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A. Delshams and P. Gutiérrez

EXPONENTIALLY SMALL SPLITTING
OF SEPARATRICES FOR WHISKERED
TORI IN HAMILTONIAN SYSTEMS

ABSTRACT. We study the existence of transverse homoclinic orbits in a
singular or weakly hyperbolic Hamiltonian, with 3 degrees of freedom,
as a model for the behaviour of a nearly-integrable Hamiltonian near
a simple resonance. The example considered consists of an integrable
Hamiltonian possessing a 2-dimensional hyperbolic invariant torus with
fast frequencies w/+/= and coincident whiskers or separatrices, plus a per-
turbation of order p = P, giving rise to an exponentially small splitting
of separatrices. We show that asymptotic estimates for the transversality
of the intersections can be obtained if w satisfies certain arithmetic prop-
erties. More precisely, we assume that w is a quadratic vector (i.e. the
frequency ratio is a quadratic irrational number), and generalize the good
arithmetic properties of the golden vector. We provide a sufficient con-
dition on the quadratic vector w ensuring that the Poincaré—Melnikov
method (used for the golden vector in a previous work) can be applied
to establish the existence of transverse homoclinic orbits and, in a more
restrictive case, their continuation for all values of ¢ — 0.

1. INTRODUCTION AND MAIN RESULTS

The detection of transverse homoclinic orbits to an invariant object
is one of the main tools to prove the existence of chaotic motion in a
dynamical system. Such a detection becomes complicated in the case of
a Hamiltonian system e-close to a completely integrable one. Between
the KAM tori, there appear generically whiskered tori which carry on
non-coincident whiskers, giving rise to the phenomenon called splitting of
separatrices, which is ezponentially small with respect to ¢.

In the case of a one-dimensional whiskered torus (periodic orbit) of a
Hamiltonian with 2 degrees of freedom, V. F. Lazutkin introduced in a
seminar paper [13] complex parameterizations for the invariant manifolds,
obtaining in this way an analytic periodic function for the splitting, with
zero mean. The width of the strip of analyticity of this function appears
explicitly in the exponent of the splitting and it turns out that only one
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(the first) harmonic of the perturbation is relevant for the size of the
splitting (see [10, 11]).

However, when the dimension of the whiskered tori is greater than
one, the expression of the quasiperiodic splitting function becomes more
intricate, since 1t depends on the arithmetic properties of the frequencies
of the whiskered tori. Indeed, the effect of the small divisors is present
in the most important part of the splitting: the exponent. This was first
noticed by Chirikov [2], and later on by Lochak [15, 16] and Simé [21],
and was first proven by Delshams et al. [7] for the pendulum under a
fast quasiperiodic forcing (see also [1]). Later on, the splitting of sep-
aratrices for a 2-dimensional whiskered torus in a Hamiltonian system
with 3 degrees of freedom was dealt by Sauzin and co-workers [20, 14],
Rudnev and Wiggins [19], Pronin and Treschev [18], and also Simé and
Valls [22], who also considered the homoclinic bifurcations that can take
place. It is important to say that the main tool that has been used to
establish the splitting for whiskered tori with two or more frequencies is
the validation of the expression provided by a direct application of the
Powncaré-Melnikov method.

In fact, in the Hamiltonian setting, it turns out [9, 3] that the split-
ting vector distance and the Melnikov vector function are the gradient of
scalar functions, called respectively splitting potential and Melnikov po-
tential. This implies that transverse homoclinic orbits to whiskered tori
correspond to non-degenerate critical points of the splitting potential.

The arithmetic properties of the frequencies of the whiskered torus are
very important. As a matter of fact, all the rigorous expressions found up
to now involve only two frequencies and some famous guadratic numbers,
like the golden number. The theory of continued fractions is essentially
used to separate between primary resonances (in the case of the golden
number, the ones associated to Fibonacci numbers) and other weaker
resonances.

In this context, the existence of transverse homoclinic orbits to a
2-dimensional whiskered torus, with frequency the golden vector, of a
Hamiltonian with 3 degrees of freedom was proved in [20, 14], but not for
all values of ¢ — 0, since at some sequence of values of £ the dominant
harmonics of the splitting function change, and homoclinic bifurcations
could take place. Some examples of such bifurcations have been described
in [22].

This result was improved in the same situation in [6] with the help of
a careful analysis of the Melnikov function and its dominant harmonics,
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and applying also accurate bounds for the size of the error term provided
(from the use of flow-box coordinates) in [8]. Indeed, it was shown in [6]
that the dominant harmonics of the splitting function correspond to the
dominant harmonics in the Melnikov approximation, providing asymp-
totic estimates for the splitting. With such estimates, it is possible to
show the existence of exactly 4 transverse homoclinic orbits, and their
continuation for all values of the perturbation parameter ¢ — 0 (with no
bifurcations).

We consider in this work some concrete perturbations with 3 degrees
of freedom with an infinite number of harmonics, and study how far the
results quoted above can be generalized to any quadratic frequency vector
(i.e. a quadratic number as the frequency ratio). Using a generalization of
the arithmetic properties of the golden vector to other quadratic vectors,
it is possible to carry out a suitable analysis of the Melnikov function and
its dominant harmonics, as well as the size of the remaining harmonics.
Under a suitable condition on the quadratic vector, we obtain asymp-
totic estimates for the splitting function, which allow us to establish the
existence of a certain number of transverse homoclinic orbits, although
bifurcations of some of such orbits may occur for ¢ close to some critical
values (like in [22]).

In the best case (the golden vector and other noble frequency vectors)
we can ensure the continuation of transverse homoclinic orbits for all
¢ — 0 like in [6]. For some other quadratic vectors, at least we can ensure
the existence of transverse homoclinic orbits, although bifurcations of
them may occur for some critical values of ¢.

Next we give a more precise description of the setting and the back-
ground, and the new results obtained in the present work.

1.1. Setup: A singular Hamiltonian with 3 degrees of freedom.

We consider a Hamiltonian system, with 3 degrees of freedom, depend-
ing on two perturbation parameters ¢ and p. In canonical coordinates
(z,y,0,1) € T xR x T?xR2 with the symplectic form dz Ady+dpAdI,
our Hamiltonian is defined by

H(l‘,y,gp,[):Ho(l‘,y,f)—l—ﬂHl(l‘,go), (1)
Ho(l‘,y,I)I<w€I>—|—%<AI,I>+§+COSl‘—1, (2)
Hy(z,0) = h(x)f(p). (3)

We assume ¢ > 0, and also g > 0 with no loss of generality. The vector
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we of fast frequencies considered in (2) will be given by a quadratic vector

(4)

w
va
In other words, the frequency ratio €2 is a quadratic irrational number. We

also consider in (2) a symmetric (2 X 2)-matrix A, such that Hy satisfies
the condition of isoenergetic nondegeneracy:

det(A ‘5)7&0. (5)

w=(1,9Q), we =

wT

For the perturbation (3), we deal with the following concrete analytic
periodic functions:

h(z)=cosx—v, with v=0 or v=1, (6)

fle) = Z frcos((k, @) — o), with fr = e~ **land oy € T,  (7)
kez

Z={k=(ki,ks) €Z* ko> 00r (ks =0,k >0)} (8)

(the set Z is introduced to avoid repetitions in the Fourier expansion of
f(e))-

The Hamiltonian Hy (that corresponds to g = 0) has a 2-parameter
family of 2-dimensional whiskered tori given by the equations I = const,
z = y = 0. The stable and unstable whiskers of each torus coincide,
forming in this way a unique homoclinic whisker. We shall focus our
attention on a concrete whiskered torus, located at I = 0, whose inner
flow has w, as the frequency vector. We denote Wy the homoclinic whisker
assoclated to this torus, and consider for it the parameterization

Wo : (zo(s), y0(5),0,0), s€eR, §&T" (9)
s 2
zo(s) =4arctane’, yo(s) = o (10)

The inner flow on Wy is given by s = 1, = we.

The two parameters € and g will not be independent. On the contrary,
they will be linked by a relation of the type g = P with a suitable p > 0
(the smaller p the better), i.e. we consider a singular problem for ¢ — 0
(also called weakly hyperbolic, or a priori stable). The main motivation
for this singular setting is that 1t can be considered as a model for the
behaviour of a nearly-integrable Hamiltonian near a simple resonance
(see for instance [8, 5]).
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Our choice in (4) of a quadratic frequency vector is motivated by
the arithmetic properties of such vectors. An important and well-known
property is that quadratic vectors satisfy a Diophantine condition:

kel > g YkeZP\ {0} (1)
with 7 = 1 and some v > 0 (concerning the value of 7y, see remark 1 at
the end of Section 2). Other important properties of quadratic vectors to
be used are discussed in Section 2.

