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An Ellipsoidal Billiard with a Quadratic Potential*

Yu. N. Fedorov UDC 514.85+515.178+531.01

There exists an infinite hierarchy of integrable generalizations of the geodesic flow on an n-di-
mensional ellipsoid. These generalizations describe the motion of a point in the force fields of certain
polynomial potentials. In the limit as one of semiaxes of the ellipsoid tends to zero, one obtains inte-
grable mappings corresponding to billiards with polynomial potentials inside an (n−1)-dimensional
ellipsoid.

In this paper, for the first time we give explicit expressions for the ellipsoidal billiard with a
quadratic (Hooke) potential, its representation in Lax form, and a theta function solution. We also
indicate the generating function of the restriction of the potential billiard map to a level set of
an energy type integral. The method we use to obtain theta function solutions is different from
those applied earlier and is based on the calculation of limit values of meromorphic functions on
generalized Jacobians.

Introduction

One of the best-known discrete integrable systems is the billiard inside an (n− 1)-dimensional
ellipsoid (more generally, a quadric)

Q =
{
X2

1

a1
+ · · ·+ X2

n

an
= 1

}
∈ R

n, R
n � (X1, . . . , Xn), 0 < a1 < · · · < an,

with elastic reflections on Q. Following Birkhoff [1], one can treat the billiard as the limit of the
geodesic flow on the n-dimensional ellipsoid

Q̃ =
{
X2

1

a1
+ · · ·+ X2

n+1

an+1
= 1

}
, 0 < an+1 < a1 < · · · < an, (1)

as one of the semiaxes (an+1) tends to zero. In this case, the straight line trajectories of the
ellipsoidal billiard inherit the remarkable property of geodesics on Q̃ given by the Chasles theorem:
the continuations of the trajectories before and after impacts are simultaneously tangent to n− 1
quadrics confocal to Q. The parameters of these quadrics are first integrals of the discrete system.

Veselov [2] described the billiard map in terms of discrete Lagrangian formalism and showed
that its complex invariant manifolds are open subsets of coverings of hyperelliptic Jacobians and
that the restriction of the map to such manifolds is represented by shifts by a constant vector.
Explicit theta function solutions for the billiard were obtained in [2] by applying spectral theory
of difference operators and in [3, 14] by making use of the Lax representation and the method of
factorization of matrix polynomials.

Later, the author [11] recovered these solutions as the degeneration of theta function solutions
for geodesics on Q̃ in the limit as an+1 → 0. He also obtained biasymptotic solutions describing
spatial billiard trajectories tending to oscillations along the major axis of the ellipsoid as well as
generic theta function solutions for the billiard in a domain bounded by two confocal ellipsoids.

On the other hand, as was noticed by Jacobi himself and later by many other authors (e.g.,
see [16]), there exists an infinite hierarchy of integrable generalizations of this problem. These
generalizations describe the motion on Q̃ in the force field of some basis polynomial potentials
Vp(X1, . . . , Xn+1) of degree 2p, p ∈ N, and their linear combinations. The simplest integrable
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potential is the Hooke potential, or the potential of an ideal elastic string joining the center of the
ellipsoid Q̃ with a point mass on Q̃:

V1(X) = σ(X2
1 + · · ·+X2

n+1)/2, σ = const .

In the limit as an+1 → 0 the motion on Q̃ under the Hooke force passes into the motion inside
Q under the potential V = σ(X2

1 + · · · + X2
n)/2. However, in contrast with the cases σ = 0 and

σ < 0, for σ > 0 (an attractive Hooke potential), the total energy h must be sufficiently large for
the trajectory to reach Q. Namely,

h+ σ(X2
1 + · · ·+X2

n)/2 > ε > 0 (2)

inside Q for some positive constant ε. If condition (2) is satisfied, then the motion on Q̃ passes
into a motion inside Q with impacts and reflection on Q. One can show that these reflections are
still elastic. Thus, we arrive at an ellipsoidal billiard with the Hooke potential described by the
mapping B : (x, v) → (x̃, ṽ), where x ∈ Q, v ∈ R

n are the coordinates of an impact point on Q and
the outgoing velocity at this point, respectively, and x̃, ṽ are the same vectors at the next impact
point.

As was noted in [12], this system, as well as the billiard limits of the motion on Q̃ with the
higher-order potentials Vp(X1, . . . , Xn, Xn+1), is completely integrable.

