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¯ Isabel Garćıa-Planas*,

Departament de Matemàtica Aplicada I
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Abstract: - Let (A1, A2, B) be a triple of matrices representing two-order time-invariant
linear systems, ẍ = A1ẋ+A2x+Bu. Using linearization process we study the controllability
of second order linear systems. We obtain sufficient conditions for controllability and we
analyze the kind of systems verifying these conditions.
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1 Introduction

The study of second order systems has experienced a great deal, they are applied in engi-
neering as well as in economic systems. They are used for example, in modelling of flexible
beams [5].

A second order linear system is described by the following state space equation

ẍ = A1ẋ + A2x + Bu, (1)

where Ai are n-square complex matrices and B a rectangular complex matrix in adequate
size. Applying the Laplace transform to the equation (1) with zero initial conditions we
obtain the corresponding transfer condition

x̂(s) = (s2In − sA1 − A2)
−1Bû(s). (2)

G. Antoniou in [1], gives an algorithm for computing the transfer function T (s) = (s2In −
sA1 − A2)

−1B.
In this paper, and using linearization process (see [4], for example), we present sufficient

conditions for existence of a control w in such a way the sate can be driven from any position
to any other in a prescribed period of time.

The structure of this paper is as follows.
In section 2, an equivalence relation over the space of second order linear systems is

defined and it induce an equivalence over the space of linearized systems. We observe that
the equivalent linearized systems are feedback equivalent as linear systems, but the converse
is not true.

In section 3, the controllability analysis relating controllability of second order linear
systems and controllability of linear systems associated is presented.
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Finally in section 4, sufficient conditions to ensure controllability of second order sys-
tems, in terms of matrices defining the systems are presented. Also, we describe the collec-
tion of systems verifying these conditions finding pairs of matrices with several prescribed
blocks, as well as several prescribed invariants for prescribed blocks of pairs of matrices.
In recent years several results are obtained describing invariants of matrices with several
prescribed blocks as for example [2], among others.

In the sequel, we denote by Mr×s(C) the space of complex matrices having r rows and
s columns, and in the case which r = s we write Mr(C). In order to simplify notations, we
denote second order linear systems by triple of matrices (A1, A2, B), and the space of all
triples of matrices by M = {(A1, A2, B) | A1, A2 ∈ Mn(C), B ∈ Mn×m(C)}.

We identify pairs (A,B) and triples of matrices (A,B,C) with rectangular matrices(
A B

)
and

(
A B C

)
in order to use the matrix representation of the transformations.

2 Orbits of linearized systems

Let ẍ = A1ẋ+A2x+Bu be a second order linear system as in the introduction, the standard
transformations that can be applied are

1. basis change in the state space: (A1, A2, B) → (P−1A1P, P−1A2P, P−1B),

2. basis change in the input space: (A1, A2, B) → (A1, A2, BQ),

3. feedback: (A1, A2, B) → (A1, A2 + BF2, B),

4. and derivative feedback: (A1, A2, B) → (A1 + BF1, A2, B).

Then, the initial equation is transformed to

ẍ = (P−1A1P + P−1BF1)ẋ + (P−1A2P + P−1BF2)x + P−1BQu (3)

and we get the following definition of equivalence for second order linear systems

Definition 2.1. Two second order linear systems (A′
1, A

′
2, B

′), (A′′
1, A

′′
2, B

′′) ∈ M, are
equivalent if and only if there exist matrices P ∈ Gl(n;C), Q ∈ Gl(m;C) and F1, F2 ∈
Mm×n(C) such that these equalities

A′′
1 = P−1A′

1P + P−1B′F1

A′′
2 = P−1A′

2P + P−1B′F2

B′′ = P−1B′Q
(4)

hold.

It is straightforward that this relation is an equivalence relation.

Remark 2.1. Given two equivalent triples (A′
1, A

′
2, B

′), (A′′
1, A

′′
2, B

′′) ∈ M, the pairs of ma-
trices (A′

1, B
′), and (A′

2, B
′), are feedback equivalent to (A′′

1, B
′′) and (A′′

2, B
′′) respectively.
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The problem of finding a canonical reduced form for triples of matrices under this
equivalence relation is an open problem. In order to obtain some structural invariants we
consider the linearization process.

