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Abstract

The splitting of separatrices of hyperbolic �xed points for exact symplectic
maps of n degrees of freedom is considered� The non�degenerate critical points of
a real�valued function �called the Melnikov potential� are associated to transverse
homoclinic orbits and an asymptotic expression for the symplectic area between
homoclinic orbits is given� Moreover� if the unperturbed invariant manifolds are
completely doubled� it is shown that there exist� in general� at least � primary
homoclinic orbits ��n in antisymmetric maps�� Both lower bounds are optimal�

Two examples are presented� a 	n�dimensional central standard�like map and
the Hamiltonian map associated to a magnetized spherical pendulum� Several
topics are studied about these examples� existence of splitting� explicit compu�
tations of Melnikov potentials� transverse homoclinic orbits� exponentially small
splitting� etc�
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� Introduction

In a previous work �DR���
 the authors were able to develop a general theory for per�
turbations of an integrable planar map with a separatrix to a hyperbolic �xed point�
The splitting of the perturbed invariant curves was measured
 in �rst order with respect
to the parameter of perturbation
 by means of a periodic Melnikov function M de�ned
on the unperturbed separatrix� In case of area preserving perturbations
 M has zero
mean and therefore there exists a periodic function L �called the Melnikov potential�
such that M � L�� Consequently
 if L is not identically constant �respectively
 has
non�degenerate critical points�
 the separatrix splits �respectively
 the perturbed curves
cross transversely�� Moreover
 under some hypothesis of meromorphicity
 the Melnikov

�
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potential is elliptic and there exists a Summation Formula �see Appendix� to compute
it explicitly�

The aim of this paper is to develop a similar theory for more dimensions� The natural
frame is to consider exact symplectic perturbations of a �n�dimensional exact map with
a n�dimensional separatrix associated to a hyperbolic �xed point�

Exact symplectic maps F � P � P are de�ned on exact manifolds
 i�e�
 �n�dimen�
sional manifolds P endowed with a symplectic form � which is exact� � � � d�� and
they are characterized by the equation F �� � � � dS for some function S � P � R

called generating function of F �

The typical example of an exact symplectic manifold is provided by a cotangent
bundle T �M
 together with the canonical forms ��
 ��
 which in cotangent coordinates
�x� y� read as �� � y dx
 �� � dx � dy� Typical exact symplectic maps are the so�
called twist maps
 which satisfy F ��y dx� � y dx � Y dX � y dx � dL�x�X�
 where
�X� Y � � F �x� y�� The fact that the generating function S can be written in terms of
old and new coordinates� S�x� y� � L�x�X�
 is the twist condition that gives the name
to these maps� The function L is called twist generating function� As in �Eas���
 we
will not restrict ourselves to this typical case
 since the results to be presented in this
paper are valid on arbitrary exact symplectic manifolds and the twist condition is not
needed�

The exact symplectic structure plays a fundamental role in our construction
 since
it allows us to work neatly with geometric objects� For example
 it is used to introduce
two homoclinic invariants� the action of a homoclinic orbit and the symplectic area
between two homoclinic orbits
 called simply homoclinic area�

Namely
 let p� � P be a hyperbolic �xed point of F 
 which lies in the intersection
of the n�dimensional invariant manifolds Wu�s� Given a homoclinic orbit O � �pk�k�Z of
F 
 i�e�
 O � �Wu � Ws� n fp�g and F �pk� � pk��
 we de�ne the homoclinic action of
the orbit O as

W �O� ��
X
k�Z

S�pk��

where
 in order to get an absolutely convergent series
 the generating function S has
been determined by imposing S�p�� � �� Given another homoclinic orbit O� of F 
 the
homoclinic area between the two homoclinic orbits O
 O� is de�ned as the di�erence
of homoclinic actions �W �O�O�� �� W �O� �W �O��� These two objects are symplectic
invariants
 i�e�
 they neither depend on the symplectic coordinates used
 nor on the
choice of the one�form �� It is worth noting that in the planar case
 the homoclinic
area is the standard �algebraic� area of the lobes between the invariant curves �MMP
�

Mat
�
 Eas��� and also measures the �ux along the homoclinic tangle
 which is related
to the study of transport �MMP
�
 RW


 Mei����

The unperturbed role will be played by an exact symplectic di�eomorphism F� �
P � P
 de�ned on a �n�dimensional exact manifold P
 which possesses a hyperbolic
�xed point p� and a n�dimensional separatrix � � Wu

� � Ws
�
 where Wu�s

� denote the
invariant manifolds associated to p��
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Consider now a family of exact symplectic di�eomorphisms fF�g
 as a general per�
turbation of the situation above
 and let S� � S���S��O���� be the generating function
of F��

The main analytical results of this paper are stated and proved in section �� There

the Melnikov potential is introduced as the real�valued smooth function L � � � R

given by
L�p� ��

X
k�Z

bS��pk�� pk � F k
� �p��

where bS� � P � R is de�ned as bS��p� � S��p� � ��F��p���F��p��
 and F� is the �rst
order variation in � of the family fF�g
 that is
 F��p� � ��F��p�����j���� Obviously
 S�

is determined by imposing bS��p�� � �
 in order to get an absolutely convergent series�
In theorem ��� it is established that

�i� the Melnikov potential L is F��invariant� L � F� � L


�ii� if L �	 constant
 the perturbed invariant manifolds Wu�s
� split for � � j�j 
 �


�iii� the non�degenerate critical points of L are associated to transverse intersections
of the perturbed invariant manifolds


�iv� the above�mentioned homoclinic invariants are given in �rst order by L�

As a matter of fact
 the perturbed homoclinic orbits detected by the Melnikov po�
tential are all of them primary homoclinic orbits O� of F�
 i�e�
 they are smooth in � for
j�j small enough�

The Melnikov potential admits several reformulations� For example
 if F� is a twist
map on a cotangent bundle T �M
 with twist generating function L� � L���L��O����
bS� has the simple form bS��p� � L����p�� ��F��p���
 where � � T �M�M is the natural
projection� Consequently
 the Melnikov potential reads as �DRS���

L�p� �
X
k�Z

L��xk� xk���� xk � ��pk��

where L� is determined by imposing L��x�� x�� � �
 and x� � ��p��� Another in�
teresting situation
 that allows us to compare the continuous and discrete frames
 is
to consider Hamiltonian maps� Let H� � P � R � R be a time�periodic Hamiltonian
of period T 
 and F� � �T

� 
 where �t
��p� is the solution of the associated Hamilto�

nian equations with initial condition p at t � �� If H� � H� � �H� � O����
 thenbS��p� � � R T� H���
t
��p�� t� dt
 so the Melnikov potential takes the form �already known

to Poincar�e�

L�p� � �
Z
R

H���
t
��p�� t� dt�

where H� is determined by imposing H���
t
��p��� t� 	 �
 or simply H��p�� t� 	 �
 if H�

is autonomous�
An essential ingredient for the proof of theorem ��� is the fact that the invariant

manifolds Wu�s
� are exact Lagrangian immersed submanifolds of P and therefore can be
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expressed in terms of generating functions Lu�s
� � The Lagrangian property of the invariant

manifolds was already noticed by Poincar�e �Poi��� for �ows
 although we learned it for
maps from E� Tabacman �Tab�	�
 as well as the expression for the invariant manifolds
given in proposition ���
 in the twist frame� The relationship between Lu�s

� and S�

the �rst order variations in � of the generating functions Lu�s

� and S�
 gives then the
formula for the Melnikov potential� The tools utilized are very similar to those of
D� Treschev �Tre���� However
 D� Treschev considers autonomous Hamiltonian �ows

and the conservation of energy makes easier the deduction of the continuous version of
equation ���	��

In that frame �Hamiltonian�Lagrangian �ows�
 it is worth noting that a variational
approach to the Melnikov method was carried out by S� Angenent �Ang��� for Hamilto�
nian systems with ��

�
degrees of freedom
 and that a mechanism for �nding homoclinic

orbits in positively de�nite symplectic di�eomorphisms is due to S� Bolotin �Bol���

based on interpolating them by Hamiltonian �ows�

Section � contains also some remarks on the non�symplectic case� a vector�valued
Melnikov function M is then de�ned
 whose non�degenerated zeros are associated to
transverse homoclinic orbits�

The last part of section � is devoted to gain information on the number of primary
homoclinic orbits after perturbation� Since the Melnikov potential L is F��invariant

it can be de�ned on the reduced separatrix �� �� ��F�
 which is the quotient of the
separatrix by the unperturbed map� The reduced separatrix is a compact manifold
without boundary
 provided that the unperturbed invariant manifolds are completely
doubled
 i�e�
 Wu