Under conditions (5) and (11), the hyperbolic KAM theorem implies
that, for u small enough, the whiskered torus persists, as well as its local
whiskers. We point out that the difference between the two values of v
in (6) is that in the case v = 0 the whiskered torus persists with some
shift and deformation, whereas in the case v = 1 it remains fixed under
the perturbation, though the whiskers do suffer some deformation. The
Lyapunov exponent of the torus, which initially is 1, becomes a close
amount b. Besides, in the isoenergetic case considered here, the frequency
vector w. of the torus becomes perturbed to a close and proportional
vector:

@ =bw. = — (12)

The amounts b and b tend to 1 as u — 0, and ¥’ = 1 in the case v = 1
(see [8, Th. 1] for a precise statement).

Concerning the Fourier expansion (7), the constant p > 0 gives the
complex width of analiticity of f(y). In principle, the phases o, can be
chosen arbitrarily, although some quite general condition on these phases
will have to be fulfilled for the validity of our results (see Section 4).

1.2. Background: The splitting function and the Poincaré—
Melnikov method.

When the local whiskers are extended to global ones, one can expect in
general the existence of splitting between the stable and unstable whiskers
(denoted W* and W), since they will no longer coincide. To study
this splitting, symplectic flow-box coordinates (S, E, ¢, I) are introduced
in [8], in some neighbourhood containing a piece of both whiskers (and
excluding the torus, where such coordinates are not valid). In the flow-
box coordinates, the Hamiltonian equations become very simple: S = b,
FE=0,¢ =20, I=0((recall that b and &. are the perturbed Lyapunov
exponent and frequencies). Besides, those coordinates can be constructed
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in such a way that the stable whisker is given by a coordinate plane,
Wt (50,0,0), |s|]<s*, 0T, (13)

where the parameters (s, f) are inherited from (9-10), with some transla-
tion in s. Then, the unstable whisker can be parameterized, in the same
neighbourhood, as

W™ (s5,&(s,0),0, M(s,0)), |s|<s", 6€Tm, (14)

and the inner flow on both whiskers is given by s = b, 0 =3a.. To study
the splitting, it is enough to consider the vector function M, called the
splitting function (the function & is directly related to M by the energy
conservation).

The use of flow-box coordinates implies the quasiperiodicity of the
splitting function M, an important property related with its exponential
smallness. More precisely, the function M is w.-quasiperiodic:

~ /
M(s,0) = M(0,0 —w.s), where ©, = % = bb\;dg. (15)
Another important property of M, related to the Lagrangian properties
of the whiskers, is that it is the gradient of a scalar function £, called the
splitting potential (see also [3]):

M(s,60) = 0sL(s,0)

(and hence M has zero average with respect to #). Then, the transverse
homoclinic orbits can be studied on s = 0 (or any other section s = const),
as nondegenerate critical points of £(0, 8).

Applying the Poincaré—Melnikov method, 1t is possible to give a first
order approximation in p for the splitting, in terms of the Melnikov po-
tential and the Melnikov function, defined in [8] (see also [3]) in terms of
an absolutely convergent integral:

L(s,0)=— / [h(zo(s + b1)) — R(0)] - (0 + &:t)dt 4 const,

M(s,0) = 9 L(s, 0). (16)

These functions are also w.-quasiperiodic, since they are defined in terms
of the perturbed Lyapunov exponent & and the perturbed frequencies @,
introduced in (12). As a consequence, the error term defined as

R(s,0) = M(s,0) — uM (s + 59, 6) (17)
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is also W.-quasiperiodic. The amount s”, not very relevant, compensates
the translation of the parameterizations (13—14) with respect to the initial
parameterization (9).

In order to validate the Poincaré—Melnikov method in the singular case
= &P, the main difficulty is that the first order approximation given by
the Melnikov function is exponentially small in ¢, as shown in Section (3).
In principle, it turns out that the Poincaré—Melnikov method can be
applied only if p is exponentially small in ¢ (see for instance [3]), but
not in our case u = . Nevertheless, exponentially small upper bounds
for the error term (17) can also be obtained, and the method holds in
the singular case if p 1s large enough. The key point in order to obtain
such exponentially small estimates is to carry out the bounds on complex
domains of the parameters (s, ), and use the quasiperiodic properties of
the splitting.

Note that the initial homoclinic whisker Wy can be defined in the com-
plex domain for [Ims| < #/2, Imf| < p. These restrictions are due to the
singularity of (10) at s = +iw/2, and to the expression (7) involving p as
the width of analyticity. This domain is reduced along the successive steps
leading to define the splitting function and potential. One of the main
achievements of [8] is to construct the flow-box coordinates in such a way
that the loss of complex domain is controlled by a free small parameter
8, with & < 7/2 and é < p. Then, choosing é = ¢* for some a > 0 and
using that the involved functions are analytic, quasiperiodic and with ze-
ro average, it is possible to obtain exponentially small estimates (see [8,
6] for more details).

With all these ingredients, estimates for the splitting function M(s, 8)
can be obtained in the singular case, under some restriction p > p*. In
the paper [6], where the frequency w considered is the golden vector, we
proved the existence of exactly 4 transverse homoclinic orbits, and their
continuation for all values of ¢ — 0. In fact, some improvement of the
exponents can be given for the case of a fixed torus. Because of this, the
exponent p* depends on the value of v in (6):

pr=2 if v=1, (18)
p =3 if r=0. (19)
1.3. Description of the results.

Our goal is to study the existence of transverse homoclinic orbits for
the Hamiltonian (1-7), assuming in (4) a quadratic frequency vector.
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Our aim is to study how far it is possible to generalize the results for the
golden vector, obtained in [6], to other quadratic frequencies.

Since we deal with the singular case y = ¢, we need to show that, in
the Poincaré-Melnikov approximation (17) for the whole splitting func-
tion M(s,0), the term uM(s + 5%, 0) (exponentially small in &) domi-
nates, in some sense, the error term R(s,#). A natural approach to this
is to provide asymptotic estimates (or at least lower bounds) of the dom-
inant harmonics of the Melnikov potential L. As we will show, such dom-
inant harmonics are closely related to the small divisors of the frequency
vector w. In a subsequent step, we have to see that the estimates ob-
tained for the dominant harmonics of L are big enough in order to be
valid also for the dominant harmonics of the splitting potential £ (recall
that M = 9y.L), showing that they overcome the part coming from R.

Note that the quasiperiodicity (16) of the splitting function M(s, @)
allows us to restrict to the section s = 0, and the (simple) zeros of M(0, 8)
give rise to (transverse) homoclinic orbits. These (simple) zeros are given
by (nondegenerate) critical points of the splitting potential £(0, 8). In our
main result (Theorem 6), we give conditions for the existence of simple
zeros of M (0, ), with asymptotic estimates of the associated eigenvalues
of Jg M.

Let us give a short summary of the results presented. First, in Section 2
we study the arithmetic properties of quadratic frequencies, carrying out
a complete analysis of the associated resonances (to be strict, we should
call them quasi-resonances), which originate the small divisors appearing
in the coefficients of the Melnikov potential. Such an analysis is possible
thanks to the arithmetic properties of quadratic vectors, and is carried out
as a direct generalization of the analysis done in [6] for the golden vector.
The main 1dea used is that a quadratic vector is always an eigenvector
of some unimodular matrix [12]. This leads to a classification of such
resonances of w into “primary” and “secondary” ones.

In Section 3 we provide estimates for the Fourier coefficients of the
splitting potential £, showing what the dominant harmonics are, among
the ones associated to primary resonances, and giving upper bounds for
the remaining primary ones, and also for all the secondary ones. To prove
this result we proceed as in [6], first obtaining estimates for the Fouri-
er coefficients of the Melnikov potential, and then applying the upper
bounds given in [8] for the error term.

Since we look for nondegenerate critical points on T? of the split-
ting potential £, we need at least the 2 most dominant harmonics. We
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show that, when ¢ goes across the critical values ¢, defined in (40), some
changes in the dominance occur. In fact, for ¢ close to ¢,, we have to
consider the 3 most dominant harmonics because the second and third
ones are of the same magnitude.

In Section 4 we study the nondegenerate critical points of £ (which
correspond to simple zeros of M) and obtain our main result (Theorem 6),
concerning the existence of a certain number of transverse homoclinic
orbits. More precisely, we give an asymptotic estimate for the minimum
eigenvalue (in modulus) of the splitting matrix dy M (0, 6,.), for each zero
0, of the function M(0,-). This eigenvalue provides a measure of the
transversality of the homoclinic orbits. In order to prove the continuation
of the transverse homoclinic orbits for the example (1-7), we assume a
quite general condition, described in (59), on the phases of the Fourier
expansion of the function f(p) in (7).

