
Zapiski nauqnyh

seminarov POMI

Tom ���� ���� g�

A� Delshams and P� Guti�errez

EXPONENTIALLY SMALL SPLITTING

OF SEPARATRICES FOR WHISKERED

TORI IN HAMILTONIAN SYSTEMS

Abstract� We study the existence of transverse homoclinic orbits in a
singular or weakly hyperbolic Hamiltonian� with � degrees of freedom�
as a model for the behaviour of a nearly�integrable Hamiltonian near
a simple resonance� The example considered consists of an integrable
Hamiltonian possessing a ��dimensional hyperbolic invariant torus with
fast frequencies��

p
� and coincidentwhiskers or separatrices� plus a per�

turbation of order � � �p� giving rise to an exponentially small splitting
of separatrices�We show that asymptotic estimates for the transversality
of the intersections can be obtained if � satis�es certain arithmetic prop�
erties� More precisely� we assume that � is a quadratic vector �i�e� the
frequency ratio is a quadratic irrational number	� and generalize the good
arithmetic properties of the golden vector� We provide a su
cient con�
dition on the quadratic vector � ensuring that the Poincar�e�Melnikov
method �used for the golden vector in a previous work	 can be applied
to establish the existence of transverse homoclinic orbits and� in a more
restrictive case� their continuation for all values of � � 
�

�� Introduction and main results

The detection of transverse homoclinic orbits to an invariant object
is one of the main tools to prove the existence of chaotic motion in a
dynamical system� Such a detection becomes complicated in the case of
a Hamiltonian system ��close to a completely integrable one� Between
the KAM tori� there appear generically whiskered tori which carry on
non�coincident whiskers� giving rise to the phenomenon called splitting of

separatrices� which is exponentially small with respect to ��

In the case of a one�dimensional whiskered torus �periodic orbit� of a
Hamiltonian with � degrees of freedom� V� F� Lazutkin introduced in a
seminar paper ��	
 complex parameterizations for the invariant manifolds�
obtaining in this way an analytic periodic function for the splitting� with
zero mean� The width of the strip of analyticity of this function appears
explicitly in the exponent of the splitting and it turns out that only one

��
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�the �rst� harmonic of the perturbation is relevant for the size of the
splitting �see ���� ��
��

However� when the dimension of the whiskered tori is greater than
one� the expression of the quasiperiodic splitting function becomes more
intricate� since it depends on the arithmetic properties of the frequencies
of the whiskered tori� Indeed� the e
ect of the small divisors is present
in the most important part of the splitting� the exponent� This was �rst
noticed by Chirikov ��
� and later on by Lochak ���� ��
 and Sim�o ���
�
and was �rst proven by Delshams et al� ��
 for the pendulum under a
fast quasiperiodic forcing �see also ��
�� Later on� the splitting of sep�
aratrices for a ��dimensional whiskered torus in a Hamiltonian system
with 	 degrees of freedom was dealt by Sauzin and co�workers ���� ��
�
Rudnev and Wiggins ���
� Pronin and Treschev ���
� and also Sim�o and
Valls ���
� who also considered the homoclinic bifurcations that can take
place� It is important to say that the main tool that has been used to
establish the splitting for whiskered tori with two or more frequencies is
the validation of the expression provided by a direct application of the
Poincar�e�Melnikov method�

In fact� in the Hamiltonian setting� it turns out ��� 	
 that the split�
ting vector distance and the Melnikov vector function are the gradient of
scalar functions� called respectively splitting potential and Melnikov po�
tential� This implies that transverse homoclinic orbits to whiskered tori
correspond to non�degenerate critical points of the splitting potential�

The arithmetic properties of the frequencies of the whiskered torus are
very important� As a matter of fact� all the rigorous expressions found up
to now involve only two frequencies and some famous quadratic numbers�
like the golden number� The theory of continued fractions is essentially
used to separate between primary resonances �in the case of the golden
number� the ones associated to Fibonacci numbers� and other weaker
resonances�

In this context� the existence of transverse homoclinic orbits to a
��dimensional whiskered torus� with frequency the golden vector� of a
Hamiltonian with 	 degrees of freedom was proved in ���� ��
� but not for
all values of � � �� since at some sequence of values of � the dominant
harmonics of the splitting function change� and homoclinic bifurcations
could take place� Some examples of such bifurcations have been described
in ���
�

This result was improved in the same situation in ��
 with the help of
a careful analysis of the Melnikov function and its dominant harmonics�



EXPONENTIALLY SMALL SPLITTING ��

and applying also accurate bounds for the size of the error term provided
�from the use of �ow�box coordinates� in ��
� Indeed� it was shown in ��

that the dominant harmonics of the splitting function correspond to the
dominant harmonics in the Melnikov approximation� providing asymp�
totic estimates for the splitting� With such estimates� it is possible to
show the existence of exactly � transverse homoclinic orbits� and their
continuation for all values of the perturbation parameter �� � �with no
bifurcations��

We consider in this work some concrete perturbations with 	 degrees
of freedom with an in�nite number of harmonics� and study how far the
results quoted above can be generalized to any quadratic frequency vector
�i�e� a quadratic number as the frequency ratio�� Using a generalization of
the arithmetic properties of the golden vector to other quadratic vectors�
it is possible to carry out a suitable analysis of the Melnikov function and
its dominant harmonics� as well as the size of the remaining harmonics�
Under a suitable condition on the quadratic vector� we obtain asymp�
totic estimates for the splitting function� which allow us to establish the
existence of a certain number of transverse homoclinic orbits� although
bifurcations of some of such orbits may occur for � close to some critical
values �like in ���
��

In the best case �the golden vector and other noble frequency vectors�
we can ensure the continuation of transverse homoclinic orbits for all
�� � like in ��
� For some other quadratic vectors� at least we can ensure
the existence of transverse homoclinic orbits� although bifurcations of
them may occur for some critical values of ��

Next we give a more precise description of the setting and the back�
ground� and the new results obtained in the present work�

���� Setup� A singular Hamiltonian with � degrees of freedom�

We consider a Hamiltonian system� with 	 degrees of freedom� depend�
ing on two perturbation parameters � and �� In canonical coordinates
�x� y� �� I� � T�R�T��R�� with the symplectic form dx�dy�d��dI�
our Hamiltonian is de�ned by

H�x� y� �� I� � H��x� y� I� � �H��x� ��� ���

H��x� y� I� � h��Ii � �

�
h�I� Ii � y�

�
� cosx� �� ���

H��x� �� � h�x�f���� �	�

We assume � � �� and also � � � with no loss of generality� The vector
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�� of fast frequencies considered in ��� will be given by a quadratic vector

� � ������ �� �
�p
�
� ���

In other words� the frequency ratio � is a quadratic irrational number�We
also consider in ��� a symmetric ��� ���matrix �� such that H� satis�es
the condition of isoenergetic nondegeneracy �

det

�
� �
�� �

�
�� �� ���

For the perturbation �	�� we deal with the following concrete analytic
periodic functions�

h�x� � cos x� �� with � � � or � � �� ���

f��� �
X
k�Z

fk cos�hk� �i � 	k�� with fk � e��jkj and	k �T� ���

Z � fk � �k�� k�� �Z� � k� � � or �k� � �� k� � ��g ���

�the set Z is introduced to avoid repetitions in the Fourier expansion of
f�����

The Hamiltonian H� �that corresponds to � � �� has a ��parameter
family of ��dimensional whiskered tori given by the equations I � const�
x � y � �� The stable and unstable whiskers of each torus coincide�
forming in this way a unique homoclinic whisker� We shall focus our
attention on a concrete whiskered torus� located at I � �� whose inner
�ow has �� as the frequency vector� We denoteW� the homoclinic whisker
associated to this torus� and consider for it the parameterization