Remark 1. In contrast with the classical (geodesic) billiard, in a potential billiard the velocity
vector between the impacts is not constant. Another new feature of the latter billiard is that for
any subsequent impact points x, x̃ ∈ Q there is a whole one-parameter family of trajectories with
different energy passing through these points, namely, arcs of conics (for σ > 0, ellipses) lying in
the plane Π passing through x, x̃, and the origin in R

n . This family forms a pencil of conics with
base points x, x̃ (the case of a billiard in R

2 is depicted in Fig. 1). In particular, for σ > 0, the
pencil includes the ellipse Π ∩Q and the straight line segment joining x with x̃, which represents
a trajectory with infinite energy.

One can show that after the reflection at x̃ these trajectories no longer form a pencil of conics;
i.e., the next impact point depends not only on x, x̃, but also on the energy. In other words, two
subsequent impact points on Q do not determine the entire sequence of impact points. This implies
that, in contrast with the geodesic billiard, the discrete time Lagrangian formalism developed in
[2] is applicable to a potential billiard only under some constraints on the initial conditions.

In this paper, for the first time we give explicit expressions for the map B, its representation in
Lax form, the generating function (a discrete Lagrangian) of the restriction of B to a level set of an
energy type integral, and a theta function solution. We show that adding the quadratic potential to
the billiard changes the geometric and symplectic properties of this discrete system dramatically.

The method we use to obtain theta-functional solutions is different from those applied in [2, 3]
and is based on the calculation of limit values of meromorphic functions on generalized Jacobians.

1. The Mapping BBB, the Lax Representation, and First Integrals

Theorem 1. The mapping B describing the billiard with a quadratic potential has the form

x̃ = −1
ν
[(σ − (v, a−1v))x+ 2(x, a−1v)v],

ṽ = −1
ν
[(σ − (v, a−1v))v − 2σ(x, a−1v)x] + µa−1x̃

= −1
ν
[(σ − (v, a−1v))(v + µa−1x) + 2(x, a−1v)(µa−1v − σx)],

ν =
√
4σ(x, a−1v)2 + (σ − (v, a−1v))2, µ =

2(ṽ, a−1x̃)
(x̃, a−2x̃)

.

(3)
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Note that these relations determine the mapping uniquely and, in the limit as σ → 0, it passes
into the standard billiard mapping [2, 14]

x̃ = x− 2(x, a−1v)
(v, a−1v)

v, ṽ = v +
2(ṽ, a−1x̃)
(x̃, a−2x̃)

a−1x̃. (4)

As follows from (3), (4), both mappings have the integral

(v, a−1x) = (ṽ, a−1x̃). (5)

Sketch of proof. Consider a segment of the billiard trajectory between subsequent impacts on
Q assuming that σ > 0 (the case σ < 0 can be considered in a similar way). Let (x0, v0) and (x̃, v′)
be the position and velocity vectors of the mass point at the initial point and the end point of
the segment, respectively. The continuation of the segment in R

n is the ellipse given in parametric
form by

X(φ) = cos(φ)x+
1√
σ
sin(φ)v,

φ =
√
σ t,

(6)

V (φ) = cos(φ)v − sin(φ)
√
σx. (7)

Substituting (6) into the equation (X, a−1X) = 1 of the ellipsoid, we obtain the parameter φ, the
coordinates, and the velocity at the end point of the segment. Solving this equation, we obtain

x̃ = − (σ − (v, a−1v))x+ 2(x, a−1v)v√
4σ(x, a−1v)2 + (σ − (v, a−1v))2

,

v′ = −−2σ(x, a−1v)x+ (σ − (v, a−1v))v√
4σ(x, a−1v)2 + (σ − (v, a−1v))2

.