In the best case, this result is valid in both the cases of 2 or 3 dom-
inant harmonics, and ensures the continuation (without bifurcations) of
the corresponding homoclinic orbits for all values of ¢ — 0. Nevertheless,
this requires a condition on the quadratic frequency vector w = (1, ),
that we call the strong separation condition (60), ensuring that the influ-
ence of secondary resonances can be neglected with respect to primary
resonances, and the required dominant harmonics can always be found
among the primary resonances. Unfortunately, it seems that such a con-
dition is fulfilled only by the golden vector, given by € = (/5 — 1/2), and
also (consequently) by the “noble” vectors (the ones that can be reduced
to the golden vector by a unimodular transformation).

Nevertheless, in other cases one can check a weak separation condi-
tion (61) that can be used in the case of 2 dominant harmonics, and
ensures the existence of transverse homoclinic orbits, at least for ¢ not
very close to the critical values ¢,,, but not the continuation of these orbits
for all ¢ — 0. If this weaker condition is not fulfilled, the study of trans-
verse homoclinic orbits becomes more involved because both primary and
secondary resonances should be taken into account.

To end this introduction, we describe some notations used in this work.
To express the bounds of functions we write |f| < ¢ if we can bound
|f| < cg, with some positive constant ¢ not depending on any of the
parameters that will be relevant to us, £ and p. In this way, we do not
describe the (usually complicated) dependence on amounts like p, €, ...
and include this dependence in the ‘constants’. We use the notation f ~ ¢
if we can bound ¢ < f < ¢. Finally, the notation f ~ ¢ simply means that
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they are nearly equal, in the sense that their difference can be neglected.

2. QUADRATIC FREQUENCIES

The analysis of the small divisors becomes relatively simple in the
case of a quadratic frequency vector: w = (w1,wsz) such that wy/w; is a
quadratic irrational number. We assume with no restriction that w is of
the form

w=(1,9), 0< <1,

where Q is a quadratic irrational number. Our aim is to take advantage of
the nice properties of quadratic irrationals, generalizing the results given
in [6] for the case of the golden number, Q = (/5 — 1)/2.

The important feature to be applied is that quadratic vectors are
eigenvectors of suitable integer (2 X 2)-matrices. More precisely, apply-
ing a result established in [12], there exists a unimodular matrix T (i.e. a
square matrix with integer entries and determinant +1) having a (unique)
eigenvalue A with |A| > 1, whose associated eigenvector is w. Denoting
8§ = det T' = £1, the other eigenvalue of T"is §/X. (In fact, a generaliza-
tion of the matrix 7' to higher dimensions is considered in [12]. In our
2-dimensional case, the matrix T can be constructed from the continued
fraction of the number €2; see [17] as a related reference).

It will be a consequence of Theorem 2 below that, for the quadratic
vector w, the small divisors (k,w) satisfy the Diophantine condition (11),
with 7 = 1 and some 5 > 0. With this fact in mind, like in [6] we define,
for every k € Z2\ {0}, its associated “numerator” as

7= k(W) = |k, w)] - k| (20)

(for integer vectors, we use the notation |k| = |k|; = |k1| + |k2]), and
note that always v, > v. We are going to provide a simple classification
of the (quasi-)resonances associated to w according to the size of their
numerators .

We say that k € Z?\ {0} is admissible (or w-admissible) if |(k,w)| <
1/2, and denote A the set of admissible integer vectors. The analysis of
the resonances can be restricted to the set A, since for any k& ¢ A one
has |{k,w)| > 1/2 and hence y; > |k|/2.

We now consider the matrix
U — (TT)_l,

whose eigenvalues are 1/X and §A, and we denote u, v their associated
eigenvectors, respectively. One readily sees that (v, w) = 0.
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We stress the following fundamental equality:
1
(Uk,w) = (k,UTw) = 1 (sw). (21)

This implies that if k € A, then also Uk € A. We say that k is primitive
if k € Abut U=tk ¢ A. We deduce from (21) that the primitive vectors
are exactly the ones satisfying

1

7 < Ikl < L (22)

2

It is clear that the admissible vectors are those of the form £°(j) =
(—rint(§2), j), where j # 0 is an integer and rint(jQ) denotes the closest
integer to jQ. Then, we have (k°(j),w) = jQ — rint(jQ). When £°(j)
is primitive, we also say that j is primitive, and denote P the set of
primitive integers j.

For any given j € P, we define the resonant sequence generated by j
as the following sequence of (admissible) integer vectors:

s(j,n) == U0 (5), n>1. (23)

The following simple result says that such resonant sequences cover the
whole set of admissible vectors.

Lemma 1. For any k € A, there exist j € P and an integer n > 1, both
unique, such that k = s(j, n).

Proof. If k € A, one finds a unique primitive vector in the sequence
U=k, n > 0. Indeed, using (21) one has the equality (U~"k,w)| =
[A]™|{kw)]|, and hence only one of the vectors U "k satisfies (22). e

The motivation for defining the sequences s(j, ) is that they provide
a classification of the resonances, because the numerators v,(; ») become
nearly constant when n — oco. In fact the numerators y,(; ») oscillate
around a “limit numerator”, which we denote 7. In the next result we
establish the existence of this limit and provide an explicit formula to
compute it.

Theorem 2. For any j € P, there exists the limit numerator

(k°(7), w)

(u,w)u I’

7= lim v = (RG] KG),  KG) = K00) -

and one has:
(a) sy =7 +OA), n > 1.
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) il = KGIAP= 4 03 ) 1> 1
k)] V1 el €t s ] e Jul
T VA S H(1+ i)

Proof. We start by writing k°(j) as the following linear combination of
the eigenvectors of U:

ko(j) = ciu+ cov, ¢l = ey

where the value of ¢; has been obtained by taking a scalar product with
w 1n the linear combination. Then, we see that

leav| = |k°(5) — cru| = K(j). (25)
We deduce from (24) and definition (23) that

s(j,n) = %u + ea(6N) Lo

Then

bl

|5(,m)| = [A"Heav| + O(IAI™),

oy 2 el ),
(s(m), )] = ST = HES,

and we obtaln
Ys(in) = [(R(5), )] - [eav] + O(AT2"),

whose limit for n — oo 1s
i = [(k(), )] - ean].

The expressions obtained for [s(j,n)|, vs(jn) and 77, with (25), imply
most of the statements.

Finally, we have to find upper and lower bounds for the limit ;. Since
j is primitive we can use (22) to give bounds for |(k°(j),w)|. Besides, we
can give bounds for K(j) using that

K(G) =1+ QI <

K@) = K DI+ RG] = 1+ 1511 < lerul + %
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where we have bounded |c;| from (22), and have used the equality
|E°(5)| = |j] + [rint(j2)| with the fact that rint(jQ) is the closest in-
teger to jQ. Then, the upper and lower bounds for [(k°(j),w)| and K(j)
imply those for 77.

We shall always assume that j > 0 with no restriction.

The lower bound in (¢) shows that, although we cannot expect the
limits 77 to be increasing in j, they tend to infinity as j — oo. This
says that the main resonances associated to w can be found among the
sequences (23) generated by the first few primitives. We denote

* = liminfy; = miny? =47 . 26
7" = liminfy, = minyf = 77, (26)
In this way, the “most resonant” integer vectors are those belonging to

the resonant sequence generated by jg. We call them primary resonances,
and use for them the notation

so(n) = s(jo, n).

We then call secondary resonances the integer vectors belonging to any of
the remaining sequences s(j,-), j # jo. We also define the “normalized”
limit numerators 7} in such a way that the minimum of them 1s 77 =1,
and introduce a further parameter ¥** > 1, measuring the separation
between primary and secondary resonances:

ok Py;‘ SRk : gt
=oo 7= min 97 (28)

We point out that +* and ** will be important constants for us:
v* appears in the constant Cj defined in (35), directly related with the
exponentially small estimates for the splitting, and 7** tells us whether 1t
is enough to consider primary resonances in order to study the splitting
and its transversality, or secondary resonances are also significative.

To end, we illustrate the results of this section for several examples of
quadratic vectors w = (1, Q). For each number Q given, we provide the
matrices 7' and U, the eigenvalue A (which allows us to decide whether
a given integer j is primitive or not), the minimum ¥* of the limit nu-
merators, the separation ¥**, and the first few primitives k°(j) with their
assoclated normalized limits 77, as well as a lower bound for the remain-

ing ones. The first example is the golden number studied in [6].
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Example 1 Example 2
Q= (\/g_ 1)/2 — 0.618034 Q= \/5 —1=0.414214
2 1
11 7= ( )
T =
(1¢) 1o
0o 1
0 1 U = ( )
U =
(1) -
A = 1.618034 A= 2.414214
~+* = 0.723607 ~* = 0.5
ﬁ/** =4 ﬁ/** -9
G| A KG) | A
(-1,1) | 1 (0,1) | 1
(=2,4) | 4 (-1,3) | 2
(-4,7) | 5 (-2,4) | 4
(-6,9) | 9 (-2,6) | 8
(=7,12) | 11 (-3,8) | 7
(-9,14) | 11 (-4,9) | 7
(-11,17) | 19 (-5,11) | 14
7> 18 > 11.974169 J>12 > 6.572330
Example 3 Example 4
Q= (V21 —3)/2 =0.791288 Q = (V15 — 3)/2 = 0.436492
() r=(7 )
3 1 3 1
U= 1 -3 U= 1 -3
-1 4 -2 7
A =4.791288 A = 7.872983
~+* = 0.390891 ~+* = 0.370901
A*k =3 A*k =15
®6) | 5 ®6) | 5
(—1,1) 1 (0,1) 1.5
(_272) 4 (_172) 1
(—2,3) 5 (—1,3) 3.5
(_374) 3 (_274) 4
(—5,6) 7 (—2,5) 3.5
(—6,7) 15 (—3,6) 9
(-6,8) | 12 (-3,8) | 15
729 | >4.030927 7 =29 | >2.030016

Remarks.

