 0.1

Proof of Theorem 1.1. The equivalence of (i) with (ii7) follows from Theorem 4.2 of [7].
The equivalence of (iii) with (iv) is Proposition 2.2. The proof of the equivalence between
(¢) and (iv) consists in following the proof of 10.3 in [8]. We sketch it here briefly.

Taking a free presentation of each B-module W and applying the homology functors

H,(A, B,") to the chosen presentation, it is easy to see that condition (7) is equivalent to:
(i') I/I? is a flat B-module and H,(A,B,B) =0 for all p, 2 < p < n.
But, this condition is shown to be equivalent to:

(i") I/I? is a flat B-module and the canonical morphism ¢ : Lg4 — K(I/I%1) is an

n-equivalence.

where L 4 stands for the cotangent complex of the A-algebra B and K(I/I?,1) stands for
the simplicial B-module whose normalisation is the chain complex with I/I? in dimension
1 and zero elsewhere.

Let P stand for a free simplicial A-algebra resolution of B. Consider the simplicial
augmented B-algebra Q = P ® 4 B and denote by J its augmentation ideal. By filtering @
with the powers J? of J one obtains the spectral sequence

Ez27,q = Hpiq(J?/ ) = Hp1q(Sq (Lpja)) , 4"t Ep g > Ep_g0p g, (3)

which converges to Tor;‘Jrq(B,B) = Hp.4(Q) (see 6.8 of [8]).
In 10.3 of [8], Quillen shows that if I/I? is a flat B-module and £ is an n-equivalence,
then Ef,,q = 0 for all p,q with p + ¢ < n and p > 0. Moreover, in this case, one can deduce

the following exact sequence:
A di,l 2
Torn-l—l(BaB) ? Hn-l-l(AaBaB) ? En—2,2 =0, (4)

where the first morphism is the edge morphism.

To finish, it suffices to prove, under the flatness assumption on I/I?, that ¢ is an n-
equivalence if and only if v, : AP (I/1%) — Torg‘(B,B) is surjective for all ¢, 2 < g < n.
Suppose £, is an n-equivalence, then EJ%, = E?,,q =0 for all p+ g < n, p > 0. Therefore,
the edge morphism

V¢ :E§, = Eb, — ... = By, = E§S, = Hy(Q) = Tor} (B, B)

5



is an epimorphism. Reciprocally, if  is a (¢ —1)-equivalence and +y, is an epimorphism, then
using the sequence (4) and the fact that the edge morphism Tora“(B,B) — Hy(A,B,B)
vanishes the decomposable elements of the B-algebra Tor2 (B, B), we deduce H,(A, B, B) =

0. Hence, the conclusion follows by induction on g > 2.

Remark 2.3 By changing the flatness condition on I/I? for the projectiveness one, we can

replace homology for cohomology in Theorem 1.1.

3 An example of the non-rigidity

Let I be an ideal of A, B = A/I. Let f : F — A be the free presentation of I associated to
an arbitrary set of generators x of I. Denote by K(f) = K(x) = K(I) the Koszul complex
of f. Then, for each B-module W, there exists an exact sequence of B-modules (15.12 [1]):

0—>H2(A,B,W)—>H1(IC(I))%W—>F§>W—>I§>W—>O. (5)

On the other hand, H3(A, B,W) = 0 for all B-module W is equivalent to H;(XC(I)) being
a flat B-module and AP (H;(K(I))) — Ha(K(I)) being surjective ([3] or [10]).

Thus, if we find a ring A with an ideal I, B = A/I, such that H;(K(I)) = 0 and
H,(K(I)) # 0, then Ho(A, B, W) = 0 for all B-module W and Hs(A, B, W) # 0 for some B-
module Wy. Actually, taking a free presentation of Wy, one would deduce H3(A, B, B) # 0.

If I =< z > is a principal ideal, then the second Koszul homology group of z is always
zero. We thus have to look for an ideal I =< z,y > generated by at least two elements z, y.
Recall that the second Koszul homology group of z,y is Ha(K(z,y)) = (0 : I). Next two
lemmas characterize the vanishing of H;(K(z,y)) and how the elements of Hy(K(z,y)) =
(0 : I) look like when H;(K(z,y)) = 0.

Lemma 3.1 The following two conditions are equivalent:
(1) Hi(K(z,y)) =0.
(17) (z:y)=<z>,(0:2)C<y>and (0:2y)=(0:2)+ (0:y).