(8)

On the other hand, since the reflection at the point x̃ is elastic, we have

ṽ − v′ = µa−1x̃, µ =
(ṽ, a−1x̃)− (v′, a−1x̃)

(x̃, a−2x̃)
=

2(ṽ, a−1x̃)
(x̃, a−2x̃)

. (9)

As a result, from (8) and (9) we obtain (3).
It turns out that up to the action of the group generated by the reflections (xi, vi) → (−xi,−vi),

i = 1, . . . , n, the potential billiard map B is equivalent to the following 2×2 matrix equations with
parameter λ ∈ C:

L̃(λ) = M(λ)L(λ)M−1(λ),

L(λ) =
(

qλ(x, v) qλ(v, v)− σ
−qλ(x, x) + 1 −qλ(x, v)

)
, qλ(x, y) =

n∑
i=1

xiyi

λ− ai
, (10)

M(λ) =
(
[σ − (v, a−1v)]λ+ 2(x, a−1v)µ 2σ(x, a−1v)λ− [σ − (v, a−1v)]µ

−2(x, a−1v)λ [σ − (v, a−1v)]λ

)
,

where L̃(λ) depends on x̃, ṽ in the same manner as L(λ) depends on x, v. Note that detM(λ) =
λν2 , where the factor ν is defined in (3). The verification of (10) is straghtforward.

Following the conventional terminology, in the sequel we refer to (10) as a discrete Lax pair.
For σ = 0, the representation (10) is reduced to a 2× 2 Lax pair for the classical billiard (4).
The equation |L(λ) − wI| = 0 defines a hyperelliptic spectral curve Γ of genus n − 1, and

the coefficients of the polynomial (λ− a1) · · · (λ− an) detL(λ) give n independent integrals of the
potential billiard map. Under the condition (x, a−1x) = 1, the free term of this polynomial coincides
with the integral (5). By consequtively setting λ = a1, . . . , λ = an in detL(λ) and by calculating
the residue, we obtain the integrals∑

j �=i

(xivj − xjvi)2

ai − aj
+ v2

i + σx2
i , i = 1, . . . , n, (11)
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whose sum is equal to (v, v)+σ(x, x), which is an analog of the energy integral for the motion with
the Hooke potential.

Remark 2. The Lax matrix L(λ) is dual to the n× n matrix

L (s) = (s2 + σ)a+ s(x⊗ v − v ⊗ x) + v ⊗ v + σx⊗ x , s ∈ C,

in the sense that the spectral curves |L(λ)−w I| = 0 and |L (s)−λ I| = 0 are birationally equivalent,
the parameter λ being the eigenvalue parameter for L (s) (the Weinstein–Aronszajn formula; e.g.,
see [5]). For σ = 0 and s = 1, the matrix L (s) forms the n× n Lax representation of the geodesic
flow on Q, which was first indicated by Moser [13]. Its factorization was applied in [14] to the
construction of a discrete n×n Lax pair for the classical billiard inside Q. The factorization of the
dual Lax matrix L (s) is an open problem yet.

Proposition 1. The characteristic equation

detL(λ) ≡ qλ(x, x)qλ(v, v)− q2
λ(x, v)− σqλ(x, x)− qλ(v, v) + σ = 0 (12)

represents the condition that the ellipse formed by the initial vectors (x0, v0) is tangent to the
quadric Qλ = {qλ(X,X)= 1}.

Indeed, this condition is equivalent to the following pair of equations for the parameter φ∗ at
the point of tangency:

qλ(X(φ∗), X(φ∗)) = 1,
d

dφ
qλ(X(φ), X(φ))

∣∣∣∣
φ=φ∗

= 0.

Applying the parameterization (6), one eliminates φ∗ and, after some calculations, arrives at the
equation

q2
λ(x, v)[(qλ(x, x)− qλ(v, v))2 + 4q2

λ(x, v)] detL(λ) = 0 (13)
for λ. Note that the bilinear form qλ(x0, v0) vanishes if and only if the quadric Qλ coincides with
the ellipsoid Q and the initial velocity vector v0 is tangent to it. This case corresponds to the trivial
periodic motion along some ellipse on Q, and hence we exclude it from our considerations. Next,
the expression in square brackets in [13] is always nonzero. As a result, we conclude that it is the
equation detL(λ) = 0 alone that gives the above tangency condition, which completes the proof.

Since the coefficients of the polynomial (λ−a1) · · · (λ−an) detL(λ) are integrals of the potential
billiard map and the degree of R(λ) is equal to n, from Proposition 1 we obtain the following
assertion.

Corollary. The ellipses that continue segments of trajectories of the billiard with the Hooke
potential in Q ⊂ R

n are tangent to exactly n fixed quadrics confocal to Q. The parameters of the
quadrics are the roots of R(λ).

This corollary generalizes the well-known property of the potential-free billiard in Q ⊂ R
n ,

whose trajectories (or their continuations) are tangent to n − 1 fixed confocal quadrics. The case
of a planar potential billiard in R

2 and σ > 0 is illustrated in Figure 1, where the ellipses that
continue segments of billiard trajectories are shown by dashed lines.