W� � �x��s�� y��s�� 
� ��� s � R� 
 � Tn� ���

x��s� � � arctan es� y��s� �
�

cosh s
� ����

The inner �ow on W� is given by �s � �� �
 � ���
The two parameters � and � will not be independent� On the contrary�

they will be linked by a relation of the type � � �p with a suitable p � �
�the smaller p the better�� i�e� we consider a singular problem for � � �
�also called weakly hyperbolic� or a priori stable�� The main motivation
for this singular setting is that it can be considered as a model for the
behaviour of a nearly�integrable Hamiltonian near a simple resonance
�see for instance ��� �
��
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Our choice in ��� of a quadratic frequency vector is motivated by
the arithmetic properties of such vectors� An important and well�known
property is that quadratic vectors satisfy a Diophantine condition�

jhk� �ij � �

jkj� �k �Z� n f�g� ����

with � � � and some � � � �concerning the value of �� see remark � at
the end of Section ��� Other important properties of quadratic vectors to
be used are discussed in Section ��

Under conditions ��� and ����� the hyperbolic KAM theorem implies
that� for � small enough� the whiskered torus persists� as well as its local
whiskers� We point out that the di
erence between the two values of �
in ��� is that in the case � � � the whiskered torus persists with some
shift and deformation� whereas in the case � � � it remains �xed under
the perturbation� though the whiskers do su
er some deformation� The
Lyapunov exponent of the torus� which initially is �� becomes a close
amount b� Besides� in the isoenergetic case considered here� the frequency
vector �� of the torus becomes perturbed to a close and proportional
vector�

��� � b��� �
b��p
�

����

The amounts b and b� tend to � as � � �� and b� � � in the case � � �
�see ��� Th� �
 for a precise statement��

Concerning the Fourier expansion ���� the constant 
 � � gives the
complex width of analiticity of f���� In principle� the phases 	k can be
chosen arbitrarily� although some quite general condition on these phases
will have to be ful�lled for the validity of our results �see Section ���

���� Background� The splitting function and the Poincar�e�

Melnikov method�

When the local whiskers are extended to global ones� one can expect in
general the existence of splitting between the stable and unstable whiskers
�denoted W� and W��� since they will no longer coincide� To study
this splitting� symplectic �ow�box coordinates �S�E� �� I� are introduced
in ��
� in some neighbourhood containing a piece of both whiskers �and
excluding the torus� where such coordinates are not valid�� In the �ow�
box coordinates� the Hamiltonian equations become very simple� �S � b�
�E � �� �� � ���� �I � � �recall that b and ��� are the perturbed Lyapunov
exponent and frequencies�� Besides� those coordinates can be constructed
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in such a way that the stable whisker is given by a coordinate plane�

W� � �s� �� 
� ��� jsj � s�� 
 �Tn� ��	�

where the parameters �s� 
� are inherited from ������� with some transla�
tion in s� Then� the unstable whisker can be parameterized� in the same
neighbourhood� as

W� � �s� E�s� 
�� 
�M�s� 
��� jsj � s�� 
 �Tn� ����

and the inner �ow on both whiskers is given by �s � b� �
 � ���� To study
the splitting� it is enough to consider the vector function M� called the
splitting function �the function E is directly related to M by the energy
conservation��

The use of �ow�box coordinates implies the quasiperiodicity of the
splitting functionM� an important property related with its exponential
smallness� More precisely� the function M is ����quasiperiodic�

M�s� 
� �M��� 
 � ���s�� where ��� ��
���
b

�
b��
b
p
�
� ����

Another important property of M� related to the Lagrangian properties
of the whiskers� is that it is the gradient of a scalar function L� called the
splitting potential �see also �	
��

M�s� 
� � ��L�s� 
�
�and hence M has zero average with respect to 
�� Then� the transverse
homoclinic orbits can be studied on s � � �or any other section s � const��
as nondegenerate critical points of L��� 
��

Applying the Poincar�e�Melnikov method� it is possible to give a �rst
order approximation in � for the splitting� in terms of the Melnikov po�

tential and the Melnikov function� de�ned in ��
 �see also �	
� in terms of
an absolutely convergent integral�

L�s� 
� � �
�Z

��
�h�x��s � bt��� h���
 � f�
 � ���t�dt� const�

M �s� 
� � ��L�s� 
�� ����

These functions are also ����quasiperiodic� since they are de�ned in terms
of the perturbed Lyapunov exponent b and the perturbed frequencies ���
introduced in ����� As a consequence� the error term de�ned as

R�s� 
� �M�s� 
� � �M �s � s���� 
� ����
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is also ����quasiperiodic� The amount s�� not very relevant� compensates
the translation of the parameterizations ��	���� with respect to the initial
parameterization ����

In order to validate the Poincar�e�Melnikov method in the singular case
� � �p� the main di�culty is that the �rst order approximation given by
the Melnikov function is exponentially small in �� as shown in Section �	��
In principle� it turns out that the Poincar�e�Melnikov method can be
applied only if � is exponentially small in � �see for instance �	
�� but
not in our case � � �p� Nevertheless� exponentially small upper bounds
for the error term ���� can also be obtained� and the method holds in
the singular case if p is large enough� The key point in order to obtain
such exponentially small estimates is to carry out the bounds on complex

domains of the parameters �s� 
�� and use the quasiperiodic properties of
the splitting�

Note that the initial homoclinic whiskerW� can be de�ned in the com�
plex domain for jImsj � ���� jIm
j � 
� These restrictions are due to the
singularity of ���� at s � 	i���� and to the expression ��� involving 
 as
the width of analyticity� This domain is reduced along the successive steps
leading to de�ne the splitting function and potential� One of the main
achievements of ��
 is to construct the �ow�box coordinates in such a way
that the loss of complex domain is controlled by a free small parameter
�� with � 
 ��� and � 
 
� Then� choosing � � �a for some a � � and
using that the involved functions are analytic� quasiperiodic and with ze�
ro average� it is possible to obtain exponentially small estimates �see ���
�
 for more details��

With all these ingredients� estimates for the splitting functionM�s� 
�
can be obtained in the singular case� under some restriction p � p�� In
the paper ��
� where the frequency � considered is the golden vector� we
proved the existence of exactly � transverse homoclinic orbits� and their
continuation for all values of � � �� In fact� some improvement of the
exponents can be given for the case of a �xed torus� Because of this� the
exponent p� depends on the value of � in ����

p� � � if � � �� ����

p� � 	 if � � �� ����

���� Description of the results�

Our goal is to study the existence of transverse homoclinic orbits for
the Hamiltonian ������ assuming in ��� a quadratic frequency vector�
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Our aim is to study how far it is possible to generalize the results for the
golden vector� obtained in ��
� to other quadratic frequencies�

Since we deal with the singular case � � �p� we need to show that� in
the Poincar�e�Melnikov approximation ���� for the whole splitting func�
tion M�s� 
�� the term �M �s � s���� 
� �exponentially small in �� domi�
nates� in some sense� the error term R�s� 
�� A natural approach to this
is to provide asymptotic estimates �or at least lower bounds� of the dom�
inant harmonics of the Melnikov potential L� As we will show� such dom�
inant harmonics are closely related to the small divisors of the frequency
vector �� In a subsequent step� we have to see that the estimates ob�
tained for the dominant harmonics of L are big enough in order to be
valid also for the dominant harmonics of the splitting potential L �recall
that M � ��L�� showing that they overcome the part coming from R�

Note that the quasiperiodicity ���� of the splitting function M�s� 
�
allows us to restrict to the section s � �� and the �simple� zeros ofM��� 
�
give rise to �transverse� homoclinic orbits� These �simple� zeros are given
by �nondegenerate� critical points of the splitting potential L��� 
�� In our
main result �Theorem ��� we give conditions for the existence of simple
zeros ofM��� 
�� with asymptotic estimates of the associated eigenvalues
of ��M�

Let us give a short summary of the results presented� First� in Section �
we study the arithmetic properties of quadratic frequencies� carrying out
a complete analysis of the associated resonances �to be strict� we should
call them quasi�resonances�� which originate the small divisors appearing
in the coe�cients of the Melnikov potential� Such an analysis is possible
thanks to the arithmetic properties of quadratic vectors� and is carried out
as a direct generalization of the analysis done in ��
 for the golden vector�
The main idea used is that a quadratic vector is always an eigenvector
of some unimodular matrix ���
� This leads to a classi�cation of such
resonances of � into  primary! and  secondary! ones�

In Section 	 we provide estimates for the Fourier coe�cients of the
splitting potential L� showing what the dominant harmonics are� among
the ones associated to primary resonances� and giving upper bounds for
the remaining primary ones� and also for all the secondary ones� To prove
this result we proceed as in ��
� �rst obtaining estimates for the Fouri�
er coe�cients of the Melnikov potential� and then applying the upper
bounds given in ��
 for the error term�

Since we look for nondegenerate critical points on T� of the split�
ting potential L� we need at least the � most dominant harmonics� We
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show that� when � goes across the critical values �n de�ned in ����� some
changes in the dominance occur� In fact� for � close to �n� we have to
consider the 	 most dominant harmonics because the second and third
ones are of the same magnitude�

In Section � we study the nondegenerate critical points of L �which
correspond to simple zeros ofM� and obtain ourmain result �Theorem ���
concerning the existence of a certain number of transverse homoclinic

orbits� More precisely� we give an asymptotic estimate for the minimum
eigenvalue �in modulus� of the splitting matrix ��M��� 
��� for each zero

� of the function M��� ��� This eigenvalue provides a measure of the
transversality of the homoclinic orbits� In order to prove the continuation
of the transverse homoclinic orbits for the example ������ we assume a
quite general condition� described in ����� on the phases of the Fourier
expansion of the function f��� in ����

In the best case� this result is valid in both the cases of � or 	 dom�
inant harmonics� and ensures the continuation �without bifurcations� of
the corresponding homoclinic orbits for all values of �� �� Nevertheless�
this requires a condition on the quadratic frequency vector � � ������
that we call the strong separation condition ����� ensuring that the in�u�
ence of secondary resonances can be neglected with respect to primary
resonances� and the required dominant harmonics can always be found
among the primary resonances� Unfortunately� it seems that such a con�
dition is ful�lled only by the golden vector� given by � � �

p
�� ����� and

also �consequently� by the  noble! vectors �the ones that can be reduced
to the golden vector by a unimodular transformation��

Nevertheless� in other cases one can check a weak separation condi�

tion ���� that can be used in the case of � dominant harmonics� and
ensures the existence of transverse homoclinic orbits� at least for � not
very close to the critical values �n� but not the continuation of these orbits
for all � � �� If this weaker condition is not ful�lled� the study of trans�
verse homoclinic orbits becomes more involved because both primary and
secondary resonances should be taken into account�

To end this introduction� we describe some notations used in this work�
To express the bounds of functions we write jf j � g if we can bound
jf j � cg� with some positive constant c not depending on any of the
parameters that will be relevant to us� � and �� In this way� we do not
describe the �usually complicated� dependence on amounts like 
��� � � �
and include this dependence in the "constants#� We use the notation f � g
if we can bound g � f � g� Finally� the notation f 
 g simply means that
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they are nearly equal� in the sense that their di
erence can be neglected�

�� Quadratic frequencies

The analysis of the small divisors becomes relatively simple in the
case of a quadratic frequency vector � � � ���� ��� such that ����� is a
quadratic irrational number� We assume with no restriction that � is of
the form

� � ������ � � � � ��

where � is a quadratic irrational number� Our aim is to take advantage of
the nice properties of quadratic irrationals� generalizing the results given
in ��
 for the case of the golden number� � � �

p
�� �����

The important feature to be applied is that quadratic vectors are
eigenvectors of suitable integer �� � ���matrices� More precisely� apply�
ing a result established in ���
� there exists a unimodular matrix T �i�e� a
square matrix with integer entries and determinant	�� having a �unique�
eigenvalue � with j�j � �� whose associated eigenvector is �� Denoting
� � det T � 	�� the other eigenvalue of T is ���� �In fact� a generaliza�
tion of the matrix T to higher dimensions is considered in ���
� In our
��dimensional case� the matrix T can be constructed from the continued
fraction of the number �$ see ���
 as a related reference��

It will be a consequence of Theorem � below that� for the quadratic
vector �� the small divisors hk� �i satisfy the Diophantine condition �����
with � � � and some � � �� With this fact in mind� like in ��
 we de�ne�
for every k �Z� n f�g� its associated �numerator� as

�k � �k��� �� jhk� �ij � jkj ����

�for integer vectors� we use the notation jkj � jkj� � jk�j � jk�j�� and
note that always �k � �� We are going to provide a simple classi�cation
of the �quasi��resonances associated to � according to the size of their
numerators �k�

We say that k �Z� n f�g is admissible �or ��admissible� if jhk� �ij �
���� and denote A the set of admissible integer vectors� The analysis of
the resonances can be restricted to the set A� since for any k �� A one
has jhk� �ij � ��� and hence �k � jkj���

We now consider the matrix

U � �T�����

whose eigenvalues are ��� and ��� and we denote u� v their associated
eigenvectors� respectively� One readily sees that hv� �i � ��
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We stress the following fundamental equality�

hUk� �i � hk� U��i � �

�
hk� �i� ����

This implies that if k � A� then also Uk � A� We say that k is primitive

if k � A but U��k �� A� We deduce from ���� that the primitive vectors
are exactly the ones satisfying

�

�j�j � jhk� �ij � �

�
� ����

It is clear that the admissible vectors are those of the form k��j� �
��rint�j��� j�� where j �� � is an integer and rint�j�� denotes the closest
integer to j�� Then� we have hk��j�� �i � j� � rint�j��� When k��j�
is primitive� we also say that j is primitive� and denote P the set of
primitive integers j�

For any given j � P� we de�ne the resonant sequence generated by j
as the following sequence of �admissible� integer vectors�

s�j� n� �� Un��k��j�� n � �� ��	�

The following simple result says that such resonant sequences cover the
whole set of admissible vectors�

Lemma �� For any k � A� there exist j � P and an integer n � �� both
unique� such that k � s�j� n��

Proof� If k � A� one �nds a unique primitive vector in the sequence
U�nk� n � �� Indeed� using ���� one has the equality jhU�nk� �ij �
j�jnjhk�ij� and hence only one of the vectors U�nk satis�es ����� �

The motivation for de�ning the sequences s�j� �� is that they provide
a classi�cation of the resonances� because the numerators �s�j�n� become
nearly constant when n � �� In fact the numerators �s�j�n� oscillate
around a �limit numerator�� which we denote ��j � In the next result we
establish the existence of this limit and provide an explicit formula to
compute it�

Theorem �� For any j � P� there exists the limit numerator

��j �� lim
n���s�j�n� � jhk��j�� �ij �K�j�� K�j� ��

���k��j� � hk��j�� �i
hu� �iu

����
and one has�

�a� �s�j�n� � ��j � O����n�� n � ��
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�b� js�j� n�j � K�j�j�jn�� �O�j�j�n�� n � ��

�c�
�� � ��jjj � a

�j�j � ��j �
�� � ��jjj� a

�
� a � �

�

�
� � juj

jhu��ij
�
�

Proof� We start by writing k��j� as the following linear combination of
the eigenvectors of U �

k��j� � c�u� c�v� c� �
hk��j�� �i
hu� �i � ����

where the value of c� has been obtained by taking a scalar product with
� in the linear combination� Then� we see that

jc�vj � jk��j� � c�uj � K�j�� ����

We deduce from ���� and de�nition ��	� that

s�j� n� �
c�

�n��
u� c�����

n��v�

Then�

js�j� n�j � j�jn��jc�vj �O�j�j�n��

jhs�j� n�� �ij � jhc�u� �ij
j�jn�� �

jhk��j�� �ij
j�jn�� �

and we obtain

�s�j�n� � jhk��j�� �ij � jc�vj �O����n��

whose limit for n�� is

��j � jhk��j�� �ij � jc�vj�
The expressions obtained for js�j� n�j� �s�j�n� and ��j � with ����� imply
most of the statements�

Finally� we have to �nd upper and lower bounds for the limit ��j � Since
j is primitive we can use ���� to give bounds for jhk��j�� �ij� Besides� we
can give bounds for K�j� using that

jK�j� � �� � ��jjjj � jK�j� � jk��j�jj� jjk��j�j � �� � ��jjjj � jc�uj� �

�

�
juj

�jhu� �ij �
�

�
� a�
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where we have bounded jc�j from ����� and have used the equality
jk��j�j � jjj � jrint�j��j with the fact that rint�j�� is the closest in�
teger to j�� Then� the upper and lower bounds for jhk��j�� �ij and K�j�
imply those for ��j � �

We shall always assume that j � � with no restriction�

The lower bound in �c� shows that� although we cannot expect the
limits ��j to be increasing in j� they tend to in�nity as j � �� This
says that the main resonances associated to � can be found among the
sequences ��	� generated by the �rst few primitives� We denote

�� � lim inf
jkj��

�k � min
j�P

��j � ��j� � ����

In this way� the  most resonant! integer vectors are those belonging to
the resonant sequence generated by j�� We call them primary resonances�
and use for them the notation

s��n� � s�j�� n��

We then call secondary resonances the integer vectors belonging to any of
the remaining sequences s�j� ��� j �� j�� We also de�ne the  normalized!
limit numerators ���j in such a way that the minimum of them is ���j� � ��
and introduce a further parameter ���� � �� measuring the separation

between primary and secondary resonances�

���j �
��j
��

� ���� � min
j�Pnfj�g

���j � ����

We point out that �� and ���� will be important constants for us�
�� appears in the constant C� de�ned in �	��� directly related with the
exponentially small estimates for the splitting� and ���� tells us whether it
is enough to consider primary resonances in order to study the splitting
and its transversality� or secondary resonances are also signi�cative�

To end� we illustrate the results of this section for several examples of
quadratic vectors � � ������ For each number � given� we provide the
matrices T and U � the eigenvalue � �which allows us to decide whether
a given integer j is primitive or not�� the minimum �� of the limit nu�
merators� the separation ����� and the �rst few primitives k��j� with their
associated normalized limits ���j � as well as a lower bound for the remain�
ing ones� The �rst example is the golden number studied in ��
�
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Remarks�

��� It is an obvious consequence of Theorem � that the exponent in
the Diophantine condition ���� is � � �� Besides� the constant �
can be taken as the minimum of all the numerators �k� k �� ��
Nevertheless� it is more signi�cant to replace � by the asymptotic
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value �� de�ned in �����
��� We shall implicitly assume the hypothesis that the primitive j�

giving the minimum in ���� is unique� and hence ���� � �� In
fact� this happens for all the cases we have explored� provided
we choose the matrix T suitably�

�	� We see in the examples given above that the limit numerators for
the di
erent resonant sequences are integer multiples of a certain
number� This fact can be proved rigorously �see ��
 for the case
of the golden number�� and implies a wide separation among the
di
erent limit numerators� except for some of them whose limits
may coincide�

�� Dominant harmonics of the splitting potential

To show that the splitting potential L has nondegenerate critical
points� we have to consider at least the � most dominant harmonics in its
Fourier expansion� As we see below� which the dominant harmonics are
depends on �� Nevertheless� for some values of � we will have to consider
the 	 most dominant harmonics because the second and the third ones
can be of the same magnitude�

Taking into account that L is ����quasiperiodic� we can consider for its
Fourier expansion the following expressions�

L�s� 
� �
X
k�Z�

L�keihk������si �
X
k�Z

Lk cos�hk� 
 � ���si � �	k�� ����

where Lk� �	k are real� Lk � � �recall that Z is de�ned in ����� For every
k � Z� the coe�cients of the exponential form and the trigonometric
form are related by L�k � �

�Lke�i��k � L��k � L�k � �
�Lkei��k �

If some condition on the quadratic vector � is satis�ed� all the involved
dominant harmonics of L will be found among the primary resonances�
k � s��n�� We give below in Lemma � an estimate for the dominant har�
monics among the primary ones� as well as bounds for both the remaining
primary harmonics� and all the secondary harmonics�

We recalled in Section ��� that a �rst order approximation in � for
the splitting potential L is given by the Melnikov potential L� de�ned
in ����� Thus� we can study the Fourier coe�cients of L in order to �nd
the dominant ones� analogously to the approach followed in ��
 for the
golden vector� Applying the bounds on the error term ���� given in ��
�
it is possible to show that this dominance persists in the whole splitting
potential L�
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Let us compute the Fourier coe�cients of the Melnikov potential �����

L�s� 
� � �
X

k�Znf�g
fk

�Z
��

�cosx��s � bt�� �� cos�hk� 
 � ���ti � 	k�dt

�
X

k�Znf�g
Lk cos�hk� 
 � ���si � 	k��

Lk � �fk

�Z
��

coshk� ���ti
cosh� bt

dt �
��hk� ���ifk

b sinh��� hk� ���i�
�

��jhk� ���ije��jkj
b sinh j�� hk� ���ij

�	��

�we take L� � � to have zero average�� The integral has been computed by
residues� and we have also used the formula cosx��bt��� � ��� cosh� bt�
Notice that the value of � in ��� does not in�uence the Melnikov potential�
and that the phases 	k in the Fourier expansion of L��� 
� are the same
as in the function f��� given in ���� According to ����� we can expect
Lk� �	k in ���� to be a perturbation of Lk� 	k�

In the analysis of the coe�cients� we �rst proceed in a rough way
in order to motivate the de�nitions of C�� �n and hi��� given below�
To estimate the size of the coe�cients Lk in �	��� we use as in ��
 the
arithmetic properties of � established in Section �� Taking into account
the de�nition of �k in ����� and the fact that b and b� are ��close to ��
we have

jhk� ���ij �
���hk� b��

b
p
�
i
��� 
 �k

jkjp� � �	��

Then� we can give from �	�� the following approximation for the coe��
cients�

Lk 
 �ke
�	k � �	��

where

�k �
���k

jkjp���� expf� �
k
jkjp�g


� �k � 
jkj� ��k
�jkjp� � �		�

The largest coe�cients Lk will be given by the smallest exponents �k�
A more suitable expression for those exponents is�

�k �
C�
p
��k

����	

��
jkj���	
C�
p
��k

�
C�
p
��k

�
jkj���	
�
� �	��
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where we denote ��k � �k��
� analogously to ����� and we consider the

important constant

C� ��
p
��
��� �	��

We deduce from �	�� the lower bound

�k �
C�
p
��k

���	
� �	��

which suggests that the size of the exponent �k is strongly related �if k
is admissible� to the sequence s�j� ��� de�ned in ��	�� to which k belongs�
due to the fact that the numerators tend to a constant for each sequence�
Indeed� we know fromTheorem � that� for k belonging to a given sequence
s�j� ��� the limit of the ��k is the number ���j de�ned in ����� This says that
the smallest exponents �k can be found among the primary resonances
s����� de�ned in �����

Let us study which primary resonances give the smallest exponents�
Recall from Theorem � the approximations

��s��n� � � �O����n�� �	��

js��n�j � K�j��j�jn�� �O�j�j�n�� �	��

Then� taking k � s��n� in �	�� we get

�s��n� 

C�

����	

��
K�j��j�jn�����	
C�

�
C�

�
K�j��j�jn�����	
�
�

C�gn���

���	
�

�	��
where we have considered the decreasing sequences

�n ��
� C�

�
K�j��j�jn��
�	

�
��
�	n

� ��n ��
p
�n�n�� �

��
�	n��

� ����

and the functions

gn��� ��
�

�

h� �

�n

���	
�
��n
�

���	i
� cosh

� ln � � ln �n
�

�
� g���

	n���

which contain the main information on the size of �s��n�� It is clear that
each gn has its minimum at � � �n� Notice that� as a function of ln �� the
graph of gn is simply the graph of g� translated a distance �n ln j�j� This is
illustrated in Figure �� using logarithmic scale for � for the sake of clarity�
Note that for n large� the neglected terms in �	��	�� become smaller� and
the approximation obtained through the function gn��� becomes better�
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We now consider for n � � the intervals In � ���n��� ��n
� I�n � ���n��� �n�
I��n � ��n� ��n
� and de�ne the following functions�

h���� � gn���� for � � In�
h���� � gn������ h
��� � gn������ h	��� � gn������ for � � I �n�
h���� � gn������ h
��� � gn������ h	��� � gn������ for � � I ��n� ����

By connecting the successive intervals In� we get that these functions are
continuous for all � � � � ���� and satisfy the equality

hi��
	�� � hi��� ����

for any �� In other words� the functions hi are � ln j�j�periodic in ln �� See
Figure � for an illustration of the functions hi����

An equivalent way to introduce these functions is to de�ne

h���� �
�

�

h� �

��

���	
�
���
�

���	i
� � � I��

h���� �

���
�	

�
�

h�
�
��

���	
�
�
��
�

���	i
� � � I���

�
�

h�
�
��

���	
�
�
��
�

���	i
� � � I��� �

and similarly for h
��� and h	���� and extend them according to �����
De�ning the constants

Ai �
�

�
�j�ji�� � j�j�i���� ��	�

we can easily check the following bounds for the functions hi����

� � h���� � A� � h���� � A� � h
��� � A
 � h	��� � A	�

where equalities can take place only for � � �n� �
�
n� More precisely� for

� � �n we have h� � h� � h
 � h	� and for � � ��n we have h� � h� �
h
 � h	 �see Figure � again��

For any given � � ��� we de�ne Ni � Ni���� i � �� �� 	� �� as the
� integers n � � minimizing gn���� This means that

gN���� � gN� ��� � gN���� � gN���� � gn��� �n �� N�� N�� N
� N	�
����

For � belonging to a concrete interval In� the �rst minimum is given by
N� � n� The second� third and fourth minima are N� � n	�� N
 � n��
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Fig� �� The functions hi��	 �using logarithmic scale for ���

and N	 � n 	 � respectively� and the signs depend on the subinterval to
which � belongs� I�n or I ��n� In this way� the integers Ni are consecutive

�but not ordered�� The main fact to be used is that the values of the
� minima are given by the functions hi de�ned in ����� Indeed� one easily
checks that

gNi��� � hi���� i � �� �� 	� �� ����

Notice that there is some ambiguity in the de�nition of Ni��� at the
endpoints of the intervals� but the important fact is that they are critical
values at which some of the Ni��� giving the minima change when � goes
across them�

For the sake of shortness� we also denote

Si � Si��� �� s��Ni����� i � �� �� 	� ��

the primary resonances indexed by the minimizing integers� As a con�
sequence of Theorem � and the de�nition of Ni� one easily deduces the
following estimate� to be used later�

jSij � j�jNi � ����	� i � �� �� 	� �� ����

The next lemma implies that the 	 most dominant harmonics of the
splitting potential� among the primary ones� are the �consecutive� ones
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corresponding to S�� S�� S
� giving an asymptotic estimate for the coe��
cients LSi � as well as a bound comparing the phases �	k with the original
phases 	k in ��� �this is a
ected by the translation s��� that appears
in ������ Besides� the lemma provides an estimate for the sum of all the
coe�cients Lk �recall that Lk � �� associated to primary resonances�
except the l dominant ones �� � l � 	�� in terms of the �rst neglected
harmonic among the primary ones� LSl�� � as well as an upper bound for
the sum of all the coe�cients Lk associated to secondary resonances� The
sum of the two bounds can be considered as a bound of the di
erence
between the splitting potential and the main part of it� given by the
dominant harmonics� In fact� since we are interested in some derivative
of the Melnikov potential� we consider the sum of �positive� amounts of
the type jkjmLk� The constant C� in the exponentials has been de�ned
in �	���

We recall that the notations  �! and  �! were introduced at the end
of Section ��	�

Lemma �� Assume that � � � and � � �p� p � p�� with p� as de�ned
in �������� Then� one has�

�a� LSi � �
����

exp
n
� C�hi���

����

o
�

j�	Si � 	Si � s���hSi� ���ij � �
�p

� � i � �� �� 	� ��

�b�
P

k�s����
k 	�S��


 �Sl

jkjmLk � �
�m��LSl�� � � � l � 	� m � ��

�c�
P

k��s����
jkjmLk � �

��m����� exp
n
� C�

p
�
��

����

o
� m � ��

Proof� The proof follows essentially as in ��
� and we only give here a
sketch of the proof� The main idea is to deduce the results for the coe��
cients Lk of the splitting potential comparing them with the coe�cients
Lk of the Melnikov potential� with the help of the bound for the error
term ���� provided in ��
� In the notation ����� the Fourier coe�cients
�in the exponential form� are M�

k � ikL�k and M�
k � ikL�k respectively�

Then� we see from ���� that the Fourier coe�cients of the error term

R�s� 
� are R�
k � ik�L�k � �L�ke

�is���hk���i�� k �� �� and taking modulus
and argument we get

jLk � �Lkj � jR�
kj

jkj � j�	k � 	k � s���hk���ij � jR�
kj

jkj�Lk � ����
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It is given in ��� Th� ��
 �see also ���Th� �
� a bound for the error term
on a complex domain� jImsj � ���� �� jIm
j � 
j � �� where � � � is a
small reduction� Choosing � � ���	� the bound on such a domain can be
written as

jRj � ��

�q
�

with q � ��� if � � �� and q � ��� if � � � �recall that there is some
improvement in the case of a �xed torus�� Since R is ����quasiperiodic�
applying to it a standard result �see� for instance� ��� Lemma ��
� we get
the following bound for its Fourier coe�cients�

jR�
kj �

��

�q
e��	k 
 ��

�q
e�	k �

��k � �
 � ���	�jkj� �
�

�
� ���	�jhk� ���ij 
 �k ����

where� as in ��
� the perturbation terms with ���	 in the exponent ��k
can be neglected thanks to the denominator ���	 in �	��� and the ��small
terms in ��� can be neglected as in �	���

To establish �a� and �b� we only need to consider primary resonances�
For the coe�cients Ls��n� of the splitting potential� in a �rst step we con�
sider the approximation given by the coe�cients Ls��n� of the Melnikov
potential and look for the dominant ones� Then� in a second step we show
that� if � � �p with p � p�� such dominance remains unchanged when
the error term ���� is added�

Thus� we �rst look for the largest coe�cients Ls��n�� i�e� the smallest
exponents �s��n�� We see from �	�� and ���� that the � smallest exponents
are the ones obtained for n � Ni� Since the functions hi��� have been
de�ned in such a way that ���� holds� we deduce that

�Si 

C�hi���

���	
� i � �� �� 	� ��

We see from ���� that �Si � ����	 in �	��		�� and hence

LSi �
�

���	
exp

n
� C�hi���

���	

o
� i � �� �� 	� �� ����

We have to recall that we are dealing with approximations� and we ac�
tually have a perturbation of the situations described� due to the terms
neglected in �	�� and �	��	��� As thoroughly explained in ��
� if we take
into account the size of the terms neglected� we can see that� under our
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choice of �� the asymptotic estimates for the dominant coe�cients remain
the same�

Now� to estimate the size of the coe�cients LSi of the splitting po�
tential� we use ��tark���tark�� together with �domprimary�� and we
get

jLSi � �LSi j �
��

�q���	
exp

n
� C�hi���

���	

o
� i � �� �� 	� ��

This upper bound is dominated by the term j�LSi j� estimated
in �aproxmelnidom�� provided � � �p with p � q � ��� � p�� Taking
p� as de�ned in �������� we obtain the �rst statement of �a�� and the
second one is proved in a similar way�
The proof of �b� works as in ��
� bounding the sum of the co�

e�cients js��n�jmLs��n�� excluding some �consecutive� dominant ones
�n �� N�� � � � � Nl�� by a geometric series whose main term is the next
dominant harmonic �n � Nl���� It can also be shown that the term
js��n�jm does not a
ect such dominance�

Finally� we can prove �c� in a similar way� bounding the sum of the
secondary coe�cients jkjmLk with k � s�j� ��� j �� j�� by a geometric
series� Now� an upper bound for the main term of this series can be
given from the lower bound �	�� for the exponent �k� and using that the
normalized numerators ��k� for k � s�j� ��� tend to ���j � ����� In fact� the
sum also includes the coe�cients associated to non�admissible k� i�e� not
belonging to any sequence s�j� �� �see Section ��� Such coe�cients are
clearly dominated by the admissible ones� since we have �k � jkj�� and
we always �nd in �		� that �k � ��

p
� for the non�admissible case� �

Remarks�

��� We have shown that the harmonics Si are the most dominant
among the primary ones� but it is not excluded that some sec�
ondary harmonic can be more dominant than some of the Si�
This depends on the relation between the separation ���� and the
constants Ai introduced in ��	�� Thus� if Ai �

p
���� � Ai��� we

can ensure that the i most dominant harmonics are primary �see
Figure � again��

��� To give a more re�ned bound in �c�� we could de�ne some func�
tions �periodic in ln �� for the secondary resonances� analogous
to the functions hi��� introduced in ����� Then� the number of
�primary or secondary� dominant harmonics for which asymp�
totic estimates can be given could be bigger than in the previous
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remark� It is not hard to carry out this approach for concrete
examples of quadratic frequencies� but it seems more involved to
give a general description of it�

�	� Assume that we consider a perturbation f��� having only prima�
ry harmonics� instead of the  full! series considered in �� Then�
the Melnikov potential L has only primary harmonics� The split�
ting potential L can be  full!� but its secondary harmonics would
be ���small �since they come from the error term�� Then� the
dominant harmonics would all be found among the primary ones�
and this is not obstructed by the separation ����� An example of
this type is given in ��
� where the frequency vector is the golden
one and the perturbation has only the harmonics associated to
Fibonacci numbers�

�� Critical points of the splitting potential

We are going to use in this section the estimates given in Lemma 	�
to show that the splitting potential L��� 
� has nondegenerate critical
points ��xing s � ��� First� we will study the critical points for the
approximations given by the � or 	 most dominant harmonics� among
the primary ones�

L����
� �
X
i����

LSi cos�hSi� 
i � �	Si ��

L�
��
� �
X

i�����


LSi cos�hSi� 
i � �	Si�� ����

Afterwards� we discuss the persistence of these critical points in the whole
function L��� 
�� As the functions hi��� de�ned in ���� suggest� it seems
natural to consider the � dominant harmonics for most values of �� and
	 dominant harmonics for � close to a critical value �n� Nevertheless�
we stressed in remark � after Lemma 	 that some of the dominant har�
monics may be secondary� depending on the separation ����� Then� the
approximations de�ned in ���� would not be good enough�

Anyway� to begin we study the function L���� for � �� �n� and the
function L�
� for � �� ��n� To �x ideas� we look at concrete intervals� we
assume � � ��n� �n��� in the �rst case� and � � ���n��� �

�
n� in the second
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case� Recalling Figure �� note that

S� � s��n�� S� � s��n� ��� S
 � s��n � ��� for � � ���n��� ��n��

S� � s��n�� S� � s��n� ��� S
 � s��n � ��� for � � ��n� �
�
n��

S� � s��n� ��� S� � s��n�� for � � ���n� �n����

In order to have a simpler expression for the functions L�i��
�� we carry
out in both cases the linear change �
�� 
�� �� ���� ��� de�ned by

�� � hs��n� ��� 
i � �	s��n���� �� � hs��n�� 
i � �	s��n�� ����

which can be written as

� � An
 � bn� where An �

�
s��n� ���

s��n��

�
� bn �

�
�	s��n���
�	s��n�

�
� ����

This change is not always one�to�one on T�� Indeed� calling

� � detU � 	�� � � trU�

we have U� � �U � �Id and we deduce the following recurrence relation
for the primary resonances�

s��n� �� � �s��n�� �s��n� ���

Using induction� we deduce from this relation that j detAnj � � for all
n� where we denote

� �� j detA�j � j det�k��j��� Uk��j���j ��	�

�a nonvanishing integer� since k��j�� is not an eigenvector of U �� This
says that the change ���� takes � points �
�� 
�� to � point ���� ���� With
the change ����� the functions L����
�� L�
��
� move respectively to the
following ones�

K������ � A cos�� � B cos���

K�
���� � B��� �Q� cos�� �B cos�� �B�Q cos���� � ��� ���	��
����

where we denote

A � Ls��n���� B � Ls��n��

� �
Ls��n��� � Ls��n���

Ls��n�
� Q �

Ls��n���
Ls��n��� � Ls��n���

�

��	 � �	s��n��� � � �	s��n� � ��	s��n��� �T� R���Z� ����



EXPONENTIALLY SMALL SPLITTING ���

Note that A� B� � and Q are positive� because so are the coe�cients Lk
in ����� Looking at K���� we have B � LS� � A � LS� for � � ��n� ��n�� and
A � LS� � B � LS� for � � ���n� �n���� i�e� the �rst and second dominant
harmonics swap when � goes across the value ��n�

Instead� when looking at K�
� we have B � LS� for any � � ���n��� �
�
n��

So the �rst dominant harmonic of K�
� is always cos��� whereas the
second and third ones swap when � goes across �n� Note that � measures
the size of the second and third harmonics with respect to the �rst one�
and Q is an indicator of the relative weight of the second and third
harmonics �� � Q � ��� We study K�
� in terms of � and Q� considering
� as a perturbation parameter �note that � � LS��LS� is small except for
� close to the endpoints ��n� ��n���� However� we have to point out that �
and Q are not independent parameters� because they are both linked to
��

In the next lemma� we show the existence of � critical points for �
small enough and any Q� provided the di
erence of phases ��	 �Tis not
very close to � or � �mod ���� To measure this closeness� we denote

�	� � min�j��	j� j��	� �j��
Lemma ��

�a� The function K��� has exactly � critical points� all nondegenerate�

�
���
��� � ��� ��� ������� � ��� ��� �����
� � ��� ��� �����	� � ��� ��� At the

critical points� j detD�K���������j� �j � AB�

�b� Assume �	� � � and de�ne E�
�� ��
� by

E�
� �
p
�� �Q��� Q���� �	��� cos��	��

cos��
� �
��� Q� � �	���Q cos��	

E�
� � sin��
� � � �	��� �Q sin��	

E�
� �

Then� for any Q � ��� �
 and � � � � �	� the function K�
� has

exactly � critical points� all nondegenerate� �
�
�
�j� � �

�
�
�j����O����

j � �� �� 	� �� where �
�
�
����� � ������ ��� �

�
�
����� � ������ ��� ��
��
��� �

����� � �� ��� �
�
�
�	��� � ����� � �� ��� At the critical points�

j detD�K�
���
�
�
���
��j � B��E���� � O������

j detD�K�
����
����	��j � B��E���� � O������
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Proof� We do not prove �a�� because it is very simple� Instead� the proof
of �b� requires some more work� and is carried out as in ��
� The critical
points of K�
� are the solutions of the following system of equations�

sin�� � ���� ���Q� sin��� ���Q� sin����Q sin�����������	� � ��
����

It is clear that� for � small enough� the solutions of the �rst equation
of ���� are two curves in T�� One of these curves is ��close to the line
�� � �� and the other one is ��close to the line �� � �� To get the
solutions of ���� on the �rst curve� we replace �� � O��� into the second

equation� and obtain the equation F
���
� ���� � �� with

F ���
� ���� � ���Q� sin�� � Q sin��� � ���	� � O���

� E��� sin��� � ����� � O����

For � � �� the solutions are clearly ���� and ���� � �� except for the
case that E��� � � �avoided with the condition �	� � ��� Note that