Remember that (see [4] for details), if we consider X =

(
x
ẋ

)
, we can rewrite the second

order linear system (1) as the following linear system

Ẋ = AX + Bu, (5)

where A and B are the matrices:

A =

(
0 In

A2 A1

)
, B =

(
0
B

)
. (6)

The expression of second order linear systems as a linear systems permit to consider
feedback equivalence. Remember that (see [3], for example), two linear systems (A1,B1)
and (A2,B2) are called feedback equivalent if and only if there exist (P,Q,F) in the full
feedback group G = {(P,Q,F) | P ∈ Gl(2n;C),Q ∈ Gl(m;C),F ∈ Mm×2n(C) such that

(A2,B2) = P−1(A1,B1)

(
P 0
F Q

)
.

It is easy to prove the following proposition.

Proposition 2.1. Let (A1, A2, B) and (A′
1, A

′
2, B

′) be two equivalent systems. Then, the
linearized systems are feedback equivalent.

The converse is not true as we can see in the following example.

Example 2.1. Let (A1, A2, B) with A1 = 0 ∈ M2(C), A2 =

(
1 0
0 4

)
, B = 0 ∈ M2×1(C)

and (A′
1, A

′
2, B

′) with A′
1 =

(
0 1
0 0

)
, A′

2 =

(
1 0
0 4

)
, B′ = 0 ∈ M2×1(C). The systems

are not equivalent but the linearized systems are feedback equivalent.

Proposition (2.1) ensures that all structural invariants of a linearized system as a pair
under feedback equivalence are invariants for the initial triple, but the set is not a complete
system of invariants.

In order to preserve the form (6) for equivalent linear systems, in the sense that the
only equivalent pairs are those that are linearized of some equivalent second order linear
system, we need to restrict to the subgroup G2 ⊂ G formed by matrices (P,Q,R) ∈ G with

P =

(
P 0
0 P

)
, P ∈ Gl(n,C). So, we consider the following equivalence relation.

Definition 2.2. Two pairs

((
0 In

A′
2 A′

1

)
,

(
0
B′

))
and

((
0 In

A′′
2 A′′

1

)
,

(
0

B′′

))
are equivalent

if and only if, there exists (P,Q,F) ∈ G2, such that

(
P−1 0

0 P−1

) (
0 In 0

A′2 A′1 B′

)(
P 0 0
0 P 0
F2 F1 Q

)
=

(
0 In 0

A′′2 A′′1 B′′

)
.
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Example 2.2. Let (A,B) =

((
0 I2

A2 A1

)
,

(
0
B

))
be a pair with A1 = A2 =

(
0 1
0 0

)
,

B =

(
1
0

)
. The collection of pairs of matrices equivalent to it under the relation (2.2), is

O(A,B) = {(X,Y)} where (X,Y) =

((
0 I2

X2 X1

)
,

(
0
Y

))
being a pair with

X1 =




x3x4 − x2x8

x1x4 − x2x3

x2
4 − x2x9

x1x4 − x2x3−x2
3 + x1x8

x1x4 − x2x3

−x3x4 + x1x9

x1x4 − x2x3


 , X2 =




x3x4 − x2x6

x1x4 − x2x3

x2
4 − x2x7

x1x4 − x2x3−x2
3 + x1x6

x1x4 − x2x3

−x3x4 + x1x7

x1x4 − x2x3


 ,

and

Y =




−x2x5

x1x4 − x2x3x1x5

x1x4 − x2x3


 .

for all (x1, . . . , x9) ∈ C9 with x1x4 − x2x3 6= 0

So, we have the following proposition

Proposition 2.2. Two second order linear systems (A′
1, A

′
2, B

′), (A′′
1, A

′′
2, B

′′) ∈ M, are
equivalent if and only if the associated linearized systems (A′,B′), (A′′,B′′) are G2-equivalent.

3 Controllability

In this section we will go to study controllability of second order linear systems using the
controllability character of the linearized systems (5).

We recall that a second order linear system is called controllable if, for any t1 > 0,
x(0), ẋ(0) ∈ Cn and w ∈ Cn, there exists a control u(t) such that x(t1) = w. This definition
is a natural generalization of controllability concept in the first order linear systems.