2. The Poisson Property

By the Maupertuis principle, for a given value of total energy satisfying condition (2), the
motion in the potential field inside Q is reduced to a geodesic motion with some nondegenerate
metric. Thus, it is natural to conjecture that for a given value of the integral (v, v) + σ(x, x) of
the mapping B, the impact points x and x̃ already determine the entire sequence of impact points
uniquely.

Theorem 2. (1) The even-dimensional variety Ih ⊂ R
2n = (x, v) that is the joint level of the

integrals f1 = (x, a−1x) = 1, f2 = (v, v) + σ(x, x) = h is a symplectic manifold. The restriction of
B to Ih preserves the symplectic structure and is given in the canonical excessive coordinates x,
v by the expressions

v =
∂Sh(x, x̃)

∂x
, ṽ = −∂Sh(x, x̃)

∂x̃
(14)
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Fig. 1. The ellipses continuing a trajectory before and after the impact
at the point x are tangent to the confocal quadrics Q1 and Q2

with the generating function (a discrete analog of Lagrangian)

Sh(x, x̃) =
h

2
√
σ
φ̂+

h

2
√
σ
sin φ̂ cos φ̂−√

σ sin φ̂(x, x̃)

on Q × Q, where the value φ̂ of the parameter φ at the end point of the segment of the billiard
trajectory is given by

cos φ̂ =
1
h
σ(x, x̃) +

1
h

√
σ2(x, x̃)2 − σh((x, x) + (x̃, x̃)) + h2 . (15)

(2) The mapping (3) preserves the degenerate Poisson structure given by the bracket

{xi, xj} = 0, {xi, vj} = δij −
via

−1
j xj

(x, a−1v)
, {vi, vj} = σ

(a−1
i − a−1

j )xixj

(x, a−1v)
(16)

on the space (x, v), and the integrals (11) commute with respect to the bracket.

This theorem implies that the restriction of B to every manifold Ih , which a symplectic leaf of
the degenerate bracket (16), is integrable by virtue of the discrete analog of the Liouville theorem
(see [2]). Hence the map is integrable on the entire space (x, v) and its generic invariant manifolds
are (n− 1)-dimensional tori.

Remark 3. Note that according to (15), the angle φ̂ tends to zero as σ → 0. In this case, owing
to the relation φ =

√
σt in (6) and the natural condition h = (v, v) = 1, the generating function

Sh(x, x̃) is equal to t = |x̃− x|, i.e., the discrete Lagrangian of the potential-free billiard.
On the other hand, to find a continuous limit of the generating function in the general case, we

set x̃ = x+ ẋ∆t+O((∆t)2), where ∆t � 1. Substituting this into (15), we obtain the expansions

cos φ̂ = 1− σ(ẋ, ẋ)(∆t)2

h− σ(x, x)
+O((∆t)3), φ̂ =

√
2σ|ẋ|∆t√

h− σ(x, x)
+O((∆t)3),

which lead to the following expansion of Sh :

sin φ̂
(

h√
σ
cos φ̂−√

σ(x, x)
)
+O((∆t)3) =

√
h− σ(x, x)

√
2(ẋ, ẋ)∆t+O((∆t)3).

The first term on the right-hand side coincides with the differential of the Maupertuis action (or
the so-called truncated action) for the motion of a point on the ellipsoid Q with the Hooke potential
and given energy h, where ẋ denotes the point velocity.

We point out that Theorem 2 does not imply that the potential billiard map B is a discrete
Lagrangian system. It only asserts that its restriction to every level set of the energy type integral
is described by a generating function. For the map on the whole phase space (x, v), such a function
(which must depend only on the original and new coordinates) does not exist (see Remark 1).
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Proof of Theorem 2. (1) By virtue of the parametrizations (6) and (7), we have

v =
√
σ

x̃− cos φ̂ x

sin φ̂
, v′ = −√

σ
x− cos φ̂ x̃

sin φ̂
, (17)

where φ̂ is the value of φ at the point x̃ and v′ = V (φ̂). To express φ̂ via x, x̃, and h, we take the
square of both sides of (7) and, applying the first relation in (17) and the formula (v, v) = h−σ(x, x),
arrive at a second-order equation for cos φ̂. One of its solutions is given by (15), which is chosen
from the condition limσ→0 cos φ̂ = 1.