Proof. Let us denote by Z; and B; the modules of 1-cycles and 1-boundaries of K(z,y).
Let mo : Z; — A be the morphism of A-modules defined by m(a,b) = b. It is clear that
m2(Z1) = (z : y). Consider g : Z; — (z : y)/ < x > the composition of mp with the
projection onto the quotient of (z : y) by < z >. One has B; C Kerg = 7, ' (< = >), from
where we deduce the following exact sequence:

mUSE2) ey — Y g,

00—
B <z>

Finally, it is not difficult to prove that 7, '(< = >) = Bj is equivalent to (0 : z) C< y >
and (0:zy)=(0:2)+ (0:y). y



Lemma 3.2 If H;(K(z,y)) = 0 and tp € (0 :< z,y >), then there exists a sequence
to,t1,t2, ..y tn, ... such that, for each n > 1, t, € (0 :< " g™t >) and t,_1 = t,zy.

Proof. For each pair p,q > 1, let us denote by pr’q) = {(a,b) € A? | azP + by? = 0} and
by B{p’Q) = {c(—y%,2P) € A? | ¢ € A} the modules of 1-cycles and 1-boundaries of the
Koszul complex K(zP,y?) on the two elements zP,y? € A. Since H;(K(z,y)) = 0, then
Hy(K(2P,y?)) = 0 (exercise 9.9 [4]). Suppose t,—1 € (0 :< z",y™ >) for a given n > 1 (for
n = 1, take ¢ty € (0 :< z,y >) given by the hypothesis). Then, (¢,-1,0) € an’n) = B£n’n).
So, there exists u,, € A such that t,, 1 = u,y"™ and u,z™ = 0. Analogously, since (0,¢,-1) €
an’") = B{"’n), there exists v, € A such that t,_1 = v,z" and v,y" = 0. Therefore,
tn—1 = Upy™ = vpz™ and (v, —u,) € an’n) = B£n’n). So, there exists w, € A such that
vp = wpy™ and u, = wpz". Hence, t,_1 = upy™ = wyz"y". Take t, = wpz™ 'y" 1. Then,

th_1 = tpzy with t,z" ! = wyzz"y" ! = u,z"y" ! = 0 and, analogously, t,y"t! = 0. §

Example 3.3 Let k be a field and R = k[X,Y,Ty,T1,T5,...] the polynomial ring in the
variables X,Y, Ty, T1,Ts,.... Let J be the ideal of R defined by

J=<T, X"\ T,y""' T, - T, 1 XY |n>0> .

Take A = R/J = k[z,y,to,t1,t2,...], where z,y,to,t1,%2,..., denote the classes in A of
the variables X,Y, Ty, T1,T5,.... Let I =< z,y > be the ideal of A generated by z,y and
B = A/I. Then, H;(K(z,y)) = 0 and Ha(K(z,y)) # 0. In particular, Ha(A,B,W) = 0
for all B-module W and H3(A, B, B) # 0. Moreover, H3(A, B,W) = W for all B-module
W, and if k is of characteristic zero, then He¢(A, B, W) = W and H,(A,B,W) = 0 for all

p>4,p#6.

Proof. Let us begin by proving Ho(K(x,y)) # 0. By construction ¢y € (0 : I). Let us see
to # 0. Consider J,, the ideal of the polynomial ring R,, = k[X,Y,Ty,T1,...,T,] defined by

Jp =<ToX,TyY, Ty — T\ XY, Ty X?, T\Y2,...,T,_1 — T, XY, T, X"\, T, y"* > .
Note that we have:
Jp =<To—T,X"Y",...,T; — T, X" Y™ ... T 1 — T XY, T, X" T,y" > |

Suppose Ty € J. Then, there exists n > 0 such that Ty € J,, in R,,. For such n > 0, consider
the morphism of k-algebras ¢ : R, — k[X,Y,T,] defined by ¢(X) = X, oY) =Y,
o(To) = T X"Y", o(Ty) = T, X" tYy" L ... (T 1) = T,XY and ¢(T},) = T,. Then,
applying ¢ to the expression of Tj as an element of J,, one gets an equality in k[X,Y,T},]
of the form: T, X"Y" = aT,, X"*! + bT,,Y"! where a,b € k[X,Y,T}], which would imply
the contradiction 1 = a'X + b'Y.

Now and using Lemma 3.1, let us prove Hi(K(z,y)) = 0. It is not difficult to see
(z:y) =<z >and (0:z) C<y >. On the other hand, we have



CLAIM: (0 : t,) =< 2"ty > for all n > 0.

To see this, write any a € A, for a given n > 0, as a = cz" ! + dy™*! + fn(z,y), where
c,d € A and with each monomial of f,(z,y) € k[z,y] being of the form \z‘y?, X\ € k and
1,7 < n. Let us prove by induction on n > 0, that if ¢, f,(z,y) = 0, then f,(z,y) = 0.
For n = 0, it is just to say that tg # 0. For n > 1, write f,(z,y) = fn_1(z,y) + gn(z,y),
where gn(z,y) = An02™ + Ap 12"y + ...+ Ay n2™y" + ...+ A pzy™ + Aopy™ and with each
monomial of f, 1(z,y) € k[z,y] being of the form pz’y’, p € k and 3,7 <n — 1.