(1) Tt is an obvious consequence of Theorem 2 that the exponent in
the Diophantine condition (11) is 7 = 1. Besides, the constant y
can be taken as the minimum of all the numerators v, k£ # 0.
Nevertheless, 1t is more significant to replace 4 by the asymptotic
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value ¥* defined in (26).

(2) We shall implicitly assume the hypothesis that the primitive jg
giving the minimum in (26) is unique, and hence ¥** > 1. In
fact, this happens for all the cases we have explored, provided
we choose the matrix 7" suitably.

(3) We see in the examples given above that the limit numerators for
the different resonant sequences are integer multiples of a certain
number. This fact can be proved rigorously (see [6] for the case
of the golden number), and implies a wide separation among the
different limit numerators, except for some of them whose limits
may coincide.

3. DOMINANT HARMONICS OF THE SPLITTING POTENTIAL

To show that the splitting potential £ has nondegenerate critical
points, we have to consider at least the 2 most dominant harmonics in its
Fourier expansion. As we see below, which the dominant harmonics are
depends on . Nevertheless, for some values of £ we will have to consider
the 3 most dominant harmonics because the second and the third ones
can be of the same magnitude.

Taking into account that £ is w.-quasiperiodic, we can consider for its
Fourier expansion the following expressions:

L(s,0) = Z EZei(k’G_@fs) = Z Ly cos({k,0 —@.s) — a3), (29)

keL? keZ

where Ly, & are real, £y > 0 (recall that Z is defined in (8)). For every
k € Z, the coefficients of the exponential form and the trigonometric
form are related by £} = %Eke_i&k, Lr, = _z: %ﬁkei&k.

If some condition on the quadratic vector w is satisfied, all the involved
dominant harmonics of £ will be found among the primary resonances:
k = sp(n). We give below in Lemma 4 an estimate for the dominant har-
monics among the primary ones, as well as bounds for both the remaining
primary harmonics, and all the secondary harmonics.

We recalled in Section 1.2 that a first order approximation in y for
the splitting potential £ is given by the Melnikov potential L, defined
in (16). Thus, we can study the Fourier coefficients of L in order to find
the dominant ones, analogously to the approach followed in [6] for the
golden vector. Applying the bounds on the error term (17) given in [8],
it 1s possible to show that this dominance persists in the whole splitting
potential L.
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Let us compute the Fourier coefficients of the Melnikov potential (16):

oQ

L(s,0) =— Z Ie / (cosag(s + bt) — 1) cos({k, 0 + &:t) — op)dt

kez\{0}

= Z Ly COS(<]€,9—(.:155> _U'k)a

kez\{0}
T coslh,@.t) ok, fi 2|k, @) e P
Ly=2 dt = — . = — _ 30
g fk/ cosh? bt bsinh(5(k,w:))  bsinh |5 (k, @) (30)

(we take Ly = 0 to have zero average). The integral has been computed by
residues, and we have also used the formula cos zo(bt) — 1 = —2/ cosh® bt.
Notice that the value of v in (6) does not influence the Melnikov potential,
and that the phases ¢ in the Fourier expansion of L(0,§) are the same
as in the function f(y) given in (7). According to (17), we can expect
Ly, & in (29) to be a perturbation of Ly, oy.

In the analysis of the coefficients, we first proceed in a rough way
in order to motivate the definitions of Cjy, ¢, and h;(¢) given below.
To estimate the size of the coefficients Ly in (30), we use as in [6] the
arithmetic properties of w established in Section 2. Taking into account
the definition of #; in (20), and the fact that b and &' are p-close to 1,
we have )

A CRY PO
@6l = [tk 2| =~ (31)
Then, we can give from (30) the following approximation for the coeffi-
cients:
Ly ~ ape P (32)

where

47y Yk
[FIVET = expi— ] TV

The largest coefficients Ly will be given by the smallest exponents (.
A more suitable expression for those exponents is:

e = Con/Tx (2P|/€|€1/4 Covk )
B 2e1/4 CO\/'?k 2p|]€|€1/4 ’

Qg

(34)
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where we denote ¥ = v /7* analogously to (28), and we consider the

important constant
Co =/ 27mpy*. (35)

We deduce from (34) the lower bound

Cov e
By > i/ (36)

which suggests that the size of the exponent 3 is strongly related (if &
is admissible) to the sequence s(j, ), defined in (23), to which & belongs,
due to the fact that the numerators tend to a constant for each sequence.
Indeed, we know from Theorem 2 that, for k£ belonging to a given sequence
5(j, ), the limit of the ¥y is the number 77 defined in (28). This says that
the smallest exponents §; can be found among the primary resonances
so(+), defined in (27).

Let us study which primary resonances give the smallest exponents.
Recall from Theorem 2 the approximations

Footm) = L+HOOT), (37)
[s0(n)| = K (jo)|AI" ™" + O(IA]7"). (38)
Then, taking k = sg(n) in (34) we get

ﬁ - Co (2p[((j0)|/\|n_1€1/4 CO ) _ COQH(E)
so(n) = 5171 Ch 20K (o) A1t /A) T T elE
(39)

where we have considered the decreasing sequences

€0 ’ 2

Cy 4
n = | ——m——— = =, n —V&nén-1= ) 4
c (QpK(jo)|/\|”—1) N ¢ fnfn-1 = 353 (40)

and the functions

(e = %[(5)1/4_1_ (%)1/4] — cosh (W) = go(M1ne),

which contain the main information on the size of 3,,(,). It is clear that
each g, has its minimum at ¢ = ¢,,. Notice that, as a function of Ine, the
graph of g,, is simply the graph of ¢y translated a distance 4n In |A|. This is
illustrated in Figure 1, using logarithmic scale for ¢ for the sake of clarity.
Note that for n large, the neglected terms in (37-38) become smaller, and
the approximation obtained through the function g,(¢) becomes better.
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We now consider for n > 1 the intervals Z,, = [}, 11, ¢,,], 2, = [e,41,¢n,
I!" = [en, €], and define the following functions:

hi(g) = gn(e), for ¢ €1Z,,
ha(e) = gnt1(€), ha(e) = gn-1(e), ha(e) = gny2(e), for € €I},
ho(e) = gn-1(¢), hs(e) = gny1(€), ha(e) = gn-2(¢), for € € Z)/. (41)

By connecting the successive intervals Z,,, we get that these functions are
continuous for all 0 < ¢ < ¢], and satisfy the equality

hi(A*e) = hi(e) (42)

for any €. In other words, the functions h; are 4In [A|-periodic in Ine. See
Figure 1 for an illustration of the functions h;(¢).
An equivalent way to introduce these functions is to define

=)+ (2" e
() +(5)] cen
()" (2)] wem

and similarly for hs(¢) and h4(e), and extend them according to (42).
Defining the constants

hz(E)

1. .
Ay = (AP 4 T, (1)
we can easily check the following bounds for the functions h;(¢):
1< hi(e) < Ar < ha(e) € Ar < ha(e) < As < ha(e) < Ag,

where equalities can take place only for ¢ = ¢,,¢),. More precisely, for
€ = &, we have h1 < hy = hs < hy, andforE—En we have hy = hy <
hs = hy (see Figure 1 again).

For any given ¢ < e1, we define N; = N;(e), i = 1,2,3,4, as the
4 integers n > 1 minimizing ¢,(¢). This means that

N (€) < gna(e) S gna(e) < gna(e) < gnle) Vn # Ny, Na, N3, Na.
(44)
For ¢ belonging to a concrete interval Z,,, the first minimum is given by
N1 = n. The second, third and fourth minimaare Ns = n+1, N3=n=F1
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As

As

Gn~—1

Vs
Ay

Ay

Ents  Ehig  Emil  Epuy En & &, a1 &,y En-2

Fig. 1. The functions h; (<) (using logarithmic scale for ¢).

and Ny = n & 2 respectively, and the signs depend on the subinterval to
which ¢ belongs: Z), or Z)/. In this way, the integers N; are consecutive
(but not ordered). The main fact to be used is that the values of the
4 minima are given by the functions h; defined in (41). Indeed, one easily
checks that

gn,(e) = hi(e), 1=1,2,3,4. (45)

Notice that there is some ambiguity in the definition of N;(g) at the
endpoints of the intervals, but the important fact is that they are critical
values at which some of the N;(¢) giving the minima change when ¢ goes
across them.