Note that the restrictions of ṽ and v′ to Ih coincide by (9). Using this fact, as well as formulas

(15) and the relation sin φ̂ =
√
1− cos2 φ̂, we see that the expressions (17) become equivalent

to (14).
The mapping given by (14) preserves the standard symplectic 2-form

∑n
i=1 dxi ∧ dvi in R

2n =
(x, v), and for the canonical Poisson bracket in this space we have {f1, f2} = (x, a−1v) �= 0. As a
result, the submanifold Ih is symplectic and the restriction of the map (14) to it is also symplectic.

(2) Calculating the restriction of the standard Poisson bracket in R
2n to Ih by the Dirac proce-

dure, we arrive at (16). Then the commutativity of the integrals (11) is verified by straightforward
calculations.

3. Linearization on the Generalized Jacobian

Now consider the limit of the flow with the Hooke potential on the n-dimensional ellipsoid
Q̃ ⊂ R

n+1 as an+1 → 0 from the algebraic-geometric point of view.
The motion on Q̃ is known to separate in the ellipsoidal coordinates λ1, . . . , λn ; namely, the

total energy acquires a Stäckel form (e.g., see [16]). After the passage to a new parameter τ such
that

dt = λ1 · · ·λn dτ, (18)

the motion is linearized on the Jacobi variety of the hyperelliptic curve of genus n

Γ̃ = {µ2 = λ(λ− a1) · · · (λ− an+1)[c0(λ− c1) · · · (λ− cn−1)− σλn+1]},
where c0, . . . , cn−1 are constants of motion, which are positive in the real case.

For σ = 0 (a geodesic flow on Q̃), c0 is the value of the integral (Ẋ, Ẋ), and the constants
c1, . . . , cn−1 admit a clear geometric interpretation: the tangent line to a geodesic is also tangent
to the confocal quadrics Q̃(c1), . . . , Q̃(cn−1) (the Chasles theorem). For this case, the parameter τ
was first introduced in [15].

In the limit as an+1 → 0, the curve Γ̃ becomes singular (a double point appears at λ = 0). Its
regularization is the following hyperelliptic curve of genus g = n− 1:

Γ = {w2 = ρ(λ)},
ρ(λ) = −(λ− a1) · · · (λ− an)[c0(λ− c1) · · · (λ− cn−1)− σλn+1],

(19)

which coincides with the spectral curve of the Lax pair (10). We equip this curve with the pair of
distinguished points E± = (0,±√

ρ(0)), which arise from the double point on Γ̃.
As a result of the regularization, n independent holomorphic differentials on Γ̃ transform into

linear combinations of some independent holomorphic differentials ω = (ω1, . . . , ωn−1) on Γ and the
normalized differential of the third kind ΩE± with a pair of simple poles at E− and E+ . According
to [4, 9, 10], in the above limit the n-dimensional Jacobian of Γ̃ transforms into the generalized
Jacobian Jac(Γ, E±), the quotient variety of C

n by the lattice Λ2n−1 generated by the 2n − 1
independent vectors of periods of the differentials ω1, . . . , ωn−1,ΩE± . The variety Jac(Γ, E±) is an
algebraic extension of the classical (n−1)-dimensional Jacobian Jac(Γ) by the group C

∗ = C\{0}.
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On the other hand, in the limit the coordinates λ1, . . . , λn on Q̃ are transformed into the elliptic
coordinates in R

n � (X1, . . . , Xn) such that

X2
i =

(ai − λ1) · · · (ai − λn)∏
j �=i(ai − aj)

, i = 1, . . . , n. (20)

The quadratures that linearize the motion on the ellipsoid Q̃ under the action of the potential V1

pass into the generalized Abel–Jacobi map∫ P1

P0

ω + · · ·+
∫ Pn

P0

ω = z,

∫ P1

P0

ΩE± + · · ·+
∫ Pn

P0

ΩE± = Z, (21)

Pi = (λi, wi), z = const, Z =
√

ρ(0) τ + const, (22)

where z ∈ C
n−1 and Z ∈ C are coordinates on the universal covering of Jac(Γ) and on C

∗ ,
respectively, such that {eZ} = C

∗ . Next, P0 is an arbitrary base point on Γ \ {E−, E+}, and the
new parameter τ is defined in (18). In this case, regardless of the sign of σ, one has

√
ρ(0) ∈ R. In

the sequel, we assume that P0 is a Weierstrass point on Γ.
The quadratures (21), (22) describe the motion under the Hooke potential inside Q between

subsequent impacts. In view of (22), this corresponds to a straight line flow on Jac(Γ, E±) directed
along the real line in C

∗ ; namely, Z and τ vary from −∞ to ∞. (Note that in view of (18), the
infinite time τ between subsequent impacts corresponds to a finite interval in the original time t).