As tpfa(z,y) = 0, then 0 =ty fn(z,y)zy = th-1fn-1(2,y) + thzygn(z,y). But, since
thz™t = t,y" ! = 0, then t,zygn(z,y) = 0. So, t,_1fn_1(z,y) = 0 and, by the induc-
tion hypothesis, f,_1(z,y) = 0. Multiplying ¢,g(z,y) = 0 by z and using the induction
hypothesis, we deduce A\, 1, = ... = A1, = Ao = 0. Multiplying t,gn(z,y) = 0 by y
and using again the induction hypothesis, we deduce A\pp = Ap1 = ... = Ayn—1 = 0. So
fn(z,y) = Appa"y™. Since 0 = t, fr(z,y) = A ntnz™y"™ = Ay nto and by the case n = 0, we
deduce Ay, = 0 and, therefore, f,(z,y) =0.

Thus, (0:zy) = (0: )+ (0:y). Indeed, if a = P+ J € (0 : zy), then PXY € J, and
since J C< Ty, Th,... >, P €<Ty,T1,... >. Therefore, a = bt,11 for some n > 1. We have
0 = azy = bty 1wy = bt,. Thus, b€ (0:t,) =< 2"yt >, So b = ca™ ! + dy™*! and
a = ctp 12"t + dt, 1y" L, where t, 12"t € (0: 2) and t, 1y € (0: y).

Therefore, Hy(K(z,y)) = 0 and Ha(K(z,y)) # 0. So Ha(A, B,W) = 0 for all B-module
W and Hs3(A,B,B) # 0. Finally, let us prove Hs(A,B,W) = W for all B-module W.
Since I is a maximal ideal of residual field B = A/I = k, it is enough to prove that
Hy(A,B,B) = B.

The five-term exact sequence associated to the spectral sequence (3) is (see 6.12 [8]):
Tor{ (B, B) 2 H3(A, B, B) — AB(I/1?) 23 Tor4(B,B) — H(A,B,B) — 0.

Since 7o is an isomorphism, then h : Torj (B, B) — H3(A, B, B) is surjective. Therefore,
it suffices to show that Tors'(B,B) = B. Since for all n > 1, < t, > N(0: z) =< t,z" >
and < t, > N(0 : y) =< t,y™ >, then it is not difficult to see that (0 : I) =<ty >. It

follows that the following complex is a free resolution of the A-module B:
e AT 42 0 4 O B2 % 4 B, (6)

where, for each n > 0, 81,3, : A> — A is defined by sending (1,0) to = and (0,1) to y;
O213n : A — A? is defined by sending 1 to (y, —z) and, finally, 03,3, : A — A is defined by
sending 1 to to. Therefore, Tor{',; (B, B) = B? and Tor4, ,,(B, B) = Tor{, (B, B) = B for
alln > 0.

If k£ is of characteristic zero and p > 4, then Hg¢(A,B,W) = W and Hp(A,B,W) =0
otherwise. Indeed, the free resolution (6) of B has a multiplicative structure, since it can
be obtained from the Koszul complex K(z,y) by adjoining the necessary variables in order
to kill the cycle ¢ in degree 3 and 6. Using this DG-algebra, free resolution of B, one can
compute the modules H,(A, B,W) (see [5]). &



Remark 3.4 In Example 3.3, it can be proven that A has Krull dimension 2. So, localizing

at the maximal ideal I, we get a local commutative ring of Krull dimension 2.
To finish, we remark that for principal ideals, the André-Quillen homology is rigid.

Proposition 3.5 Let I =< x > be a principal ideal of A, B = A/I. If Hy(A,B,W) =0
for all B-module W, then H,(A,B,W) =0 for all p > 3 and for all B-module W .

Proof. Consider 0 — (0 : z) - A = I =<z >— 0. Thus, H;(K(z)) = (0 : z). By
the exactness of (5), Ha(A, B,W) = Tor{!(I,W). Therefore, the vanishing of Ha(A, B, ")
is equivalent to the flatness, as an A-module, of the ideal I. On the other hand, if J
is an ideal of A, flat as an A-module, then J/J? is a flat A/J-module and hence, by
Lemma 2.1, v : A4/ (J/J?) — Tor(A/J, A/J) is a monomorphism. Moreover, as J is flat,
Torﬁ(A/J, AlJ) = Tor;&l(J, A/J) = 0 for all p > 2. In particular, y is an epimorphism
and, by Theorem 1.1, Hy(A,A/J,:) =0 for allp > 2. y
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