Taking into account that x(t) is a solution of the second order linear system if and only

if
�

x(t)
ẋ(t)

�
is a solution of the associated linearized system, the second order linear system is

controllable if and only if the linearized system is controllable.
So, we can use results about controllability of linear systems, in particular (see for

example [3]) we have that the pair (A,B) (linearized of (A1, A2, B)) is controllable if and
only if

rank
(

sI2n − A B
)

= 2n ∀s ∈ C, (7)

or equivalently, if and only if

rank
(
B AB . . . A2nB

)
= 2n. (8)

Making elementary transformations in the matrix (7), we can analyze the controllability
directly from the matrices defining the second order linear system, obtaining the following
characterization.
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Proposition 3.1. The second order linear system (A1, A2, B), is controllable if and only if

rank
(
s2In − sA1 − A2 B

)
= n ∀s ∈ C

Proof. making elementary block transformations on the matrix (7) we have

r = rank

(
sIn −In 0
−A2 sIn − A1 B

)

= rank

(
0 In 0

s2In − sA1 − A2 0 B

)
=

= n + rank
(

s2In − sA1 − A2 B
)
.

(9)

Then, r = 2n, ∀s ∈ C if and only if the proposition holds.

The proposition (3.1) permit us to define controllability in the following manner.

Definition 3.1. We say that the second order linear system (A1, A2, B), is controllable if
and only if,

rank
(
s2In − sA1 − A2 B

)
= n ∀s ∈ C. (10)

It is well know that, the controllability of a linear system is invariant under feedback
equivalence, then the controllability of linearized systems is invariant under G2-equivalence.
So, the controllability of second order linear systems is invariant under equivalence relation
considered. In fact we have the following proposition

Proposition 3.2. The
rank

(
s2In − sA1 − A2 B

)

is invariant under equivalence defined above.

Proof. Let (A′
1, A

′
2, B

′) and (A′′
1, A

′′
2, B

′′) be two equivalent triples. Then, there exist (P,Q,F) ∈
G2 such that

A′′
1 = P−1A′

1P + P−1B′F1

A′′
2 = P−1A′

2P + P−1B′F2

B′′ = P−1B′Q.

Then,

rank
(
s2In − sA′′

1 − A′′
2 B′′) =

= rank

(
(P−1

(
s2In − sA′

1 − A′
2 B′)

(
P 0

−sF1 − F2 Q

))
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The stability of linear systems (A,B) can be determined directly from the eigenvalues
of matrix A. When the system is controllable the eigenvalues can be modified conveniently
by feedback A+ BF, in order to stabilize the system.

It is not difficult to compute that the poles of the transfer function (2) of the second
order linear system (A1, A2, B) are the eigenvalues of the matrix A in the linearized system
(A,B), as well as that the poles of the transfer function of the second order linear system
(A1 + BF1, A2 + BF2, B) are also, the eigenvalues of (A+ BF,B), with F =

(
F2 F1

)
.

As a consequence we have the following proposition.

Proposition 3.3. Let (A1, A2, B) be a controllable second order linear system. Then the
system can be stabilized by means a feedback and derivative feedback.

4 Sufficient conditions for controllability

Now we present conditions for matrices A1, A2, B ensuring the controllability of the system.

Lemma 4.1. Let (A1, A2, B) be a second order linear system with A1 = A2 and (A1, B) a
controllable pair in its Kronecker canonical reduced form. Then it is controllable.

Proof. Taking into account that the pair (A1, B) is in its Kronecker canonical reduced form
(see [3], for example), it is (N, B) with

N =




N1

. . .

Nm


 , Ni =

(
0 Iki−1

0 0

)
∈ Mki

(C) ,

1 ≤ i ≤ m , k1 + · · ·+ km = n , k1 ≥ · · · ≥ km ,

B =




E1

. . .

Em


 , Ei = (0, . . . , 0, 1)t ∈ Mki×1(C) ,

1 ≤ i ≤ m ,

then

rank
(
s2In − sN −N B

)
=

=rank




s2Ik1 − sN1 −N1 E1

. . . . . .

s2Ikm − sNm −Nm Em


=

= rank
(
s2Ik1 − sN1 −N1 E1

)
+ · · ·+ rank

(
s2Ikm − sNm −Nm Em

)

where (
s2Iki

− sNi −Ni Ei

)
=

=




s2 −s− 1 0 . . . 0
...

. . .

0 . . . s2 −s− 1 0
0 . . . 0 s2 1


 ∈ Mki×(ki+1) , 1 ≤ i ≤ m
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and obviously,

rank
(
s2Iki

− sNi −Ni Ei

)
= ki , 1 ≤ i ≤ m, if s 6= 0 ,

rank
(
s2Iki

− sNi −Ni Ei

)
= ki , 1 ≤ i ≤ m, if s = 0 .