According to (21), for Z = ±∞ one of the points Pi on Γ (without loss of generality, we assume
that i = n) coincides with one of the poles E± of the differential ΩE± . Hence, for given constants
of integrals of motion, the coordinates of impact points on Q are described by the divisor of points
P1, . . . , Pn−1 on Γ, that is, by a point in the ordinary Jacobian Jac(Γ) (for a given base point P0).
These coordinates are also explicitly given by (20) with λn = 0. In view of (22), for the motion on
Jac(Γ, E±) the variables z do not change, and hence two subsequent impact points are described
by divisors that differ by the vector q =

∫ E+

E− ω ∈ C
n−1 . By the Riemann bilinear relations, q is also

the vector of b-periods of ΩE± on Γ. On the other hand, the end point of a segment of the billiard
trajectory corresponding to Z = ∞ is also the starting point of the next segment with Z = −∞
and a certain phase vector z . By induction, we arrive at the following result.

Theorem 3. The restriction of the billiard map B to each regular Jacobian of the curve Γ is
represented by the shift by the vector q.

In the sequel, this property will be applied to construct theta function solutions for the billiard
with a quadratic potential.

We note that for the motion without the potential (σ = 0), the curve Γ has an odd order and
just one infinite point; however, the above considerations and Theorem 3 remain valid.

4. The Theta Function Solution

Let x(N), v(N) be the result of the N th iteration of B. Their explicit theta function expresions
can be obtained in different ways, in particular, by calculating the vector Baker–Akhiezer function
for the operator L(λ) in (10). In the case of a hyperelliptic spectral curve, one can follow a simpler
approach based on the result obtained in [11] (for further references, we state it as the following
theorem, using the notation of the present paper).

Theorem 4. The inversion of the Abel–Jacobi mapping (21) associated with the curve (19)
gives the relations

(ai − λ1) · · · (ai − λn)∏
j �=i(ai − aj)

= κ2
i

θ̃2[δ + η(i)](z, Z)

θ̃[δ](z − ξ/2, Z − S/2) θ̃[δ](z + ξ/2, Z + S/2)
, i = 1, . . . , n, (23)
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λ1 · · ·λn = κ2
0

θ2[δ](z)
θ̃[δ](z − ξ/2, Z − S/2) θ̃[δ](z + ξ/2, Z + S/2)

, (24)

z ∈ C
g, Z ∈ C, ξ =

∫ ∞+

∞−
ω, S =

∫ ∞+

∞−
ΩE± ,

where θ[δ+η(i)](z) and θ[δ](z) are the ordinary theta functions with the Riemann matrix B related
to this curve and half-integer theta-characteristics δ = (δ′′, δ′)T , η(i) = (η′′(i), η

′
(i))

T ∈ R
2g/2R2g such

that
2πiη′′(i) +Bη′(i) =

∫ (ai,0)

P0

ω, 2πiδ′′ +Bδ′ = K (25)

modulo the period lattice of Γ, where K is the vector of Riemann constants. Furthermore,

θ̃[δ + η(i)](z, Z) = e−Z/2θ[δ + η(i)]
(
z − q

2

)
+ eZ/2θ[δ + η(i)]

(
z +

q

2

)
, q =

∫ E+

E−
ω (26)

are generalized theta-functions with the same characteristics and κi, κ0 are constant factors de-
pending on the moduli of Γ alone.

Relations (23) and (24) generalize similar theta function expressions (so-called Wurzelfunktio-
nen) that were found by Jacobi for the case of ordinary hyperelliptic Jacobians (e.g., see [6, 7]). The
definition and a description of properties of generalized theta functions can be found in [8, 10, 11].