For the sake of shortness, we also denote

S; = Si(e) == s0(Ni(e)), ¢=1,23,4,

the primary resonances indexed by the minimizing integers. As a con-
sequence of Theorem 2 and the definition of N;, one easily deduces the
following estimate, to be used later:

1Si] ~ ANV~ eV i =1,2,3,4. (46)

bl

The next lemma implies that the 3 most dominant harmonics of the
splitting potential, among the primary ones, are the (consecutive) ones
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corresponding to Sy, Sz, S3, giving an asymptotic estimate for the coeffi-
cients Lg,, as well as a bound comparing the phases ¢ with the original
phases o in (7) (this is affected by the translation s(°) that appears
in (17)). Besides, the lemma provides an estimate for the sum of all the
coefficients L, (recall that £ > 0) associated to primary resonances,
except the [ dominant ones (0 < ! < 3), in terms of the first neglected
harmonic among the primary ones, Lg,,, as well as an upper bound for
the sum of all the coefficients £}, associated to secondary resonances. The
sum of the two bounds can be considered as a bound of the difference
between the splitting potential and the main part of it, given by the
dominant harmonics. In fact, since we are interested in some derivative
of the Melnikov potential, we consider the sum of (positive) amounts of
the type |k|™Lk. The constant Cy in the exponentials has been defined
in (35).

We recall that the notations “<” and “~” were introduced at the end
of Section 1.3.

Lemma 3. Assume that ¢ < 1 and u = P, p > p*, with p* as defined
in (18-19). Then, one has:

(a) L3, ~ dyrexp { - S},
G5, — a5, — s8OS 0| = £ i=1,2,3,4.

(b) Z |k|m£k ~ #‘CSI+1} 0 < l < 3; m 0.
kesa(-)
k£S1,...,5
() X I"™Le % s exp { = 2T f m > 0.
kgso(:)

Proof. The proof follows essentially as in [6], and we only give here a
sketch of the proof. The main idea is to deduce the results for the coeffi-
cients L of the splitting potential comparing them with the coefficients
L of the Melnikov potential, with the help of the bound for the error
term (17) provided in [8]. In the notation (29), the Fourier coefficients
(in the exponential form) are M} = ikL} and M} = (kL respectively.
Then, we see from (17) that the Fourier coefficients of the error term
R(s,0) are R} = ik(L} — uLze—is(D)(W:)), k # 0, and taking modulus

and argument we get

Ril
|klp L

R
|kl

|Cr — puLy| < |6 — o — O (ke )| <

(47)
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Tt is given in [8, Th. 10] (see also [6,Th. 0]) a bound for the error term
on a complex domain: [Ims| < 7/2 — 8, [Imp| < p| — é, where § > 0 is a
small reduction. Choosing 6 = /4, the bound on such a domain can be
written as

I

e?’

with ¢ = 5/2if v = 1, and ¢ = 7/2 if v = 0 (recall that there is some
improvement in the case of a fixed torus). Since R is w.-quasiperiodic,
applying to it a standard result (see, for instance, [8, Lemma 11]) we get
the following bound for its Fourier coefficients:

R| =

2 - 2
Ryl 2 Hpe P et

B = (p =+ (5 = )k )] = By (48)

bl

where, as in [6], the perturbation terms with e'/* in the exponent ék
can be neglected thanks to the denominator £/4 in (34), and the p-small
terms in w, can be neglected as in (31).

To establish (a) and (b) we only need to consider primary resonances.
For the coefficients L, of the splitting potential, in a first step we con-
sider the approximation given by the coefficients L,(,) of the Melnikov
potential and look for the dominant ones. Then, in a second step we show
that, if 4 = &P with p > p*, such dominance remains unchanged when
the error term (17) is added.

Thus, we first look for the largest coefficients Ly (y), 1.e. the smallest
exponents Gy, (n). We see from (39) and (44) that the 4 smallest exponents
are the ones obtained for n = N;. Since the functions h;(e) have been
defined in such a way that (45) holds, we deduce that

Cohi(E) .
Bs, ~ pevzant i=1,2,3,4.

We see from (46) that ag, ~ e='/* in (32-33), and hence

1 Cth(E) .
LS, NMGXP{_W} Z_1a2a3’4' (49)

We have to recall that we are dealing with approximations, and we ac-
tually have a perturbation of the situations described, due to the terms
neglected in (31) and (37-38). As thoroughly explained in [6], if we take

into account the size of the terms neglected, we can see that, under our
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choice of p, the asymptotic estimates for the dominant coefficients remain
the same.
Now, to estimate the size of the coefficients Lg, of the splitting po-
tential, we use (fitarkl-fitark2) together with (domprimary), and we
get

|Cs, — pLs,

2 Cohs
< Eq‘_‘—wexp{—in)}, i=1,2,34.

estimated

This upper bound is dominated by the term |uLg,|,

in (aproxmelnidom), provided p < e? with p > ¢ — 1/2 = p*. Taking

p* as defined in (18-19), we obtain the first statement of (a), and the

second one is proved in a similar way.

The proof of (b) works as in [6], bounding the sum of the co-
efficients [so(n)|™Lsy(n), excluding some (consecutive) dominant ones
(n # Ni,...,N;), by a geometric series whose main term is the next
dominant harmonic (n = Nyy1). It can also be shown that the term
[so(n)|™ does not affect such dominance.

Finally, we can prove (c¢) in a similar way, bounding the sum of the
secondary coefficients |k|™ Ly with k& € s(j,-), j # Jjo, by a geometric
series. Now, an upper bound for the main term of this series can be
given from the lower bound (36) for the exponent 3;, and using that the
normalized numerators 4, for k& € s(j, ), tend to 7; 2 7" In fact, the
sum also includes the coefficients associated to non-admissible &, i.e. not
belonging to any sequence s(j,-) (see Section 2). Such coefficients are
clearly dominated by the admissible ones, since we have v > |k|/2 and
we always find in (33) that B4 > 1/+/¢ for the non-admissible case. e

Remarks.

(1) We have shown that the harmonics S; are the most dominant
among the primary ones, but it is not excluded that some sec-
ondary harmonic can be more dominant than some of the S;.
This depends on the relation between the separation ¥** and the
constants A; introduced in (43). Thus, if A; < /7" < A;41, we
can ensure that the ¢ most dominant harmonics are primary (see
Figure 1 again).

(2) To give a more refined bound in (¢), we could define some func-
tions (periodic in In¢) for the secondary resonances, analogous
to the functions h;(¢) introduced in (41). Then, the number of
(primary or secondary) dominant harmonics for which asymp-
totic estimates can be given could be bigger than in the previous
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remark. It is not hard to carry out this approach for concrete
examples of quadratic frequencies, but it seems more involved to
give a general description of it.

(3) Assume that we consider a perturbation f(y) having only prima-
ry harmonics, instead of the “full” series considered in 7. Then,
the Melnikov potential L has only primary harmonics. The split-
ting potential £ can be “full”, but its secondary harmonics would
be p?-small (since they come from the error term). Then, the
dominant harmonics would all be found among the primary ones,
and this is not obstructed by the separation 7**. An example of
this type is given in [4], where the frequency vector is the golden
one and the perturbation has only the harmonics associated to
Fibonacci numbers.

4. CRITICAL POINTS OF THE SPLITTING POTENTIAL

We are going to use in this section the estimates given in Lemma 3,
to show that the splitting potential £(0,0) has nondegenerate critical
points (fixing s = 0). First, we will study the critical points for the
approximations given by the 2 or 3 most dominant harmonics, among
the primary ones:

£(2)(9) = Z Lg, cos({S;, ) — 7s,),

i=1,2

L) = D Ls, cos((Si,0) — Fs,). (50)

i=1,2,3

Afterwards, we discuss the persistence of these critical points in the whole
function £(0,8). As the functions h;(c) defined in (41) suggest, it seems
natural to consider the 2 dominant harmonics for most values of ¢, and
3 dominant harmonics for ¢ close to a critical value ¢,. Nevertheless,
we stressed in remark 1 after Lemma 3 that some of the dominant har-
monics may be secondary, depending on the separation ¥**. Then, the
approximations defined in (50) would not be good enough.

Anyway, to begin we study the function £(*)2 for ¢ # £y, and the
function £3) for £ # ¢/,. To fix ideas, we look at concrete intervals: we
assume € € (,,6,-1) in the first case, and € € (], ,¢;,) in the second
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case. Recalling Figure 1, note that

S1 = sp(n), Sa =sg(n+1), Sg=sg(n—1), for e€ (€;+1,67n),
S1 = s0(n), S2 = so(n—1), 55 =so(n+1), for € (en,2},),
Sl = 50(77, — 1), SZ = 50(77,), for ¢ € (E;L,En_l).