Then
rank

(
s2In − sN −N B

)
= k1 + · · ·+ km = n ∀s ∈ C

Proposition 4.1. Let (A1, A2, B) be a second order linear system with A1 = A2 and the
pair (A1, B) being controllable. Then the given system is controllable.

Proof. Taking into account that (A, B) is controllable, there exist P ∈ Gl(n;C), Q ∈
Gl(m;C) and F ∈ Mm×n(C), such that

P−1
(
A1, B

) (
P 0
F Q

)
=

(
N, E

)
.

So, the triple (A1, A2, B) can be reduced to the triple (N, N, E) making

P−1
(
A1, A2, B

)



P 0 0
0 P 0
F F Q


 =

(
N, N,E

)
.

Now, taking into account the invariance under equivalence and applying the above lemma
we obtain the result.

Notice that if (A1, A2, B) is in such a way that (A1, B) and (A2, B) are controllable we
cannot deduce the controllability of the triple,

Example 4.1. Let (A1, A2, B) be a second order linear system in M with

A1 =

(
0 1
0 0

)
, A2 =

(
1 1
0 0

)
, B =

(
0
1

)

Clearly (A1, B) and (A2, B) are controllable, but the triple (A1, A2, B) is not controllable

rank
(

s2I2 − sA1 − A2 B
)

= 1, for s = −1.

But, we have the following proposition

Proposition 4.2. Let (A1, A2, B) be a second order linear system in M such that, the
pairs (A1, B) and (A2, B) are controllable and they can be reduced simultaneously modulo
feedback to the same Kronecker canonical reduced form. Then (A1, A2, B) is controllable.
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Proof. Let P ∈ Gl(n;C), Q ∈ Gl(m;C) and F1, F2 ∈ Mm×n(C) be matrices such that

P−1
(

A1 B
) (

P 0
F1 Q

)
=

(
N E

)
,

P−1
(

A2 B
) (

P 0
F2 Q

)
=

(
N E

)
,

then

P−1
(

A1 A2 B
)



P 0 0
0 P 0
F1 F2 Q


 =

(
N N E

)
.

Now we can apply lemma before.

We want to remark that the controllability of the pairs (A1, B) and (A2, B) is not a
necessary condition for controllability of the system (A1, A2, B). To prove that it suffices
an example

Example 4.2. Let A1 =

(
0 1
0 0

)
, A2 =

(
1 0
0 0

)
and B =

(
0
1

)
. It is clear that (A1, B)

is controllable, (A2, B) is uncontrollable and

rank
(

s2I2 − sA1 − A2 B
)

= 2, for all s ∈ C.

To find the collection of triples of matrices (A1, A2, B) ∈M equivalent to a triple in the
form (A′, A′, B′), is equivalent to find pairs of matrices with several prescribed blocks in the
matrices as well as several prescribed invariants for prescribed blocks of pairs of matrices.
That is to say, to find all pairs of matrices

((
A11 A12

A21 A22

)
,

(
B1

B2

))
∈ M2n(C)×M2n×m(C), (11)

with A11 = 0, A12 = In, B1 = 0, and the pairs of matrices (A21, B2) and (A22, B2) having
the same prescribed complete set of invariants.

We have the following proposition.

Proposition 4.3. A second order linear system of matrices (A1, A2, B) ∈M is equivalent
to a system in the form (A′, A′, B′), if and only if

rank
(
A2 − A1 B

)
= rankB (12)

Proof. Suppose that (A1, A2, B) is equivalent to (A′, A′, B′), then there exist matrices P ∈
GL(n;C), Q ∈ Gl(m;C) and F1, F2 ∈ Mm×n(C) such that

(A1, A2, B) = (P−1A′P + P−1B′F1, P
−1A′P + P−1B′F2, P

−1B′Q).

So
rank

(
A2 − A1 B

)
= rank

(
BQ−1F2 −BQ−1F1 B

)
= rank B
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Conversely. If rank
(
A2 − A1 B

)
= rank B, then there exists a matrix F ∈ Mm×n(C)

such that A2 − A1 = BF equivalently,

(
0 I 0
A2 A1 B

) 


I 0 0
0 I 0
−F 0 I


 =

(
0 I 0
A1 A1 B

)
.

As example, we compute the collection of matrices A1 ∈ Mn(C) such that the systems
(N,A1, E) ∈ M, with m = 1, are equivalent to (N,N, E). For that it suffices to compute
the matrix A1 such that rank

(
N − A1 E

)
= 1, and it is if and only if the matrix A1 is a

companion matrix.
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