E��� �
p
�� � cos��	��� � �	� and� consequently� these solutions persist

for � � �	�� The perturbed solutions obtained give rise to the critical

points �
�
�
���� �

�
�
�
��

Analogously� one can replace �� � � �O��� into the second equation

of ����� obtaining the equation F
���
� ���� � �� with

F ���
� ���� � ��� Q� sin�� � �����Q sin��� � ���	� �O���

� E��� sin��� � ����� � O����

whose solutions are now ��perturbations of ���� and ������� except for

the case that E��� � � �also avoided�� leading to the critical points �
�
�
����

�
�
�
�	��

The determinant is easily computed� We have

det D�K�
����

� B��� cos�� � ���� Q� cos�� � Q cos���� � ��� ���	�� � O�����

for any � �T�� At the point �
�
�
��� � ������ �� � O���� we obtain

detD�K�
����
����� � B����F ���
� �������� � O����� � B��E���� �O������

and similarly with �
�
�
���� �

�
�
�
�� �

�
�
�	�� �
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Remarks�

��� The amount �	�� which measures the distance from ��	 to the
 forbidden! values � and � �mod ���� depends on n� as we see
in ����� However� in Theorem � we will assume �	� greater than a
concrete positive constant �independent of n� by imposing a sim�
ple condition on the phases 	s��n� of the initial perturbation ����

��� We can give a description of the continuation of the critical points
of K�
� as Q goes from � to � �recall that this corresponds to
transfer the second dominance from the harmonic cos�� to the
harmonic cos����� ������	��� Assuming for instance that � �

��	 � �� the point �
�
�
��� drifts on a line from ��� �� to ���	� �� with

the �rst component increasing� the point �
�
�
����� drifts on a line

from ��� �� to ���	 � �� �� with the �rst component decreasing�

etc� When one considers the perturbed points ��
�
�j�

� �
�
�
�j���

�

O���� such lines become close curves�
�	� If ��	 is near to � or �� one of the determinants� given at �rst

order by E�
�� can be very small� Indeed� for Q � ��� one has

E�
� �
q

�
��� � �	��� cos��	�� Then� studying more carefully

the term O��� neglected from the equations one could show that�
near this value Q � ���� bifurcations of some of the � critical
points can take place� Examples of such bifurcations have been
shown in ���
�

��� Concerning the possibility of bifurcations� we stress here that two
di
erent situations may occur depending on whether � � trU is
odd or even� This can be seen from the expressions of E�
� given
in the previous remark for Q � ���� studying when such expres�
sions vanish� One gets that� if � is odd� then for��	 close to � the

critical points �
�
�
���	� may bifurcate� whereas ��	����	� continue�

and for ��	 close to � the situation is the opposite� Instead� if �
is even� then for ��	 close to � the � critical points continue� and
for ��	 close to � the � critical points may bifurcate�

Next� we translate the results of Lemma � through the linear
change ����� As said in ��	�� each critical point of the function K�i����

gives rise to � critical points of L�i��
�� For each critical point 
�i�� � we

also �nd an estimate for �the modulus of� the minimum eigenvalue m
�i�
�

of the symmetric matrix D�L�i� at this point� This eigenvalue is closely
related with the transversality of the homoclinic orbit associated to the
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critical point�

Lemma 	�

�a� The function L��� has exactly �� critical points 

���
� � all nonde�

generate and satisfying

m
���
� � p

�LS� �
�b� Assuming �	� � � and LS� � �	�LS� � the function L�
� has exactly

�� critical points 

�
�
� � all nondegenerate and satisfying

�	�
p
�LS� � m

�
�
� � p

�LS� �

Proof� For the minimum eigenvalue �in modulus� of D�L����
���� �� we
use the following expression�

m
���
� �

�jDj
jT j�p

T � � �D
� ����

where we denote D � detD�L����
���� � and T � trD�L����
���� �� So we

have to �nd estimates for D and T � It is clear that D�L����
���� � �

A�
nD

�K�����
���
� �An and� since j detAnj � �� we obtain directly from

Lemma � that jDj � ��AB � ��LS�LS� � On the other hand� writing

D�K��������� � �

�
k�� k��
k�� k��

�
we see that

D�L��������� � � k��s��n� ��s��n� ���

� k���s��n � ��s��n�
� � s��n�s��n � ����

� k��s��n�s��n�
�

and we obtain

T � k��hs��n� ��� s��n� ��i� �k��hs��n� ��� s��n�i� k��hs��n�� s��n�i�
����

Using that jk��j � A� jk��j � B and k�� � �� and also that LS� �
max�A�B� and estimate ����� we deduce that jT j � LS��

p
�� Since jDj 


T �� we see from ���� that

m
���
� � jDj

jT j �
p
�LS� �
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To estimate the minimum eigenvalue of D�L�
��
�
�� �� we can proceed
analogously� Applying Lemma �� we obtain

jDj � ��B��E�
�� � O����� � L �
S�E

�
�� � E�
�LS�LS� � �	�LS�LS� �
under the following additional condition �required in Lemma ���

� � LS�
LS�

� �	��

We can give an estimate for T using equality ���� again� but now with
jk��j � B�� � O���� � LS� and jk��j� jk�� � B� � LS� � obtaining the
same estimate for jT j as before and� consequently� the expected estimate

for m
�
�
� � �

After having studied the critical points of the approximations L����
L�
�� the last step is to study their persistence in the whole splitting
potential L� In order to apply the result on L�
� in Lemma �� and estab�
lish �for suitable quadratic frequencies� the existence and continuation of
nondegenerate critical points for all �� �� we will assume in ��� that the
di
erence of phases

�	n �� 	s��n��� � �	s��n� � �	s��n���

keeps far away from � or � �mod ��� for any n� for some �xed 	� � ��

min�j�	nj� j�	n� �j� � 	� �n � �� ����

As a concrete example such that condition ���� holds� we can consider
in ��� a sequence of �primary� phases given by the recurrence 	s��n��� �
�	s��n� � �	s��n��� � ���� n � �� from any starting 	����� 	����� On the
contrary� we stress that condition ���� does not hold in the case of a
reversible perturbation� given by an even function f���� In such a case�
bifurcations of some of the homoclinic orbits� when � goes across some
critical values� have been described in ���
�

The next theorem is formulated in terms of the splitting function�
M��� 
� � ��L��� 
�� which gives a measure of the distance between the
whiskers� In this theorem� we establish under some conditions the exis�
tence of �� simple zeros ofM��� 
�� denoted 
�� and we provide for these
zeros an estimate for the minimum eigenvalue �in modulus� of the split�

ting matrix ��M��� 
��� As pointed out in ��
� this minimum eigenvalue
provides a lower bound for the transversality of the homoclinic orbit as�
sociated to the zero 
�� Recall that the integer � � � was introduced
in ��	��
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To get the continuation for all �� � of the critical points� we have to
assume that our quadratic frequency vector � satis�es the strong separa�
tion condition� p

���� � �A� � � ����

�recall that the constants Ai have been de�ned in ��	��� Otherwise� we
can get the persistence of all the critical points for � not very close to
the critical values �n �in other words� for � close enough to the values ��n�
provided � satis�es the weak separation condition�

p
���� � A�� ����

We stress that the two separation conditions can be explicitly checked
for concrete quadratic frequencies� For instance� in the four examples
considered in Section �� we checked that example � �the golden vector�
satis�es ����� examples � and 	 satisfy ����� and example � satis�es none
of them� Unfortunately� it seems from our numerical explorations that
the only frequency vectors satisfying the strong condition ���� are the
golden vector and any other noble vector �the ones that can be reduced
to the golden vector by a unimodular transformation$ the constants ����

and Ai are the same for all of them�� Nevertheless� the result obtained
may be relevant if we take into account that noble vectors are dense�

For the sake of completeness� we have also included a much simpler
statement concerning the maximum size �in modulus� of the splitting
functionM��� 
�� giving in this way an asymptotic estimate for the max�
imum splitting distance� Notice the di
erence in the exponents given by
the functions h���� and h���� illustrated in Figure ��

Theorem 
� For the example introduced in ������ assume that � � �
and � � �p� p � p�� with p� as de�ned in �������� Assume also that
condition ���� on the phases is ful�lled� Then� one has�

�a� Under the weak separation condition ����� the following estimate
holds�

max
��T�

jM��� 
�j � �p
�
exp

n
� C�h����

���	

o
�

�b� Under the weak separation condition ����� there exists �� with
� � � � ��� such that if � belongs to some interval ���n� �n������
the functionM��� 
� has exactly �� zeros 
�� all simple �with the
integer � � � de�ned in ��	���
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�c� Under the strong separation condition ���� for any � �
�	�����p�p

��� the function M��� 
� has exactly �� zeros 
�� all
simple�

In both cases �b� and �c�� the minimum eigenvalue �in modulus� of
��M��� �� at each zero satis�es the estimate

	�����	 exp
n
� C�h����

���	

o
� m� � ����	 exp

n
� C�h����

���	

o
�

Proof� We write M � ��L� To prove �a�� we consider as in ���� the
approximation L��� given by the � most dominant harmonics� We can
easily give an estimate for ��L��� by writing it in the variables � as
in ����� and applying Lemma 	 �we use the notation j � j for the supremum
norm on T���

j��L���j � �

���	
LS� � j��L��� ��� ��L���j � �

���	
�LS� � S��

where we denote� for the bound coming from secondary resonances�

S �
�

���	
exp

n
� C�

p
����

���	

o
�

Since we always have h���� � h
���� we obtain the expected asymptotic
estimate �a� for jM��� ��j�

To prove �b� and �c�� we will show that L has nondegenerate critical
points� choosing L��� or L��
� as a suitable approximation� since we know
from Lemma � that the critical points of these functions are all nondegen�
erate� The choice of the approximation depends on the closeness of � to
the values �n� ��n� More precisely� in some interval around ��n� we consider
L��� and� near �n� we consider L�
�� We are going to study whether the
two intervals where the approximations are valid intersect and the results
are valid for all � �small enough� or� on the contrary� some intervals of �
have to be excluded� This will depend on the separation �����

First� for � � ��n� �n��� we consider for the function G�
� �M��� 
� �
��L��� 
� the �rst approximation given by G��
� � ��L����
�� Recall that
the zeros 


���
� of G� are all simple� and an estimate form

���
� � the minimum

eigenvalue of DG��

���
� �� has been given in Lemma ��a�� According to a

quantitative version of the implicit function theorem �see for instance
��� Appendix
�� this zero of G� persists as a �perturbed� zero 
� of G
provided inequalities of the following types are ful�lled�

jG� G�j � �m���
� ��

jD�G�j � jDG� DG�j � m
���
� � ����
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We have from Lemmas 	�b� and ��a� the estimates

jG�G�j � �

���	
�LS� � S�� jDG�DG�j � �

����
�LS� � S��

m
���
� � p

�LS� � jD�G�j � �

�
�	
LS� �

Using these estimates� we see from ���� that we need

LS� � S �
��L �

S�

LS�
� ��	�

Taking logarithms� we see that ��	� can be written as the following in�
equality �with a suitable constant c��

�h�����h���� � h�
����
���	

C�
ln�c���� h�
��� �� min�h
����

p
������ ����

This inequality is going to be analysed later�
For � � ���n��� ��n�� we consider for G�
� the �rst approximation given

by G��
� � ��L�
��
�� In this case� to apply Lemma ��b� to the zeros of



�
�
� of G�� we have two check two additional conditions� The �rst one is
that the di
erence of phases ��	n � �	s��n���� � �	s��n�� ��	s��n��� is not
very close to � or � �mod ���� Indeed� we get from Lemma 	�a� that
j��	n��	nj � ���p

�

� Recalling that � � �p� we see that ���p
� � 	�� and

deduce from from ���� the lower bound min�j��	nj� j��	n��j� � 	�� The
second condition can be written as LS� � 	�LS� � which can be written
as

h���� � h���� �
���	

C�
ln�c	��� ����

Then� we have given in Lemma ��b� a lower bound for the minimum

eigenvalue m
�
�
� � Applying the implicit function theorem as before� we see

that the zero 

�
�
� persists as a zero 
� of G provided

LS� � S �
�	����L �

S�

LS�
�

which can be written as

�h���� � h���� � h�	��� �
���	

C�
ln�c�	������ h�	��� �� min�h	����

p
������

����
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To get the continuation of the perturbed zeros we need that every �
satis�es ���� or �������� To study this� we can restrict ourselves to the
interval ��n� ��n
 �the intersection of the two intervals considered above��
and the results can easily be extended outside this interval using the
symmetries of the functions hi����

The behaviour of the involved functions on the interval ��n� ��n
 can
be described as follows �see also Figure ��� the function h� increases
from � to A�� the function h� decreases from A� to A�� the function
h
 increases from A� to A
� the function h	 decreases from A	 to A
�
and the function �h� � h� decreases from �A� � � to A�� Besides� the
functions h
 and �h� � h� intersect at some %�n with a common value %A
�the values %�n and %A can be found explicitly if desired�� Recall that the
constants Ai� de�ned in ��	�� only depend on j�j � �� One can check
that A� � %A � �A� � � � A
 �to check the last inequality� one may use
that j�j
���A
 � �A� � �� is a polynomial in j�j��� with no real roots for
j�j � ���

Now� to study the intervals where inequalities ������� are ful�lled� we
have to replace h
� h	 by h�
� h�	� Hence we have to take into account the
situation of

p
���� with respect to the values Ai� �A� � �� %A considered

above� Besides� there is a contribution coming from the term contain�
ing ���	 and a logarithm in the three inequalities� This small term only
gives rise to a small perturbation of the results� although it has to be
seriously taken into account in inequality ����� which will be true for all
� � ��n� ��n� excluding a small neighbourhood close to ��n� On the other
hand� note that ���� always implies ����� that the approximation giv�
en by the � dominant harmonics is valid� the one given by 	 dominant
harmonics is valid as well� unless � belongs to the small neighbourhood
where inequality ���� does not hold�

One can check� taking those considerations into account� that if the
strong separation condition ���� is ful�lled� then every � in the whole
interval considered satis�es ���� or �������� and hence the zeros per�
sist� More precisely� we can consider � dominant harmonics only for
� � �%�n� �

�
n
� and 	 dominant harmonics for � � ��n� %�n
�

If the strong condition does not work but instead the weak condi�
tion ���� is ful�lled� then there exists � � � � �� such that every
� � ���n� �

�
n
 satis�es ���� or �������� The value ��n is the solution of

�h���� � h���� �
p
����$ it moves from �n to ��n as

p
���� goes down from

�A�� � to A� �at the end� the interval shrinks to ��n�� If the weak condi�
tion ���� is not ful�lled� the interval is empty and both inequalities ����
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and ���� are false� Note that the interval ���n� ��n
 becomes ���n� �n�����
if the results are extended using the symmetry of the functions hi �con�
sidered as functions of ln ���

For the cases such that the persistence of the zeros has been estab�
lished� the upper and lower bounds for the minimum eigenvalue at each
zero come from Lemma �� �
Remarks�

��� In the weak condition case considered in �b�� it can be seen from
the proof that� for

p
���� � %A� condition ���� can be removed

because we do not need to consider the 	 dominant harmonics
case� We have ignored this in order to write a simpler statement
of the theorem�

��� As said in remark 	 after Lemma 	� if we consider in ��� a pertur�
bation f��� having only primary harmonics� then no obstruction
comes from secondary harmonics� and the result of �c� would be
valid independently of the separation ����� However� this would
be a rather arti�cial example�
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