In order to have a simpler expression for the functions E(i)(ﬁ), we carry
out in both cases the linear change (01, 602) — (¢1,¢2) defined by

1/)1 = <50(n - 1); 9> - &sD(n—l)a 1/)2 = <50(n), 9> - &sD(n)a (51)

which can be written as

T ~
b= Apf — by, where A, = (50("‘ ) ),bn = ("io<”—1>) . (52)

so(n) Tso(n)
This change is not always one-to-one on T2 Indeed, calling
6 =detU = £1, T =trlU,

we have U2 = 7U — éId and we deduce the following recurrence relation
for the primary resonances:

so(n—+1) = 7sp(n) — ésg(n — 1).

Using induction, we deduce from this relation that | det A,| = « for all
n, where we denote
k= | det As| = [det(k°(jo), Uk"(jo))| (53)

(a nonvanishing integer, since k°(jo) is not an eigenvector of U). This
says that the change (52) takes & points (1, f2) to 1 point (11, ¢2). With
the change (52), the functions £2)(9), £3)(0) move respectively to the
following ones:

IC(Z)(1/)) = Acos i + Bcos s,
IC(S)(1/)) = Bn(l — Q) cos 1 + B costpa + BnQ cos(Tips — 811 — AF),
(54)
where we denote
A= ‘CSD(H—I)a B = *CsD(n)a
*Cfsu(n—l) + [fsu(n+1) Q _ [st(n+1)
*CsD(n) ’ *Cfsu(n—l) + [st(n+1) ’

Ao = 5'50(n+1) — T&SD(H) + (55'50(n_1) eT= R/QTFZ. (55)

=3
(l



EXPONENTIALLY SMALL SPLITTING 111

Note that A, B, n and @) are positive, because so are the coefficients Ly
in (29). Looking at K(*), we have B = Lg,, A = Lg, for € € (,,¢"), and
A=Ls,, B=CLg, for e € (e],,en_1), i.e. the first and second dominant
harmonics swap when € goes across the value /,.

Instead, when looking at K(3) we have B = Lg, for any ¢ € (Eny1:6n)-
So the first dominant harmonic of K3 is always cos 1y, whereas the
second and third ones swap when ¢ goes across ,. Note that 1 measures
the size of the second and third harmonics with respect to the first one,
and @ is an indicator of the relative weight of the second and third
harmonics (0 < @ < 1). We study K3 in terms of 5 and Q, considering
n as a perturbation parameter (note that n ~ Lg,/Lsg, is small except for
¢ close to the endpoints ¢}, 7, ). However, we have to point out that 5
and @ are not independent parameters, because they are both linked to
£.

In the next lemma, we show the existence of 4 critical points for 5
small enough and any @, provided the difference of phases Ag € T is not
very close to 0 or 7 (mod 27). To measure this closeness, we denote

& = min(|Ad|, |Ad — w|).

Lemma 4.

(a) The function K2 has exactly 4 critical points, all nondegenerate:

U = (0,0), 92 = (0.m), 912 = (r,0), (2] = (m,m). At the
critical points, | det DZIC(Z)(1/)E;)))| = AB.

(b) Assume &* > 0 and define E®F) oF) by

E®) = /1-2Q(1—Q)(1 - (£1)" cos AG),

(1-Q)+(F)QeosAs . oy (F1)78QsinAc
E&®) ’ - FE)

Then, for any @ € [0,1] and 0 < < ¢* the function K®) has
exactly 4 critical points, all nondegenerate: 1/)5]3)) = 1/)5]3)) o+ O0),
j=1,2 3,4, where 1/)8’;70 = (a(+), 0), 1/)8;70 = (a(_), ), 1/)8;70 =

(a(_) + 7,0), 1/;8; 0= (a(_) + &, m). At the critical points,

COS O[(:t) =

| det DK@ (7)) = BAE®y + 0()),
| det D2KEY ), ) = BAE I+ 0().
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Proof. We do not prove (a), because it is very simple. Instead, the proof
of (b) requires some more work, and is carried out as in [6]. The critical
points of K®) are the solutions of the following system of equations:
sinys = —nér(1-Q)sin ¢y, (1—-Q)sin ¢, —6Q sin(r¢pa—b11—AF) = 0.
(56)
It is clear that, for n small enough, the solutions of the first equation
of (56) are two curves in T2 One of these curves is 7-close to the line

19 = 0, and the other one is 7-close to the line ¥y = 7. To get the
solutions of (56) on the first curve, we replace ¢ = O(n) into the second

equation, and obtain the equation F7$+)(1/)1) =0, with

FiP () = (1 — Q) sinwy + Qsin(dhy + 6AF) + O(n)
= EP)sin(yy — oH)) 4+ O(n).

For nn = 0, the solutions are clearly o) and a(*) 4 7, except for the
case that E(t) = 0 (avoided with the condition &* > 0). Note that

E®) > /(1 + cos AG)/2 = &* and, consequently, these solutions persist

for n < &*. The perturbed solutions obtained give rise to the critical

points 1/)5?3, 1/)8;

Analogously, one can replace ¢ = m + O(n) into the second equation

of (56), obtaining the equation Fé_)(d)l) =0, with
Fi7 (1) = (1= Q)singy + (=1)7Qsin(yy + 845) + O(n)
= E)sin(yy — o))+ O(n),
whose solutions are now 7-perturbations of (=) and (=) + 7, except for
the case that £(=) =0 (also avoided), leading to the critical points 1/)83,
1/)(3)
(4
The determinant is easily computed. We have
det DK (y))
= B*(ncosthy - (1 = Q) cospy + Q cos(Tha — 6101 — AG)) + O(n?))

for any 1 € T2. At the point 1/;8; = (a(-l-), 0) + O(n), we obtain

det D?K () = BA(y(FSHY () + O(r)) = BHEHy + 0(p)),

and similarly with ¢E§§ ¢E§§ ¢E;°;§.
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Remarks.

(1) The amount ¢*, which measures the distance from A& to the
“forbidden” values 0 and 7 (mod 27), depends on n, as we see
in (55). However, in Theorem 6 we will assume &* greater than a
concrete positive constant (independent of n) by imposing a sim-
ple condition on the phases o, of the initial perturbation (7).
(2) We can give a description of the continuation of the critical points
of K®) as Q goes from 0 to 1 (recall that this corresponds to
transfer the second dominance from the harmonic cos; to the
harmonic cos(r92 — §¢y — AF)). Assuming for instance that 0 <

A& < m, the point 1/)8’; drifts on a line from (0, 0) to (A&, 0) with
the first component increasing, the point 1/)8; o drifts on a line
from (0, 7) to (A& + &, 7) with the first component decreasing,

etc. When one considers the perturbed points 1/)5]3)) = 1/)5]3))0 +
O(n), such lines become close curves.
(3) If A& is near to 0 or w, one of the determinants, given at first

order by E() can be very small. Indeed, for Q = 1/2 one has
EEF) = \/%(1 + (£1)7 cos AF). Then, studying more carefully
the term O(n) neglected from the equations one could show that,
near this value @ = 1/2, bifurcations of some of the 4 critical
points can take place. Examples of such bifurcations have been
shown in [22].

(4) Concerning the possibility of bifurcations, we stress here that two
different situations may occur depending on whether 7 = trU is
odd or even. This can be seen from the expressions of E*) given
in the previous remark for @ = 1/2, studying when such expres-
sions vanish. One gets that, if 7 is odd, then for Ag close to 0 the

critical points 1/)52?4) may bifurcate, whereas 1/)(3)(274) continue,
and for A¢ close to 7 the situation is the opposite. Instead, if 7
is even, then for AéG close to 0 the 4 critical points continue, and
for A6 close to m the 4 critical points may bifurcate.

Next, we translate the results of Lemma 4 through the linear
change (51). As said in (53), each critical point of the function IC(i)(1/))
gives rise to & critical points of E(i)(ﬁ). For each critical point 9,(3), we
also find an estimate for (the modulus of) the minimum eigenvalue mgf)
of the symmetric matrix D2£() at this point. This eigenvalue is closely

related with the transversality of the homoclinic orbit associated to the
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critical point.

Lemma 5.

a) The function £2) has exactly 4x critical points 9&2) all nonde-
(a) y p :

generate and satisfying

mi? ~ Vels,.

(b) Assuming &* > 0 and Lg, = *Ls,, the function £3) has exactly

4k critical points 9&3), all nondegenerate and satisfying

5 \/eLs, = mlP < VELs,.