Now comparing the left-hand sides of (23) with the expressions for the elliptic coordinates (20)
and taking account of (22), we conclude that the motion of the point between subsequent impacts
is parametrized as

Xi(Z) = κi

θ̃[δ + η(i)](z, Z)√
θ̃[δ](z − ξ/2, Z − S/2) θ̃[δ](z + ξ/2, Z + S/2)

, (27)

where Z ranges over the real line and the constant phase vector z defines the position of the
trajectory inside Q.

Moreover, differentiating (27) by Z and using the expressions (26), (24), we obtain a parametriza-
tion of the velocity of the point between these impacts:

Vi(Z) =

√
ρ(0)

λ1 · · ·λn

dXi

dZ
= κ′i

eZ/2F+(z) + e−Z/2F−(z)

θ2[δ](z)
√

θ̃[δ](z − ξ/2, Z − S/2) θ̃[δ](z + ξ/2, Z + S/2)
,

κ′i =
√

ρ(0)κi/κ0,

(28)

where

F+(z) = e−S/2θ[δ + η(i)](z + q/2) θ[δ](z + q/2− ξ/2) θ[δ](z − q/2 + ξ/2)

+ eS/2θ[δ + η(i)](z + q/2) θ[δ](z − q/2− ξ/2) θ[δ](z + q/2 + ξ/2)

− 2θ[δ + η(i)](z − q/2) θ[δ](z + q/2− ξ/2) θ[δ](z + q/2 + ξ/2),

F−(z) = −e−S/2θ[δ + η(i)](z − q/2) θ[δ](z + q/2− ξ/2) θ[δ](z − q/2 + ξ/2)

− eS/2θ[δ + η(i)](z − q/2) θ[δ](z − q/2− ξ/2) θ[δ](z + q/2 + ξ/2)

+ 2θ[δ + η(i)](z + q/2) θ[δ](z − q/2− ξ/2) θ[δ](z − q/2 + ξ/2).

Next, setting consequently Z = −∞ and Z = ∞ in (27), (28), we obtain the coordinates
and the velocity of the mass point at the beginning and the end of the segment of the trajectory,
which now depend only on the phase z and which are meromorphic functions on a certain ramified
covering of the curve Γ.

As follows from (27), the theta function expressions for the coordinates of subsequent impact
points differ only by the shift z → z + q, which is consistent with Theorem 3. According to this
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theorem, the same holds for the components of the velocity v. By induction, we obtain the following
result.

Theorem 5. The coordinates and the outgoing velocity at impact points, as well as the velocity
v′(N) at the end point of the Nth segment of the billiard trajectory, have the form

xi(N) = κi

θ[δ + η(i)](zN )√
θ[δ](zN − ζ/2) θ[δ](zN + ζ/2)

,

vi(N) = κ′i
F−(zN + q/2)

θ2[δ](zN + q/2)
√

θ[δ](zN − ζ/2) θ[δ](zN + ζ/2)
, (29)

v′i(N) = κ′i
F+(zN + q/2)

θ2[δ](zN + q/2)
√

θ[δ](zN − ζ/2) θ[δ](zN + ζ/2)
,

zN = z − q/2 + qN ∈ C
n−1, i = 1, . . . , n,

where z is a constant phase vector of the trajectory and the characteristics δ and η(i) are defined
in (25).

To determine the factors κi , in (21) we set

{P1, . . . , Pn} = {(a1, 0), . . . , (an, 0), (0,
√

ρ(0))} \ (ai, 0).

In this case, Z = ∞ and the left hand side of the ith relation in (23) equals 1. Then, using the
definition of theta functions with characteristics, as well as formula (26), we find

κi = εi

θ[δ + η̂ + η(i)](ζ/2)
θ[δ + η̂](0)

, η̂ =
n∑

s=1

η(s) mod Z
2g,

where the εi are roots of unity.
In conclusion, we note that for the classical potential-free billiard (σ = 0), the solutions obtained

in [2, 11] have the form

xi(N) = κi

θ[δ + η(i)](zN )
θ[δ](zN )

, vi(N) = κ
′
i

θ[δ + η(i)](zN + q/2)
θ[δ](zN + q/2)

, N ∈ N, (30)

with some constants κi , κ
′
i . Since in this case the trajectory consists of straight line segments, one

has v′(N) = v(N). As a result, in contrast with (29), for σ = 0 the zeros (poles) of x(N) and v(N)
viewed as meromorphic functions on a covering of Jac(Γ) differ only by the shift by q/2.
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