Proof. For the minimum eigenvalue (in modulus) of D2£<2>(9£2>), we
use the following expression:

2Dl
|T|+ /T2 4D’

where we denote D = det DZE(Z)(HSP)) and T = trDzﬁ(z)(ﬁg)). So we
have to find estimates for D and T. It is clear that DZE(Z)(95<2)) =
ATD2E)( >(.<2)).,4n and, since |det A,| = &, we obtain directly from
Lemma 4 that |D| = k?AB = k?Lg,Ls,. On the other hand, writing

DZIC(Z)(1/;£2)) = (ii ]]z;z) we see that

(57)

D2L () = kyyso(n — D)so(n — )7
+ k1a(so(n — 1)50(71)T + s0(n)so(n — 1)T)
+ kzzSo(n)So(n)T

and we obtaln

T = k11<50(n — 1), 50(77, — 1)> + 2k12<50(n — 1), 50(77,)> + k22<50(n), 50(77,)>.
(58)
Using that |ki1| = A, |k2a|] = B and k2 = 0, and also that Lg, =
max(A, B) and estimate (46), we deduce that |T'| ~ Lg, /+/. Since |D| <
T2, we see from (57) that
D

(2) Ve
my’ ~ —— ~~/eLs,.
7|



EXPONENTIALLY SMALL SPLITTING 115

To estimate the minimum eigenvalue of DZE(B)(HSF’)), we can proceed
analogously. Applying Lemma 4, we obtain

D] = k*B*(E® )+ 0(n*)) ~ L3, EFn ~ EF L5, Ls, = 6" Ls,Ls.,
under the following additional condition (required in Lemma 4):

L .
N~ & <"
S1

We can give an estimate for T using equality (58) again, but now with
|kaa| = B(1 4+ O(n)) ~ Ls, and |k11], |[k12 < By ~ Ls,, obtaining the
same estimate for |T'| as before and, consequently, the expected estimate
for mf’). .

After having studied the critical points of the approximations £(2),
£3) the last step is to study their persistence in the whole splitting
potential £. In order to apply the result on £(®) in Lemma 5, and estab-
lish (for suitable quadratic frequencies) the existence and continuation of
nondegenerate critical points for all £ — 0, we will assume in (7) that the
difference of phases

Ao'n ‘= Oso(n+1) — TOsq(n) + 6050(n—1)
keeps far away from 0 or # (mod 2) for any n: for some fixed ¢* > 0,
min(|Acy|, |Aop —7|) 2 0" Vn > 1. (59)

As a concrete example such that condition (59) holds, we can consider
in (7) a sequence of (primary) phases given by the recurrence o, (n11) =
TOso(n) = 00so(n—1) + 7/2, n > 1, from any starting ao(1), do(2). On the
contrary, we stress that condition (59) does not hold in the case of a
reversible perturbation, given by an even function f(p). In such a case,
bifurcations of some of the homoclinic orbits, when ¢ goes across some
critical values, have been described in [22].

The next theorem is formulated in terms of the splitting function,
M(0,0) = 05L£(0,0), which gives a measure of the distance between the
whiskers. In this theorem, we establish under some conditions the exis-
tence of 4« simple zeros of M(0, ), denoted f,, and we provide for these
zeros an estimate for the minimum eigenvalue (in modulus) of the split-
ting matriz 99 M(0,0,). As pointed out in [4], this minimum eigenvalue
provides a lower bound for the transversality of the homoclinic orbit as-
sociated to the zero 6,. Recall that the integer x > 1 was introduced

in (53).
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To get the continuation for all ¢ — 0 of the critical points, we have to
assume that our quadratic frequency vector w satisfies the strong separa-
tion condition:

VI > 24, — 1 (60)

(recall that the constants A; have been defined in (43)). Otherwise, we
can get the persistence of all the critical points for € not very close to
the critical values g, (in other words, for £ close enough to the values £/,)
provided w satisfies the weak separation condition:

VA > Ay (61)

We stress that the two separation conditions can be explicitly checked
for concrete quadratic frequencies. For instance, in the four examples
considered in Section 2, we checked that example 1 (the golden vector)
satisfies (60), examples 2 and 3 satisfy (61), and example 4 satisfies none
of them. Unfortunately, it seems from our numerical explorations that
the only frequency vectors satisfying the strong condition (60) are the
golden vector and any other noble vector (the ones that can be reduced
to the golden vector by a unimodular transformation; the constants 5**
and A; are the same for all of them). Nevertheless, the result obtained
may be relevant if we take into account that noble vectors are dense.

For the sake of completeness, we have also included a much simpler
statement concerning the maximum size (in modulus) of the splitting
function M(0, ), giving in this way an asymptotic estimate for the max-
imum splitting distance. Notice the difference in the exponents given by
the functions hi(¢) and hy(e) illustrated in Figure 1.

Theorem 6. For the example introduced in (1-7), assume that ¢ < 1
and p = €, p > p*, with p* as defined in (18-19). Assume also that
condition (59) on the phases is fulfilled. Then, one has:

(a) Under the weak separation condition (61), the following estimate
holds:

i Cohl(E)
max|M(0,0)] ~ Tz { - 57—

(b) Under the weak separation condition (61), there exists {, with
1 < ¢ < A?, such that if ¢ belongs to some interval (Cen,en-1/¢),
the function M(0, ) has exactly 4« zeros 0, all simple (with the
integer £ > 1 defined in (53)).
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(c) Under the strong separation condition (6), for any ¢ =
(o) =P")  the function M(0,0) has exactly 4k zeros 0., all
simple.

In both cases (b) and (c), the minimum eigenvalue (in modulus) of
JeM(0, ) at each zero satisfies the estimate
Cohz(E)

U*u61/4exp{ — T} < m. = pet*exp { —

Cbhz(e)}.

c1/4

Proof. We write M = 0¢L. To prove (a), we consider as in (50) the
approximation £(2) given by the 2 most dominant harmonics. We can
easily give an estimate for 8y£(?) by writing it in the variables 1 as
in (54), and applying Lemma 3 (we use the notation |- | for the supremum
norm on T?):

1 1

|69[’(2)| ~ 61/4[’51’ 105.L£(0, ) — 69£(2)| = cl/4 (Ls. +8),
where we denote, for the bound coming from secondary resonances,
s= Mo { _ Covy™
= Z1/a XP o174

Since we always have hi(¢) < hs(e), we obtain the expected asymptotic
estimate (a) for |M(0, -)].

To prove (b) and (c), we will show that £ has nondegenerate critical
points, choosing £(2) or £{3) as a suitable approximation, since we know
from Lemma 5 that the critical points of these functions are all nondegen-
erate. The choice of the approximation depends on the closeness of ¢ to
the values ¢,,, ¢,. More precisely, in some interval around &/,, we consider
£?) and, near ¢,, we consider £(3). We are going to study whether the
two intervals where the approximations are valid intersect and the results
are valid for all ¢ (small enough) or, on the contrary, some intervals of ¢
have to be excluded. This will depend on the separation ¥**.

First, for ¢ € (¢,,, €5—1) we consider for the function G(6) = M(0,6) =
9s£(0,0) the first approximation given by Go(0) = 95 £(*)(6). Recall that
the zeros 9*2) of GGy are all simple, and an estimate for m&z), the minimum
eigenvalue of DGO(HSP)), has been given in Lemma 5(a). According to a
quantitative version of the implicit function theorem (see for instance
[6, Appendix]), this zero of Gy persists as a (perturbed) zero 6, of G
provided inequalities of the following types are fulfilled:

(2)

2
|G — Go| < (g; Z|, IDG — DGo| < m'?. (62)
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We have from Lemmas 3(b) and 5(a) the estimates

|G — G| = (Ls, +8), IDG — DGyl = (Ls, +8),

1/4 1/2

1
~Vels,,  |D*Gol = 57 Ls,

2374
Using these estimates, we see from (62) that we need
L3,

51

Ls,+8 =

(63)

Taking logarithms, we see that (63) can be written as the following in-
equality (with a suitable constant ¢):

1/4
2ha(e) — ha(e) < hi(e) + EC—Oln(ce ), h3(e) :=min(hs(e), /7). (64)
This inequality is going to be analysed later.

For € € (¢}, 41,¢,), we consider for Gi(0) the first approximation given
by Go(0) = 95L3)(0). In this case, to apply Lemma 5(b) to the zeros of
9&3 of Gy, we have two check two additional conditions. The first one is
that the difference of phases A6, = 05;(n41) = T0so(n) + 00 55(n—1) is nOt
very close to 0 or 7 (mod 27). Indeed, we get from Lemma 3(a) that
|AG,—Acp| < pe™?". Recalling that g = €| we see that ue™?" < ¢*, and
deduce from from (59) the lower bound min(|Ad,|, |AG, —7|) = ¢*. The
second condition can be written as Lg, < 6" Ls,, which can be written

as
c1/4

hi(e) < ha(e) + o In(co™). (65)

Then, we have given in Lemma 5(b) a lower bound for the minimum
eigenvalue m( ) . Applying the implicit function theorem as before, we see
that the zero 9,(.< ) persists as a zero 0, of G provided

(0'*6)2[,522

L S <
S, +O6 = s, ,

which can be written as

1/4

2ha(e) — hie) < Ri(e) + EC—Oln(c(a*e)z), Ri(e) := min(ha(e), /7).
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To get the continuation of the perturbed zeros we need that every ¢
satisfies (64) or (65-66). To study this, we can restrict ourselves to the
interval [e,,, 0] (the intersection of the two intervals considered above),
and the results can easily be extended outside this interval using the
symmetries of the functions h;(¢).

The behaviour of the involved functions on the interval [e,, )] can
be described as follows (see also Figure 1): the function h; increases
from 1 to A, the function hs decreases from A, to A, the function
hs increases from As to Az, the function h4 decreases from A4 to As,
and the function 2hy — hy decreases from 24, — 1 to A;. Besides, the
functions hs and 2hs — hy intersect at some &, with a common value A
(the values £, and A can be found explicitly if desired). Recall that the
constants A;, defined in (43), only depend on |A| > 1. One can check
that Ay < A < 245 — 1 < Az (to check the last inequality, one may use
that [A|>/?(As — 245 + 1) is a polynomial in |A|*/? with no real roots for
[A] > 1).

Now, to study the intervals where inequalities (64-66) are fulfilled, we
have to replace hs, hy by h%, h}. Hence we have to take into account the
situation of \/7** with respect to the values A;, 245 — 1, A considered
above. Besides, there is a contribution coming from the term contain-
ing €!/4 and a logarithm in the three inequalities. This small term only
gives rise to a small perturbation of the results, although it has to be
seriously taken into account in inequality (65), which will be true for all
£ € [gn, £},) excluding a small neighbourhood close to ¢/,. On the other
hand, note that (64) always implies (66). that the approximation giv-
en by the 2 dominant harmonics is valid, the one given by 3 dominant
harmonics is valid as well, unless € belongs to the small neighbourhood
where inequality (65) does not hold.

One can check, taking those considerations into account, that if the
strong separation condition (60) is fulfilled, then every ¢ in the whole
interval considered satisfies (64) or (65-66), and hence the zeros per-
sist. More precisely, we can consider 2 dominant harmonics only for
¢ € (&y,¢}], and 3 dominant harmonics for ¢ € [g,,, &, ].

If the strong condition does not work but instead the weak condi-
tion (61) is fulfilled, then there exists 1 < ¢ < A% such that every
£ € (Cen, el satisfies (64) or (65-66). The value (g, is the solution of
2hs(g) — hi(g) = /F**; it moves from ¢, to &), as /7** goes down from
245 — 1 to A; (at the end, the interval shrinks to &/,). If the weak condi-
tion (61) is not fulfilled, the interval is empty and both inequalities (64)
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and (66) are false. Note that the interval (Ce,,€l] becomes ((gn,n-1/()
if the results are extended using the symmetry of the functions h; (con-
sidered as functions of In¢).

For the cases such that the persistence of the zeros has been estab-
lished, the upper and lower bounds for the minimum eigenvalue at each
zero come from Lemma 5. e

Remarks.

(1) In the weak condition case considered in (b), it can be seen from
the proof that, for \/3** < A, condition (59) can be removed
because we do not need to consider the 3 dominant harmonics
case. We have ignored this in order to write a simpler statement
of the theorem.

(2) Assaid in remark 3 after Lemma 3, if we consider in (7) a pertur-
bation f(¢) having only primary harmonics, then no obstruction
comes from secondary harmonics, and the result of (¢) would be
valid independently of the separation ¥**. However, this would
be a rather artificial example.

Acknowledgments.

This work has been partially supported by the Catalan grant
2001SGR-70, the Spanish grant BFM2000-0805-C02 and the INTAS
grant 00-221.

REFERENCES
1. G. Benettin, A. Carati, and G. Gallavotti, A rigorous implementation of the Jeans—
Landau—Teller approzimation for adiabatic invariants. — Nonlinearity, 10 (1997),
479-505.

2. B. V. Chirikov, A universal instability of many-dimensional oscillator systems. —
Phys. Rep., 52, No. 5 (1979), 263-379.

3. A. Delshams and P. Gutiérrez, Splitting potential and the Poincaré-—Melnikov
method for whiskered tort in Hamiltonian systems. — J. Nonlinear Sci., 10, No. 4
(2000), 433-476.

4. A. Delshams and P. Gutiérrez. Splitting and Melnikov potentials in Hamiltoni-
an systems. — J. Delgado, E. A. Lacomba, E. Pérez-Chavela, and J. Llibre, eds.
Hamiltonian Systems and Celestial Mechanics (HAMSYS-98). Proceedings of the
1T International Symposium, Vol. 6 of World Scientific Monograph Series in Math-
ematics, pages 111-137. Held in Patzcuaro, Michoacan, México, 7-11 December,
1998. World Scientific, Singapore (2000).

5. A. Delshams and P. Gutiérrez, Homoclinic orbits to invariant tori in Hamilton:-
an systems. — In: C.K.R.T. Jones and A. I. Khibnik, eds. Multiple-Time-Scale
Dynamical Systems, Vol. 122 of IMA Vol. Math. Appl., pages 1-27. Held in Min-
neapolis, 27-31 October (1997). Springer-Verlag, New York (2001).



EXPONENTIALLY SMALL SPLITTING 121

6.

10.

11.

12.

13.

14.

15

16

17.

A. Delshams and P. Gutiérrez, FEzponentially small splitting for whiskered
tort in Hamiltonian systems: Continuation of transverse homoclinic orbits. —
Preprint 03-112 (2002). mp-arc@math.untexas.edu.

. A. Delshams, V. G. Gelfreich, A. Jorba, and T. M. Seara, Frponentially small

splitting of separatrices under fast quasiperiodic forcing. — Comm. Math. Phys.,
189 (1997), 35-71.

. A. Delshams, P. Gutiérrez, and T. M. Seara, Ezponentially small splitting for

whiskered tori in Hamiltonian systems: Flow-box coordinates and wpper bounds.
— Preprint 03-134 (2002). mp-arc@math.utexas.edu.

. L. H. Eliasson, Biasymptotic solutions of perturbed integrable Hamiltonian systems.

— Bol. Soc. Brasil. Mat. (N.S.), 25, No. 1 (1994), 57-76.

V. G. Gelfreich, A proof of the exponentially small transversality of the separatrices
for the standard map. — Comm. Math. Phys., 201, No. 1 (1999), 155-216.

V. G. Gelfreich and V. F. Lazutkin, Splitting of separatrices: perturbation theory
and exponential smallness. — Russian Math. Surveys, 56, No. 3 (2001), 499-558.
H. Koch, A renormalization group for Hamiltonians, with applications to KAM
theory. — Ergodic Theory Dynam. System, 19, No. 2 (1999), 475-521.

V. F.Lazutkin, Splitting of separatrices for the Chirikov’s standard map. — (in
Russian). Preprint VINITT (1984), 6372-84.

P. Lochak, J.-P. Marco, and D. Sauzin, On the splitting of invariant manifolds in
multidimensional near-integrable Hamiltonian systems. — Preprint (1999).

. P. Lochak, Effective speed of Arnold’s diffusion and small denominators. — Phys.
Lett. A, 143, No. 1-2 (1990), 39-42.

. P. Lochak, Canonical perturbation theory wvia simultanecous approzimation. —
Russian Math. Surveys, 47, No. 6 (1992), 57-133.

J. Lopes Dias, Renormalization scheme for vector fields on T? with o Diophantine
frequency. — Nonlinearity, 15, No. 3 (2002), 665-679.

18. A. Pronin and D. Treschev, Continuous averaging in multi-frequency slow—fast
systems. — Regul. Chaotic Dyn., 5, No. 2 (2000), 157-170.

19. M. Rudnev and S. Wiggins, On a homoclinic splitting problem. — Regul. Chaotic
Dyn., 5 No. 2 (2000), 227-242.

20. D. Sauzin, A new method for measuring the splitting of invariant manifolds. —
Ann. Sci. Ecole Norm. Sup. (4), 34 No. 2 (2001), 159-221.

21. C. Simé, Averaging under fast quasiperiodic forcing. — In: J. Seimenis, ed. Hamil-
tonian Mechanics: Integrability and Chaotic Behavior, Vol. 331 of NATO ASI
Ser. B: Phys., pp. 13-34. Held in Torun, Poland, 28 June-2 July 1993. Plenum,
New York, 1994.

22. C. Simé and C. Valls, A formal approzimation of the splitting of separatrices in the
classical Arnold’s example of diffuston with two equal parameters. — Nonlinearity,
14, No. 6 (2001), 1707-1760.

Departament de Matematica Aplicada I ITocTtynuno 8 masa 2003 r.

Universitat Politécnica de Catalunya
Diagonal 647, 08028 Barcelona

E-mail: amadeu.delshams@upc.es, pere.gutierrez@Qupc.es