� � Ws
� and Wu�s

� nfp�g is a submanifold of P and not only an immersed
submanifold of P� This is equivalent to require that the separatrix is � � Wu�s

� n fp�g�
Several dynamical consequences of this fact can be pointed out using topological tools�
In particular
 Morse theory gives lower bounds on the number of primary transverse
homoclinic orbits
 under conditions of generic position� in theorem ��� it is stated that
the number of primary homoclinic orbits is at least ��

Moreover
 if the maps F� have a common symmetry I � P � P �F� � I � I �F�
 and
F��p�� � I�p�� � p�� such that the one�form � is preserved by I� I�� � �
 then the
Melnikov potential is I�invariant �see lemma ����� Consequently
 it can be considered as
a function over the quotient manifold ��I �� ��fF�� Ig� If
 in addition
 I is an involution
�I� � Id� such that DI�p�� � �Id
 the family fF�g will be called antisymmetric� In
this case
 in theorem ��� it is stated that the number of primary homoclinic orbits is
at least �n and that they appear coupled in �anti�symmetric pairs� O� is a primary
homoclinic orbit if and only if I�O�� also is�

It is worth mentioning that any family of odd maps F� � R�n � R�n �with the
standard symplectic structure� is antisymmetric�

To prove theorem ���
 it is enough to check that the sum of the Z��Betti numbers
of �� and ��I are � and �n
 respectively� This is accomplished by computing the Z��
homology of �� and ��I �

Both lower bounds are optimal
 as it is shown in several perturbations of maps with a
central symmetry
 so that the unperturbed invariant manifolds are completely doubled�
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It is important to notice that the invariant manifolds of a product of uncoupled planar
maps with double loops are not completely doubled
 see remark ���
 and hence
 the
topological results do not hold in this case� Indeed
 the number of primary homoclinic
orbits may be rather di�erent under perturbation� for instance
 it is possible to construct
explicitly perturbations with an in�nite number of primary homoclinic orbits
 all of them
being transverse� The study of this kind of phenomena is currently being researched�

In section �
 as a �rst example
 we consider the family of twist maps on R
�n �

F��x� y� �

�
y��x �

�	y

� � jyj� � �rV �y�

�
� 	 
 �� � � R�

with V � Rn � R determined by imposing V ��� � �� The map above is a perturbation
of the McLachlan map �McL���
 which is a multi�dimensional generalization of the
McMillan map �McM���
 which in its turn is a particular case of the standard�like Suris
integrable maps �Sur
��� The McLachlan map has a central symmetry that makes the
dynamics over the separatrix essentially one�dimensional� This is the key fact that
allow us to perform a complete analysis
 since the natural parametrizations ����� can be
introduced�

If the potential V is entire and not identically zero
 in theorem ��� it is proved that
the manifolds Wu�s

� of the map F� split
 for � � j�j 
 �� This result is obtained simply
by checking that the Melnikov potential is not constant� Moreover
 if V is a polynomial

the Melnikov potential can be computed explicitly�

In particular
 if V is a quadratic form� V �y� � y�By for some symmetric n�n matrix
B
 in proposition ��� it is stated that under generic conditions on B �det�B� �� � and
B does not have multiple eigenvalues�
 the perturbed invariant manifolds are transverse
along exactly �n primary homoclinic orbits�

If V is linear� V �y� � b�y for some vector b � Rn n f�g
 in proposition ��� it is
stated that the perturbed invariant manifolds are transverse along exactly � primary
homoclinic orbits�

The di�erence between both kinds of perturbations is that quadratic potentials V
give rise to odd maps
 whereas linear ones do not� Moreover
 propositions ��� and ���
give the unperturbed homoclinic orbits that survive and the �rst order �in �� of the
homoclinic areas between the di�erent primary homoclinic orbits�

The weakly hyperbolic case � � h 
 �
 cosh�h� �� 	
 is also studied for the case of
a quadratic potential V 
 and asymptotic expressions for the homoclinic areas are given
at the end of section �� It turns out that
 for some distinguished pairs
 interlaced in the
same way as in the case of � degree of freedom
 the homoclinic area predicted by the
Melnikov potential is exponentially small with respect to the hyperbolicity parameter h�
Of course
 this does not prove that the splitting size is exponentially small in singular
cases
 i�e�
 when � and h tend simultaneously to zero�

The last section is devoted to the study of the Hamiltonian maps arising from time�
periodic perturbations of an �undamped� magnetized spherical pendulum� This model
was introduced by J� Gruendler �Gru
	� as a �rst example of application of the Melnikov
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method for high�dimensional �continuous� systems� The Hamiltonians considered have
the form �Gru
	�

H� � R�n � R � R� H��x� y� t� � v��� � �r� � r���� � �V �x� t�h�� h 
 �� � � R�

where v � jyj
 r � jxj
 and V � V �x� �� is ��periodic in �� We determine V by imposing
V ��� �� 	 �� Note that small values of h correspond to a quick forcing�

General perturbations
 and not only symplectic ones
 are considered in �Gru
	�� As
a consequence
 the homoclinic orbits are given in the general case by non�degenerate
zeros of a vector�valued Melnikov function
 instead of non�degenerate critical points
of the real�valued Melnikov potential� We have computed the Melnikov potential for
the Hamiltonian perturbations studied in �Gru
	�
 and have veri�ed that his Melnikov
function is the gradient of our Melnikov potential�

Most of the results stated above for the McLachlan map also hold for this Hamilto�
nian map� There is
 however
 a signi�cant di�erence� One cannot deduce a priori that
the Melnikov potential is not identically constant without computing it� This has to do
with the fact that the Melnikov potential is simply periodic and regular for the poly�
nomial perturbations considered
 in contrast with the complex period and singularities
that the Melnikov potential has for the entire perturbations of the McLachlan map�

To �nish the account of results
 let us point out that a similar Melnikov analysis
for perturbed ellipsoidal billiards has not been included for the sake of brevity and will
appear elsewhere� Such billiards are a high�dimensional version of perturbed elliptic
billiard tables
 which have already been studied in several papers �LT��
 Tab��
 DR��

Lom��a��

After this research was complete
 we became aware of some recent papers �Lom��

Lom��b� of H� Lomel�� for twist maps on the annulus A

n � T �Tn � T
n � R

n that
resemble our method� However
 they do not contain explicit computations �i�e�
 in
terms of known functions� of the Melnikov potential
 since complex variable methods
are not used� Besides
 in those papers it is assumed that the separatrix is globally
horizontal
 a condition that does not hold for homoclinics in R�n 
 since the separatrix
must fold to go back to the �xed point�

Another related papers are �Sun��
 BGK�	�
 but their approach is rather di�er�
ent
 since they deal
 like �Gru
	�
 with the general case
 with no symplectic structure

and therefore a vector�valued Melnikov function is needed� This makes an important
di�erence not only from a computational point of view �there are not explicit �ana�
lytic� computations in these works�
 but also from a theoretical point of view
 since
Morse theory cannot be applied in the general situation� We also want to mention
the work �BF���
 where perturbations of n�dimensional maps having homo�heteroclinic
connections to compact normally hyperbolic invariant manifolds are considered�

� Main results

For the sake of simplicity
 we will assume that the objects here considered are smooth�
For a general background on symplectic geometry we refer to �Arn��
 GS��
 AM�
��



Melnikov potential for exact symplectic maps �

The basic properties of immersed submanifolds can be found in �GG��
 pages ������

��� Exact objects

A �n�dimensional manifold P together with an exact non�degenerate two�form � over
it
 is called an exact symplectic manifold� Then
 � � � d� for some one�form �
 usually
called Liouville form
 symplectic potential or action form�

A map F � P � P is called exact symplectic �or simply
 exact� if
H
� � �

H
F� � for

all closed path � � P or
 equivalently
 if F �� � � � dS for some function S � P � R

called generating function of F �

A n�dimensional submanifold � � P is called an exact Lagrangian submanifold �or
simply
 an exact submanifold� if

H
� � � � for all closed path � � � or
 equivalently


if 
��� � dL for some function L � � � R
 called generating function of �� Here

� � � �� P stands for the inclusion map�

Unfortunately
 the invariant manifolds that we will deal with are not submanifolds

but just immersed submanifolds� Thus
 the introduction of some technicalities seems
unavoidable in order to give a rigorous exposition of the subject
 and more precisely
 to
introduce the notion of separatrix
 where the distance between the perturbed invariant
manifolds will be measured�

Given a manifold N 
 we recall that a map g � N � P is called an immersion when
its di�erential dg�z� has maximal rank at any point z � N � If g is one�to�one onto its
image W � g�N �
 there is a natural way to make W a smooth manifold� the topology
on W is the one which makes g a homeomorphism and the charts on W are the pull�
backs via g�� of the charts on N � The manifold W constructed in this way is called
an immersed submanifold of P and its dimension is equal to the dimension of N � It is
important to notice that the topology of the immersed manifold need not be the same
as the induced one via the inclusion W � P or
 in other words
 that W need not be a
submanifold of P in the usual sense�

Figure � shows an example of a double loop W � g�R� to p� � limz��� g�z� for an
immersion g � R � R

� � At p�
 the induced topology on W via the inclusion W � R
� is

not the same as the induced one via g� Both g�B�
 for all open bounded interval B � R

and W n fp�g are submanifolds
 but not W� This situation is a particular case of the
following elementary result �GG��
 page ����

Lemma ��� Let g � N � P be a one�to�one immersion and set W � g�N ��

�i� Let B be an open subset of N with compact closure� Then� gjB � B � P is
an embedding� that is� a homeomorphism onto its image g�B�� Thus� g�B� is a
submanifold of P� which will be called an embedded disk in W�

�ii� Let � � W be the set of points where the two topologies on W �the one induced by
the inclusion W � P and the one that makes g a homeomorphism� di�er� Then�
� � W n � is a submanifold of P� Indeed� W is not a submanifold of P just at
the points of ��
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R

W � R�

g

p� � g���

Figure �� g � �g�� g�� � R � R� 
 where g��z� � �
�
z��� � z��
 g��z� � g���z��

For the sake of clearness
 submanifolds and immersed submanifolds will be denoted
by di�erent letters
 namely � and W
 respectively� For immersed submanifolds W
 the
map 
W � W � P stands for the inclusion map
 as before� It should be noted that 
W is
smooth
 even when W is not a submanifold of P
 because of the di�erential structure
given to W� Moreover
 if � � P is a �closed� path
 we will say that � is a �closed� path
in the immersed submanifold W if and only if � is contained in W and it is continuous
in the topology of W� For example
 if � is one loop of �gure �
 it is a closed path in R�

but not in W�
With these notations and de�nitions
 we are naturally led to de�ne exact immersed

submanifolds in the same way as exact submanifolds� A n�dimensional immersed sub�
manifold W � P is called exact if

H
� � � � for all closed path � in W or
 equivalently


if 
�W� � dL for some function L � W � R
 called generating function of W�
The symplectic potential � is determined except for the addition of a closed zero�

form
 and the generating functions of maps or �immersed� submanifolds are determined
except for an additive constant� Henceforth
 the symbol W

R q
p �
 with p� q � W
 will

denote the integral of � along an arbitrary path from p to q in W� It only makes sense
for an exact immersed submanifold W
 since then the integral does not depend on the
path� The di�erence of values of L can be expressed as an integral of this kind�

L�q�� L�p� �
Z q

p
dL �

W

Z q

p
�� �p� q � W� �����

Lemma ��� Let W be a connected exact immersed submanifold of P� invariant under
an exact map F � Let L and S be their respective generating functions� Then�

S�p� � constant � L�F �p��� L�p�� �p � W� �����
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Wu 
 Ws

p

p�

D

D�

p�

� Wu 
 R

p�

p

p�

� Ws 
 R

p

p�

p�

�
Figure �� The invariant manifolds Wu and Ws are di�erent as smooth manifolds
 and
are not submanifolds of R� � There exist no paths �u�s in Wu�s from p to p� such that
�u � �s�

Moreover� if p� � W is a �xed point of F � the constant is �S�p���

Proof� From dS � F ��� � and dL � 
�W� we get

d
�
SjW

�
� 
�W dS �

�
FjW

��
dL� dL � d

�
L � FjW � L

�
�

where SjW � S � 
W and FjW � �
W��� � F � 
W are the restrictions of S and F to W�
Thus
 S � L � F � L is constant over W by connectedness and ����� is proved� To end
the proof we only need to evaluate equation ����� at p � p�� �

Let p� � P be a hyperbolic �xed point of F � The point p� lies in the intersection
of the n�dimensional unstable and stable invariant manifolds of the map F associated to
p��

Wu ��
�
p � P � lim

k���
F k�p� � p�

�
� Ws ��

�
p � P � lim

k���
F k�p� � p�

�
�

The manifolds Wu�s need not be submanifolds of P
 but just connected immersed
submanifolds
 see �gure �� In fact
 Wu�s � gu�s�Rn� for some one�to�one immersions
gu�s � Rn � P
 such that gu�s��� � p� and dgu�s����Rn � is the tangent space to Wu�s at
p� �PM
�
 II x��� Since F is exact
 they are exact immersed submanifolds� if � is a
closed path in Wu �Ws�
 then

H
� � �

H
F k� � ��

H
p� � � �
 when k � �� �k � ����

It should be noted that if � � P is closed and contained in Wu �resp� Ws�
 but it is
not a path in Wu �resp� Ws�
 the above argument fails� �For instance
 if � is one loop
of �gure ���

We denote by Lu�s the generating functions of Wu�s and we determine the generating
functions S
 Lu�s by imposing S�p�� � Lu�s�p�� � �� The next proposition gives a nice
interpretation of the generating functions of the stable and unstable invariant manifolds
in terms of the generating function of the map�
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Proposition ��� Given pu�s � Wu�s� let us denote pu�sk � F k�pu�s�� for k � Z� Then�

Lu�pu� �
X
k��

S�puk�� Ls�ps� � �X
k	�

S�psk��

Proof� From lemma ���
 one has S�pu�sk � � Lu�s�pu�sk���� Lu�s�pu�sk �
 for all k � Z� To get
the formulae above
 we simply consider the telescopic sums

Lu�pu� �
X
k��

�Lu�puk���� Lu�puk�� �
X
k��

S�puk��

Ls�ps� �
X
k	�

�Ls�psk�� Ls�psk���� � �X
k	�

S�psk��

These series are absolutely convergent
 since S�p�� � � and puk �psk� tends to p� at an
exponential rate as k tends to �� ����� �

Let O � �pk�k�Z be a homoclinic orbit of F 
 i�e�
 O � �Wu�Ws�nfp�g and F �pk� �
pk��� We de�ne the homoclinic action of the orbit O as W �O� �� Lu�pk� � Ls�pk��
This de�nition does not depend on k
 since a direct application of proposition ��� with
pu�sk � pk yields an equivalent k�independent de�nition

W �O� ��
X
k�Z

S�pk�� �����

Let O� be another homoclinic orbit of F � The homoclinic area between the two ho�
moclinic orbits O
 O� is de�ned as the di�erence of homoclinic actions �W �O�O�� ��
W �O� �W �O��� For a motivation of this name
 consider p � O
 p� � O�
 �u�s a path
from p to p� in Wu�s
 � � �u � �s
 and suppose that D is an oriented ��chain such that
�D � �� Then
 by equation ����� and Stokes formula
 we have

�W �O�O�� �
I
�
� � �

Z Z
D
�� �����

This formula shows clearly that the homoclinic area is a symplectic invariant
 i�e�
 it
neither depends on the symplectic coordinates used
 nor on the choice of the symplectic
potential �� The homoclinic action can be considered as the homoclinic area between the
homoclinic orbit at hand and the !orbit" of the �xed point p�� Thus
 it is a symplectic
invariant
 too�

In particular
 if P � R� with the standard area as the symplectic structure
 and p �
O
 p� � O� are consecutive intersections of the invariant manifolds
 then the homoclinic
area �W �O�O�� is simply the �algebraic� area of the associated lobe�

Remark ��� Set W � Wu � Ws and let p� p� be two points of the same connected
component of W� When it is possible to choose the paths �u�s in Wu�s from p to p� such
that � � �u � �s � �
 �W �O�O�� �

R
� � � �
 i�e�
 the actions coincide� They can be

di�erent if p and p� are not in the same component of W� For instance
 if p
 p�
 D and
D� are as in �gure �
 W �O� � � RRD � 
 � and W �O�� �

RR
D� � � ��
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��� Families of exact objects

Now
 we carry out the generalization of lemma ��� and proposition ��� for families
of exact immersed submanifolds and maps
 depending �in a smooth way� on a small
parameter �� First
 let us recall the following standard fact from symplectic geome�
try �Wei��
 GS����

Lemma ��� In any point p of any Lagrangian submanifold � of P there exists a neigh�
bourhood p � U � P and local coordinates �x� y� over U such that � � y dx �i�e��
� � dx � dy� and the set � � U is given by the equation y � ��

We recall that a n�dimensional submanifold � is Lagrangian if 
��� � �� In partic�
ular
 exact submanifolds are Lagrangian� The coordinates above are called cotangent
coordinates since they give a symplectic change of variables from the neighbourhood U
onto a neighbourhood V of p in the cotangent space T ���

Let g� � N � P be one�to�one immersions and set W� � g��N �� We will say that
the family of immersed submanifolds fW�g is smooth �at � � �� when for any embedded
disk � � W� there exists a smooth family of embedded disks f��g such that �� � W�

and �� � �� We remember that embedded disks are submanifolds of P
 and they are
exact if so are the immersed submanifolds�

Lemma ��� Let fW�g be a smooth �at � � �� family of connected exact immersed
submanifolds�

�i� Let p � W� and � � W� be an embedded disk containing p� Let f��g be a smooth
family of embedded disks such that �� � W� and �� � �� Let U be a neighbourhood
of p in P� where cotangent coordinates �x� y� exist for �� Thus� the set ���U has
the form y � ��L��x���x� for some function L�� since �� is an exact submanifold�
We can write L� � L� � O���� Then� the function L� � W� � R is well�de�ned�
that is� it neither depends on the family f��g� nor on the cotangent coordinates�
�Of course� L� is determined except for an additive constant��

�ii� Assume that W� is invariant under some exact map F�� Let S� � S� ��S� �O����
be the generating function of F�� and F��p� � ��F��p�����j��� be the �rst order
variation in � of the family fF�g� Then�

S��p�� ��F��p���F��p�� � constant � L��F��p��� L��p�� �p � W�� ���	�

Besides� the constant is ��p���F��p��� � S��p��� if p� � W� is a �xed point of
F��

Remark ��� It is clear that ���U has the equation y � ��L��x���x�O����� From �i�

the function L� � W� � R is a geometrical object associated to the family fW�g
 and
therefore its di�erential gives the �rst order variation at � � � of the family along
the coordinate y in any cotangent coordinates �x� y�� We will call L� the in�nitesimal
generating function of the family fW�g�
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Proof� �i� On the one hand
 any two families f��g
 f���g coincide on a small neighbour�
hood of the point p� This proves the independence on the family� On the other hand

the independence on the cotangent coordinates for a �xed family is proved in �Tre���

using coordinates�

A geometric interpretation of L�
 useful in order to prove below �ii� �and consequently
another proof of the fact that L� � W� � R is well�de�ned�
 is given now� It is inspired
in a similar construction that can be found in �AA
�
 page ��
��

Let E � R be the small neighbourhood of � where � runs� Given p � W�
 we denote
by bp � E � P any smooth curve such that bp��� � W� which has a non�tangent contact
with W� at p for � � �� Moreover
 ��p� �� will denote the path bp���
 � � � � �� Given
p� q � W�
 let D�p� q� �� be any oriented ��chain of P such that

�D�p� q� �� � ��p� q� ��� ��p� q� �� � ��p� ��� ��q� ���

where ��p� q� �� is any path from bp��� to bq��� in W�� Such a construction is possible

provided that j�j is small enough� Let us set

��p� q� �� �� �
Z Z

D	p�q��

� � ����p� q� � O�����

This integral neither depends on the symplectic coordinates
 nor on the choice of the
paths ��p� q� ��� In addition
 its �rst order term ���p� q� does not depend on the choice
of the curves bp and bq
 since such di�erent choices only a�ect second order terms of
��p� q� ���

Now
 it will be shown that L��q� � L��p� � ���p� q�
 if p� q � W� are close enough
over W�
 that is
 if there exist an embedded disk �� � W� and an open U � P
 where
cotangent coordinates �x� y� are de�ned
 such that p� q � �� � fy � �g � U � We denote
by � � U � �� the projection ��z� � p
 if z � �x� y� and p � �x� �� are the cotangent
coordinates of z and p
 respectively� We determine the curves bp� bq by imposing �� bp 	 p

� � bq 	 q
 and we choose ��p� q� �� in such a way that they are contained in U � Then


��p� q� �� �
Z
�	p�q��
��	p�q��
��	p��
��	q��


y dx �
Z
�	p�q��


y dx � �
Z
�	�	p�q��



�L�

�x
�x� dx

� ��L����bq������ L����bp������ � ��L��q�� L��q�� � O�����

Finally
 if p� q � W� are arbitrary
 we consider a chain of points �rj��
j
J such
that r� � p
 rJ � q
 and two consecutive points of the chain are close enough so that
L��rj� � L��rj��� � ���rj��� rj� holds� Then
 a trivial argument with telescopic sums
shows that L��q� � L��p� � ���p� q�
 since ���r� s� � ���s� t� � ���r� t� holds for all
r� s� t � W��

�ii� Given p � W�
 we set q � F��p�� For any curve bp like the previous ones
 letbq��� � F��bp����� If v � � dbp� d�����
 then w � � dbq� d����� � dF��p��v� � F��p�
 so v
�i�e�
 bp� can be chosen in such a way that bq is not tangent to W� at q
 due to the fact
that the map v �� w is bijective� Using �i�
 we get

L��q�� L��p� � � lim
���

���
Z Z

D	p�q��

� � lim

���
���

Z
�	p�q��
��	p�q��
��	p��
��	q��


��
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Now
 by equations ����� and �����
 there exist constants c��� �independent of the
point p� such that

lim
���

���
Z
�	p�q��
��	p�q��


� � lim
���

���
�
W�

Z �q	�


�p	�

��

W�

Z q

p
�

�
� lim

���
����L��bq����� L��bp����� L��q� � L��p��

� lim
���

����S��bp���� � c���� S��p�� c����

� S��p� � dS��p��v� � � dc� d������

Finally
 we use that F �� �� � � dS� and consequently


lim
���

���
Z
�	p��
��	q��


� � lim
���

���
Z �

�
���bp���� �� dbp� d������� ��bq���� �� dbq� d������� d�

� ��p��v�� ��q��w� � � dS��p��v�� ��F��p��F��p����

and the proof follows� �

Let F� � P � P be an exact symplectic di�eomorphism with a hyperbolic �xed
point p� and invariant manifolds Wu�s

� � Let us consider a family of exact symplectic
di�eomorphisms fF�g
 as a general perturbation of the situation above
 and let S� �
S� � �S� � O����
 be the generating function of F�� In order to simplify some formulae
later
 we introduce the function

bS� � P � R� bS��p� � S��p�� ��F��p���F��p��� �����

where F��p� � ��F��p�����j����
From the invariant manifold theory for maps �PM
�
 II x��
 it follows that for small j�j

there exists a hyperbolic �xed point p���� of the perturbed map F� near p�� Moreover

p���� lies in the intersection of two �connected� exact immersed submanifolds Wu�s

� 

and the families fWu�s

� g are smooth �at � � ��� We denote by Lu�s
� their in�nitesimal

generating functions and
 as usual
 we determine S�
 L
u�s
� by bS��p�� � Lu�s

� �p�� � ��

Proposition ��� Given pu�s � Wu�s
� � let pu�sk � F k

� �pu�s�� for k � Z� Then�

Lu
��pu� �

X
k��

bS��p
u
k�� Ls

��p
s� � �X

k	�

bS��p
s
k��

Proof� Identical to the proof of proposition ���
 but using equation ���	� instead of
equation ������ �

��� Melnikov potential

Assume now that the invariant manifolds Wu�s
� are doubled
 that is
 W �� Wu

� � Ws
��

Then
 we can consider three topologies on W� the one induced by the inclusion
W � P
 and the two ones induced by the inclusionsW � Wu�s

� � We de�ne the bifurcation
set � and the separatrix � of this problem as the subset of W of points where the three
topologies do not coincide
 and � �� W n �
 respectively�
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Lemma ��� The bifurcation set and the separatrix have the following properties�

�i� � is an exact submanifold of P and p� � ��

�ii� � and � are F��invariant�

�iii� Let p� p� be points on the same connected component of �� Then� the unperturbed
homoclinic orbits O and O� generated by p and p�� have the same action�

Proof�

�i� On the one hand
 using �ii� of lemma ���
 � is a submanifold� It must be exact

since it is contained in the exact immersed submanifolds Wu

� 
 Ws
��

On the other hand
Wu
� andWs

� have a transverse intersection at p�
 so their topology
at p� as immersed submanifolds can not coincide and p� � �� �Indeed
 � is just formed
by the points of W where this set has self�intersections
 considered as a subset of P��

�ii� Since W is F��invariant
 it is enough to see that � is invariant
 and this follows
from the fact that F� is a di�eomorphism�

�iii� This is clear from remark ���� We can connect p and p� by a path in �
 and so
in Wu�s

� 
 since their topologies coincide on �� �

Remark ��� In the planar case with a double loop ���
 the bifurcation set is just the
hyperbolic �xed point� In general
 for more dimensions the situation is not so simple�
For example
 let F� � R�n � R�n be the product of n planar maps fj � R� � R� 
 each
one with a double loop #j � fpj�g � �j where pj� � R� stands for the �xed point of fj
and �j are the two components of #j n fpj�g
 for j � �� � � � � n� Then
 � � ��� � � � ��n

has �n connected components and � � �#��� � ��#n�n� contains strictly the hyperbolic
�xed point p� � �p��� � � � � p

n
�� � R�n � In particular
 � �� Wu�s

� n fp�g�

Remark ��� As the case of a planar map with a single loop ��� shows
 the situation
Wu

� �� Ws
� does not exclude that Wu

� � Ws
� can contain n�dimensional submanifolds�

For the sake of simplicity
 we have de�ned the notion of separatrix only if the invariant
manifolds are doubled and then
 from the arguments above
 the separatrix � satis�es�
�a� � is a doubly asymptotic exact submanifold
 invariant by F�
 and �b� the three
topologies on � coincide �the ones induced by the inclusions � � P
 � � Wu

� 
 and
� � Ws

��� Since these properties are the only ones needed in this section
 they can be
taken as a de�nition for a separatrix when Wu�s

� are partially doubled� Wu
� �� Ws

�� Thus

with this de�nition
 the analytical results of this paper also apply to this case�

By remark ���
 the di�erential of Lu�s
� gives the �rst order variation of Wu�s

� at � � ��
Besides
 since Lu�s

� is de�ned over Wu�s
� and � � Wu�s

� 
 the perturbed invariant manifolds
Wu�s

� can be compared over the separatrix �� For this purpose
 we introduce the real�
valued function

L � � � R� L�p� �� Lu
��p�� Ls

��p� �
X
k�Z

bS��pk�� pk � F k
� �p�� �����



Melnikov potential for exact symplectic maps �	

called the Melnikov potential of the problem� The series above is absolutely convergent
since any orbit in the manifold � tends to p� at an exponential rate as jkj � � andbS��p�� � �� Thus
 L is well�de�ned
 and its di�erential gives the �rst order distance

along the coordinate y in any cotangent coordinates �x� y�
 between the perturbed invari�
ant manifolds� This geometric interpretation is the fundamental point to �nd conditions
for the splitting of the separatrices�

It still remains to check the smoothness of L on �� It is clear that Lu�s
� are smooth

over Wu�s
� 
 but since the smooth structures on Wu

� 
 Ws
� do not coincide
 Lu

� � Ls
� could

be de�ned over the whole intersection W but need not be smooth on the bifurcation set
�� Thus
 it is necessary to restrict ourselves to a subset of W where the two smooth
structures coincide
 and because of this
 we have de�ned the separatrix � as the set
W n � to get a smooth L on ��

Before stating our main analytical result
 we must introduce the kind of perturbed
homoclinic orbits that can be detected by !Melnikov methods"� A primary homoclinic
orbit of the perturbed problem is a perturbed homoclinic orbit O� of F�
 de�ned for j�j
small enough and depending in a smooth way on �� This is a perturbative de�nition

since in the multi�dimensional case �contrary to the planar case
 see �Wig����
 it seems
di$cult to give a geometric de�nition� Non�primary homoclinic orbits are invisible
for the standard Melnikov techniques� �However
 a new Melnikov�like theory has been
recently developed in �Rom�	�
 to study secondary homoclinic orbits for time�periodic
perturbations of integrable planar di�erential equations��

Theorem ��� Under the above notations and hypothesis�

�i� L is F��invariant �i�e�� L � F� � L��

�ii� If L is not locally constant� the manifolds Wu�s
� split for � � j�j 
 �� i�e�� the

separatrix � is not preserved by the perturbation�

�iii� If p � � is a non�degenerate critical point of L� the manifolds Wu�s
� are transverse

along a primary homoclinic orbit O� of F� for � � j�j 
 �� with O� � �F k
� �p��k�Z�

Moreover� when all the critical points of L are non�degenerate� all the primary
homoclinic orbits arising from � are found in this way�

�iv� Let O� be a primary homoclinic orbit such that O� � �F k
� �p��k�Z for some p � ��

Then� the homoclinic action admits the asymptotic expression W �O�� � W �O�� �
�L�p� � O����� Given another orbit O�� such that O�� � �F k

� �p���k�Z for some p� in
the same connected component of � as p� the homoclinic area is given by

�W �O��O��� � ��L�p�� L�p��� � O�����

Proof�

�i� A shift in the index of the sum does not change its value
 so L is F��invariant�
�ii� If dL is not zero
 the perturbed invariant manifolds do not coincide at �rst order


so they split�
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�iii� This result follows directly from the geometric interpretation of the Melnikov
potential and the Implicit Function Theorem�

�iv� Let O� � �bpk����k�Z
 pk � bpk��� � F k
� �p�
 and vk � � dbpk� d������ From equa�

tion �����
 dS� � F �� �� �
 and dF��pk��vk� � vk�� � F��pk�
 we obtain�

W �O�� �
X
k�Z

S��bpk����
�

X
k�Z

fS��pk� � ��S��pk� � dS��pk��vk�� � O����g

�
X
k�Z

S��pk� � �
X
k�Z

fS��pk� � ��pk��� � dF��pk��vk��� ��pk��vk�g� O����

� W �O�� � �
X
k�Z

n bS��pk� � ��pk����vk���� ��pk��vk�
o

� O����

� W �O�� � �L�p� � O�����

Finally
 the asymptotic formula for the homoclinic area follows from its de�nition

using �iii� of lemma ��	� �

Remark ��� The actions of homoclinic orbits arising from di�erent connected compo�
nents of the separatrix need not be equal at � � �
 see remark ���
 whereas the splitting
size is of order O���� Thus
 it seems inappropriate to measure the splitting comparing
the action of homoclinic orbits arising from di�erent components of �� For instance
 in
the planar case with a double loop
 the geometric sense of the area between primary
homoclinic orbits arising from di�erent loops is very unclear�

Remark ��� If L has some non�degenerate critical point
 the perturbed invariant mani�
folds of F� have a transverse intersection and
 in particular
 a topological crossing� Thus

using some recent results contained in �BW�	�
 the perturbed maps have positive topo�
logical entropy
 for � � j�j 
 ��

Let us see now that the Melnikov potential is invariant under additional di�eo�
morphisms
 if the family fF�g has suitable symmetries� We recall that given a di�eo�
morphism I � P � P the family fF�g is called I�symmetric if F� � I � I � F� and
F��p�� � I�p�� � p�
 for all ��

Lemma ��� Assume that the family fF�g is I�symmetric� and that the symplectic po�
tential is preserved by the symmetry� I�� � �� Then� the Melnikov potential L is
I�invariant� L � I � L�

Proof� Let p � W � Wu�s
� and q � I�p�� Using that F k

� � I � I �F k
� for all k � Z
 we get

lim
k��

F k
� �q� � lim

k��
I�F k

� �p�� � I
	

lim
k��

F k
� �p�



� I�p�� � p��

This proves that W is I�invariant� Thus
 the separatrix � also is
 by the same argument
as in �ii� of lemma ��	
 and the expression L � I makes sense on ��
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From F �� �� � � dS�
 I
�� � �
 and F� � I � I � F� we have

d�S� � I� � I�� dS�� � I�F �� �� I�� � F �� I
��� � � F �� �� � � dS��

Hence
 S� � I � S� is a constant function that evaluated at p� vanishes
 so S� �and in
particular S�� are I�invariant�

The �rst order terms of F� � I � I �F� give F� � I � DI�F���F��� Using this equality

we see that the function ��F���F�� is also I�invariant�

��F� � I��F� � I� � ��I � F���DI�F���F��� � I���F���F�� � ��F���F���

Thus
 the di�erence bS� � S� � ��F���F�� is I�invariant
 too�
Finally
 L � I �

P
k�Z� bS� � F k

� � I� �
P

k�Z� bS� � I � F k
� � �

P
k�Z� bS� � F k

� � � L� �

As we have seen
 the di�erential of L measures the distance between invariant man�
ifolds and thus M � dL is called the Melnikov function of the problem� It can be also
constructed in the non�symplectic case
 although it is not longer the di�erential of a
function� We recall now this construction
 but we will not go further in this direction

since the non�symplectic framework is out of the spirit of this paper� For the sake of
simplicity
 we only consider P � R�n �

Assume that a di�eomorphism F� � R�n � R�n has a separatrix � and n �rst integrals
H�� � � � � Hn
 independent over the separatrix �but not necessarily in involution
 since this
concept requires a symplectic structure�
 and let F� � F� � �F� � O���� be a general
perturbation of F��

Given p � �
 let %p be the n�dimensional linear variety spanned by the point p
and the vectors rHj�p� �� � j � n�� Since %p is transverse to � at p
 there exist
pu�s��� � Wu�s

� � %p
 depending in a smooth way on �
 such that pu�s��� � p� A natural
measure of the distance between the invariant manifolds is given by the di�erence of
�rst integrals �!energies"�

��p� �� � H�pu�����H�ps���� � �M�p� � O����� H � �H�� � � � � Hn���

where M � � � Rn is the vector�valued Melnikov function of the problem� It is easy to
generalize �actually
 rewrite� the proof given in �DR��� for the planar case to see that

M�p� �
X
k�Z

DH�pk����F��pk��� pk � F k
� �p�� ���
�

Remark ��� Some similar results can be found in �BGK�	�
 although with a less geo�
metrical �and more functional� setting� They only can prove that a necessary condition
for the existence of primary homoclinic orbits is the existence of zeros for M � Our
geometrical construction shows that the existence of non�degenerate zeros for M is a
su	cient condition for the existence of transverse primary homoclinic orbits
 even in the
non�symplectic case� However
 it should be noted that �BGK�	� deals with a broader
range of maps� for example
 the existence of �rst integrals is not needed�
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��� Twist maps

Now
 we present another formulation of the method that is useful for the physical
problems that verify the twist condition
 since the formula for the Melnikov potential
is simpler� For more details on twist maps
 the reader is referred to �Gol��a
 Gol��b

BG���� We follow closely the notations and de�nitions of the later reference�

An exact symplectic twist map �or simply
 twist map� F is a map from a connected
subset U of the cotangent bundle of a manifold M �which can be non�compact� into U 

which comes equipped with a twist generating function L � M�M� R that satis�es

F ��y dx�� y dx � Y dX � y dx � dL�x�X�� �X� Y � � F �x� y��

where �x� y� are any cotangent coordinates on T �M
 that is
 x are coordinates on M

extended to coordinates �x� y� in the obvious way� The canonical form �� on T �M reads
as �� � y dx in cotangent coordinates� This can also be written in a coordinate free
manner� Given L
 one can retrieve the map �at least implicitly� from y � ���L�x�X�

and Y � ��L�x�X�� This can be done globally �i�e�
 U � T �M� only when M is
di�eomorphic to a �ber of T �M
 for example when M is the covering space of Tn or a
manifold of constant negative curvature�

The form F ������ is exact
 so F is exact� Let S � U � R be the generating function
of F 
 in the geometric sense of the previous de�nitions� Then
 S�x� y� � L�x�X�� The
fact that S can be written in terms of old and new coordinates� �x�X�
 is the twist
condition� In a coordinate free formulation it reads as

S�p� � L���p�� ��F �p���� �p � U� �����

where � � T �M�M is the canonical projection�
Now
 we carry out the generalization of ����� for families of twist maps
 depending

�in a smooth way� on a small parameter �� That is
 we search for the relationship
between the �rst order variations in � of the twist and geometric generating functions�

Lemma ��� Let fF�g be a smooth family of twist maps� Let L� �resp� S�� be the
twist �resp� geometric� generating function of F�� Set L� � L� � �L� � O���� and
S� � S� � �S� � O����� Then�

bS��p� � L����p�� ��F��p���� �p � U� ������

where bS� is the function given in �
����

Proof� Fix p � U and let �x� y� be cotangent coordinates in a neighbourhood of p� If we
denote �X�� Y�� � F��x� y� � �X�� Y�����X�� Y���O����
 the O��� terms of the equality
S��x� y� � L��x�X�� give

S��x� y� � L��x�X�� � ��L��x�X��X� � L��x�X�� � Y�X��

Thus
 from the de�nition of bS� and using �� � y dx we get bS��x� y� � L��x�X��� �
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Assume now that F� has a hyperbolic �xed point p� with a separatrix � � U
and that F� � U � U are exact di�eomorphisms� The choice bS��p�� � � reads as
L��x�� x�� � � in the twist frame
 where x� � ��p��� From equation ������
 it follows
directly that the Melnikov potential ����� can be written as

L�p� �
X
k�Z

L��xk� xk���� xk � ��pk�� pk � F k
� �p�� ������

This formula is simpler than �����
 since only the �rst order term of the twist generating
function L� appears in it�

��� Hamiltonian maps

One of the main ideas in dynamical systems is to study maps in order to understand
�ows� For example
 the description of Hamiltonian systems can be carried out consid�
ering the time�T maps of their �ows
 which are exact maps� Thus
 it is interesting to
present the previous results from the Hamiltonian point of view� Besides
 this allows us
to compare the discrete and continuous frameworks�

Recall that a non�autonomous Hamiltonian system over an exact symplectic manifold
�P� � � � d�� is given by a real�valued function �called the Hamiltonian� H � P �R �
R� Then
 the equations of motion have the form &p � XH�p� t�
 p � P
 t � R
 where
for every �xed t
 XH��� t� is the Hamiltonian �eld generated by H��� t�� dH�p� t� �
��p��XH�p� t�� ��
 �p � P� In symplectic coordinates �x� y� on P
 we have � � y dx

� � dx � dy and the Hamiltonian equations take the canonical form

&x �
�H

�y
�x� y� t�� &y � ��H

�x
�x� y� t��

It is clear that XH does not change if a function depending only on time is added to
the Hamiltonian H� We will restrict ourselves to Hamiltonians such that generate a
Hamiltonian �ow
 i�e�
 all the trajectories of XH are de�ned for all time�

A Hamiltonian map F is the time�T map of some Hamiltonian H and for some
T 
 �
 i�e�
 F � �T � P � P
 where �t�p� stands for the solution of the Hamiltonian
equations of H
 with initial condition p at t � �� Obviously
 Hamiltonians maps are
di�eomorphisms isotopic to the identity� Besides
 they are exact over exact manifolds�
if i�X�� stands for the inner product of a form � by a �eld X
 and ' � P � R � P �R

is given by '�p� t� � ��t�p�� t�
 we get

F ��� � � ��T ���� ������ �
Z T

�

d

dt
���t���� dt

�
Z T

�
'�fi�XH� d� � d�i�XH���g dt � d

�Z T

�
'��i�XH���H� dt

�
�

Thus
 the generating function S of F is given by

S�p� �
Z 	F 	p
�T 


	p��

�� � � ��H dt� ������
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where the one�form � is the so�called Poincar�e�Cartan invariant integral
 de�ned on the
�extended� phase space P �R
 and the path of integration is the trajectory '�p� t�
 � �
t � T 
 of the �extended� �ow� Now
 we carry out the generalization of equation ������
for families of Hamiltonian maps
 depending �in a smooth way� on a small parameter
�� That is
 we look for the relationship between the �rst order variations in � of the
Hamiltonians and the generating functions of their Hamiltonian maps�

Lemma ��	 Let H� be a smooth family of non�autonomous Hamiltonians� and �t
��p�

the solution of its Hamiltonian equations with ��
��p� � p� Let F� and S� be the Hamil�

tonian map �T
� and its generating function� respectively� Set H� � H� � �H� � O����

and S� � S� � �S� � O����� Then

bS��p� � �
Z T

�
H���

t
��p�� t� dt� �p � P� ������

where bS� is the function given in �
����

Proof� Let ��p� �� be the path in the �extended� phase space ��t
��p�� t�
 � � t � T �

Set A��p� t� � ���t
��p��� &�t

��p���H���
t
��p�� t�
 where the dot means the derivative with

respect to the time t� We will use through the proof the following notations for the �rst
variation of the considered objects�

F��p� �
�F�
��

�p�







� � �

� �t
��p� �

��t
�

��
�p�







� � �

� A��p� t� �
�A�

��
�p� t�







� � �

�

Besides
 we will prove below that

A��p� t� � &B��p� t�� B��p� t� � ���t
��p����t

��p��� ������

From S��p� �
R
�	p��
���H� dt�
 A� � &B�
 �T

� � F� and ��
� 	 �
 we get

S��p� �
Z
�	p��


���H� dt�� �
Z
�	p��


H� dt � O����

�
Z T

�
A��p� t� dt� �

Z T

�
H���

t
��p�� t� dt � O����

� S��p� � �
Z T

�

&B��p� t� dt� �
Z T

�
H���

t
��p�� t� dt � O����

� S��p� � ���F��p���F��p��� �
Z T

�
H���

t
��p�� t� dt � O�����

and the terms O��� in this equation give �������
To end the proof
 it only remains to check that ������ holds� For simplicity
 we

prove it using symplectic coordinates� Given p � P and t � R
 let �x� y� be symplec�
tic coordinates in a neighbourhood of �t

��p�� We denote the coordinates of �t
��p� by

�x�� y�� � �x�� y�� � ��x�� y�� � O����� Thus


A��p� t� � y� &x� �H��x�� y�� t�

� A��p� t� � ��y� &x� � y� &x� � �xH��x�� y�� t�x� � �yH��x�� y�� t�y�� � O����

� A��p� t� � � d�y�x��� dt � O�����
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where we have used the canonical form of Hamiltonian equations in symplectic coordi�
nates� Finally
 since in this coordinates B� � y�x�
 equation ������ follows� �

Henceforth
 we restrict ourselves to time�periodic Hamiltonians H�
 being T their
period�

Assume now that F� has a hyperbolic �xed point p� with a separatrix �� In the
Hamiltonian frame
 the choice bS��p�� � � becomes

R T
� H���

t
��p��� t� dt � �� Indeed
 it

is possible �and more usual� to determine the Hamiltonian in such a way that it veri�es
the stronger condition H���

t
��p��� t� 	 �� From equation ������
 it follows easily that

the Melnikov potential ����� can be written as

L�p� � �
Z
R

H���
t
��p�� t� dt� ����	�

since �t
��F

k
� �p�� � �t�kT

� �p�
 for all integer k and real t
 and H� is T �periodic in t� �This
is the reason to consider only periodic Hamiltonians��

We want to emphasize that the Hamiltonian version of the Melnikov potential can be
deduced directly in the continuous frame
 without appealing to discrete tools� However

taking into account the theory already developed in this paper
 it has been easier to
work directly on Hamiltonian maps�

Remark ��	 Usually
 the unperturbed Hamiltonian H� is time independent� In fact

in most of the applications it is Liouville integrable�

Remark ��
 Using the Lagrangian formalism instead of the Hamiltonian one
 a similar
formula to ����	� can be obtained for Lagrangian maps �i�e�
 time�T maps of some Euler�
Lagrangian �ow�
 but with �H� replaced by the �rst order in � of the Lagrangian�

��� Lower Bounds

Along this subsection
 we will assume without explicit mention that� �a� the invariant
manifolds are doubled
 that is
 Wu

� � Ws
�
 and �b� the bifurcation set is minimal
 i�e�


� � fp�g� �Remember that the hyperbolic �xed point p� is always contained in the
bifurcation set �
 see �i� of lemma ��	�� These hypothesis are equivalent to require that
the separatrix is � � Wu�s

� nfp�g� We will say that the invariant manifolds are completely
doubled in this case� Besides
 we also assume n 
 �
 to avoid trivial degenerate cases�
�In particular
 the separatrix is connected��

To avoid a tedious exposition
 several standard computations about Betti numbers
are omitted� The expert reader in di�erential and algebraic topology will be able to �ll
in the gaps without di$culty
 and we prefer to give the appropriate references for the
novice one
 instead of writing here a treatise� Thus
 for a general discussion of Morse
theory we refer to �Hir���
 and for thorough discussions of homology the reader is urged
to consult �Swi�	
 GH
���

The quotient manifold �� �� ��F�
 consisting of unperturbed homoclinic orbits of
�
 will be called the reduced separatrix �of the unperturbed map�� It is shown below that
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�� is a compact manifold without boundary� Since the Melnikov potential L is invariant
under F�
 we can consider it de�ned over the reduced separatrix� �The new function is
called L
 too�� We search for lower bounds of the number of homoclinic orbits and the
main idea is to apply the Morse s inequalities to the map L � �� � R�

The presence of symmetries and(or reversions usually leads to better results con�
cerning the existence of homoclinic orbits� Let us introduce the �anti�symmetries that
allow us to improve the lower bounds� We will say that the family fF�g is antisymmetric
if fF�g is I�symmetric
 for some involution I preserving the symplectic potential such
that DI�p�� � �Id� As it is well�known
 involutions are locally conjugate to their
linear parts at �xed points� Thus
 there exist coordinates z � �z�� � � � � z�n� in some
neighbourhood of p� such that I�z� � �z
 that is
 the maps F� are odd in some coor�
dinates de�ned close to p�� The de�nition above of antisymmetric maps is intended to
translate the main features of odd maps on �R�n � dx � dy� to maps on general exact
manifolds�

Under these hypotheses
 lemma ��� claims that the Melnikov potential is I�invariant�
Thus
 we can consider L de�ned over the quotient manifold ��I �� ��fF�� Ig
 which has
a richer topological structure than ��
 in the sense that Morse theory gives better lower
bounds of the number of homoclinic orbits�

We recall that a real�valued smooth function over a compact manifold without
boundary is called a Morse function when all its critical points are non�degenerate�
It is very well�known that the set of Morse functions is open and dense in the set of
real�valued smooth functions �Hir��
 page ����� Thus
 to be a Morse function is a con�
dition of generic position� Now we can state a result about the number of primary
homoclinic orbits that persist under a general perturbation� In section �
 we will verify
the optimality of this result for speci�c examples�

Theorem ��� Assume that L � �� � R is a Morse function� Then the number of
primary homoclinic orbits is at least �� If the family fF�g is antisymmetric� there exist
at least �n antisymmetric pairs of primary homoclinic orbits� and so at least �n primary
homoclinic orbits�

Proof� From the celebrated Morse s inequalities
 a Morse function over a n�dimensional
compact manifold without boundary X has at least SB�X�R� ��

Pn
q�� �q�X�R� critical

points
 where �q�X�R� are the R�Betti numbers of X and R is any �eld� Let us recall
that �q�X�R� is the dimension of the q�th singular homology R�vector space of X
 noted
Hq�X�R��

In the antisymmetric case
 I��p� � p �� I�p�
 for all p � �� Thus ����%� is a
covering space of ��I of two sheets
 where % � �� � ��I is the canonical projection
onto the quotient of �� by the antisymmetry I� In particular
 L � ��I � R is a Morse
function if and only if the same happens to L � �� � R
 and each critical point Q of
L � ��I � R corresponds to an antisymmetric pair of critical points %���Q� � fO� I�O�g
of L � �� � R
 for some unperturbed homoclinic orbit O � ���

Now the theorem follows from the formulae SB����Z�� � � and SB���I�Z�� � �n�
The rest of the proof is devoted to check that these formulae hold�
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Since Betti numbers are topological invariants
 we look for topological spaces home�
omorphic to �� and ��I whose homologies can be easily computed� To accomplish it

let us consider the restriction fu�s of F� to Wu�s

� 
 and denote Bu�s � Dfu�s�p��� Since
F� is symplectic
 det�Bu� � det�Bs� � �
 so det�Bu� and det�Bs� have the same sign�
When these signs are positive �resp� negative� the map F� preserves �resp� reverses�
the orientation of �
 and we denote by � � � �resp� � � �� the so�called index of
orientation� In the following lemma it is shown that the topological classi�cation of fu

only depends on �� This will allow us to classify �� and ��I just in terms of ��

Lemma ��
 Let A� � Rn � Rn be the linear isomorphisms given by�

A��x� � �x�� x � �x�� � � � � xn�� x� � ��x�� x�� � � � � xn��

Then� there exists a global topological conjugation between fu and A�� that is� a home�
omorphism g � Rn � Wu

� such that fu � g � g � A�� In the antisymmetric case� the
conjugation g can be chosen in such a way that g��x� � I�g�x���

Proof� We note that p� is a hyperbolic �xed point of fu
 and all the eigenvalues of Bu

have modulus greater than one� From �PM
�
 Th� 	�	
 II x	�
 we get that fu is locally
conjugated at p� to A� �resp� A�� in the orientation�preserving �resp� orientation�
reversing� case� This local conjugation can be extended to a global one
 using that fu

and A� are global repulsors� The existence of an antisymmetric conjugation �certainly

a very intuitive fact� follows the same lines� We omit the details� �

Thanks to Lemma ���
 we now easily introduce time�energy coordinates �t� a� on ��
First
 we give some notations� We denote by Sn
 Tn
 and Pn
 the n�dimensional sphere

the n�dimensional torus
 and the n�dimensional projective space
 respectively� Besides

we introduce the n�dimensional manifold

X
n �� R � S

n���

and the homeomorphism � � Xn � Rn n f�g
 ��t� a� � �ta
 whose inverse is given
by ����x� � �bt�x�� ba�x�� � �log� jxj � x� jxj�� Then
 bt�A�x� � bt��x�� � bt�x� � � andba�A�x� � ba��x�� � �ba�x���
 so A� � � � � � ��
 where the map �� � Xn � X

n is

���t� a� � �t � �� a��� a � �a�� � � � � an�� a� � ��a�� a�� � � � � an��

Thus
 F� � � � � and �� � Xn � X
n are topologically conjugated by g � �
 where g is

the conjugation given in lemma ���� This proves that �� � ��F� and X
n
� �� Xn��� are

homeomorphic� Hence
 SB����Z�� � SB�Xn
� �Z���

Concerning the antisymmetric case
 we note that � � � � ��
 where

� � Xn � X
n � ��t� a� � �t��a��

Thus
 the pairs of maps F�� I � � � � and ��� � � Xn � Xn are simultaneously topolog�
ically conjugated by g � �� This proves that ��I � ��fF�� Ig and Yn

� �� Xn�f��� �g are
homeomorphic� Hence
 SB���I�Z�� � SB�Yn

� �Z���
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Consequently
 it only remains to prove that SB�Xn
��Z�� � � and SB�Yn

��Z�� � �n�

First
 we consider the case � � �� In this case
 Xn
� � S��Sn�� and Yn

� � S��Pn��

since S� � R�ft � t � �g and Pn�� � Sn���fa � �ag� Therefore
 from the well�known
Z��homologies

Hq�S
m�Z�� ��

�
Z� if q � �� m
� otherwise

Hq�P
m�Z�� ��

�
Z� if � � q � m
� otherwise

�

and the K)unneth s Formula Hq�X � Y �Z�� �� Lq
p��Hp�X�Z���Hq�p�Y �Z��
 we get

Hq�X
�
� �Z�� ��

�����
Z� if q � �� �
Z�� Z� if q � �
� otherwise

� Hq�X
n
� �Z�� ��

�
Z� if q � �� �� n� �� n
� otherwise

for all n 
 �
 and

Hq�Y
n
��Z�� ��

�����
Z� if q � �� n
Z� � Z� if q � �� � � � � n� �
� otherwise

�

for all n 
 �� Adding dimensions
 we get SB�Xn
� �Z�� � � and SB�Yn

��Z�� � �n�

Finally
 a standard Mayer�Vietoris sequence argument shows that the Z��homologies
of Xn

� and Yn
� do not depend on �
 so SB�Xn

� �Z�� � � and SB�Yn
��Z�� � �n� �

Remark ���� Since the case � � � is more intricate
 one could believe that it is better
to replace the maps with their squares to get � � �� However
 it should be noted that
the lower bounds obtained in this way are worse since a single homoclinic orbit consist
of two di�erent ones for the square map� one gets � and �n
 instead of � and �n
 as the
number of homoclinic orbits� Thus
 the case � � � deserves its own separate study�
We also remark that this case cannot appear in the continuous frame
 since the maps
generated by a �ow are isotopic to the identity�

� Standard�like maps

As a �rst example we deal with standard�like maps over the symplectic manifold �P� �� �
�R�n � dx � dy�
 n 
 �
 which are ones of the most celebrated examples of twist maps�
Among them
 we consider perturbations of maps with central symmetry
 since then
the dynamics over the unperturbed separatrix is essentially one�dimensional and gives
rise to explicit computations
 as already announced in �DR��c�� In the sequel
 given
x� y � Rn 
 x�y and jxj stand for the scalar product

Pn
i�� xiyi and the Euclidean normp

x�x�
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��� Central standard�like maps

Let V � Rn � R be a function� The map F � R�n � R�n with equations F �x� y� �
�y��x � rV �y�� is called the standard�like map with potential V � It is immediate to
check that L�x�X� � �x�X �V �X� is a twist generating function of F 
 so F is a twist
map� When V is even
 F is odd�

It is worth mentioning that standard�like maps are also expressed in the literature
as F �x�� y�� � �x� � y� � rU�x��� y� � rU�x���
 for some function U � The symplectic
linear change of variables �x�� y�� � �y� y�x� is the bridge between these two equivalent
formulations
 and the relation between the potentials is given by V �y� � jyj� � U�y��
Thus
 it makes no di�erence which formulation is used
 since we deal with symplectic
invariants�

A central standard�like map is a standard�like map with a central potential
 i�e�

V �y� � Vc�jyj�� for some function Vc � ����� � R� Central standard�like maps are odd
and have the !angular momenta" Aij�x� y� � xiyj�xjyi as �rst integrals� We denote by
An��

� � f�x� y� � Aij�x� y� � �g the �n � ���dimensional manifold in R�n of zero angular
momenta� Clearly
 An��

� � f�qa� pa� � a � Sn��� �q� p� � R�g�
Let F be a central standard�like map with potential V 
 and f � R� � R� the

standard�like area preserving map de�ned by f�q� p� � �p��q � �V �
c �p��p�� We will call

f the reduced map �in An��
� � of F � This de�nition becomes clear when it is noted that

f�q� p� � �Q�P � �� F �qa� pa� � �Qa� Pa�� ��q� p� � R
� � a � S

n��� �����

Our interest in central standard�like maps is motivated by the following lemma

which follows easily from ������

Lemma ��� Let F be a central standard�like map and f its reduced map� Assume that
Spec�Df���� � fe�hg� for some h 
 �� and hence that the origin is a hyperbolic �xed
point of f � Then�

�i� The origin is a hyperbolic �xed point of F � Moreover� Spec�DF ���� � fe�hg�
�ii� Suppose now that f has a separatrix #� Then� the invariant manifolds of F are

completely doubled� giving rise to the separatrix

� � f�qa� pa� � �q� p� � #� a � S
n��g�

�iii� Let � � �q� p� � R � # be a natural parametrization of the separatrix #� i�e�� �
is a di�eomorphism that satis�es f���t�� � ��t � h�� for all t � R� Then� the
di�eomorphism � � R � Sn��� � de�ned by ��t� a� �� �q�t�a� p�t�a� satis�es

F ���t� a�� � ��t � h� a�� �t � R� a � S
n��� �����

We note that f is odd
 so when it has a separatrix
 it has in fact a double �symmetric�
loop�
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The separatrix � is analytically di�eomorphic to R�Sn��
 by means of �� Thus
 from
now on
 the functions de�ned over � will be expressed as functions of the time�energy
coordinates �t� a� � R � Sn���

Now
 we introduce the McLachlan map �McL��� as the central standard�like map
with potential V��y� � 	 ln�� � jyj�� �	 � R�� It has the expression

F��x� y� �

�
y��x �

�	y

� � jyj�
�
� �����

It is easy to check that for 	 
 � the reduced map of �����*usually called McMillan
map*has a separatrix to the origin� �See �gure � for a representation of the invariant
curves�� In addition
 the following natural parametrization of its separatrix can be found
in �GPB
�
 DR���� ��t� � �q�t�� p�t��
 where q�t� � p�t� h� and p�t� � sinh�h� sech�t��
Thus
 using lemma ���
 the McLachlan map has its invariant manifolds completely
doubled
 and the function � given by

��t� a� � �p�t� h�a� p�t�a�� p�t� � sinh�h� sech�t�� cosh�h� � 	�
 ��� �����

veri�es equation ������

Remark ��� The McLachlan map has n �rst integrals Hj �j � �� � � � � n�
 independent
over its separatrix� H��x� y� � jxj� � jyj� � jxj� jyj� � �	x�y
 and the angular momenta
Hj � A�j �j � �� � � � � n�� This is not important for our purposes
 but it would be essential
for the study of non�symplectic perturbations with the Melnikov function ���
��

��� Standard�like perturbations

Let us consider a general perturbation of ����� that preserves the standard character

i�e�


F��x� y� �

�
y��x �

�	y

� � jyj� � �rV �y�

�
� 	 
 �� � � R� ���	�

where V � Rn � R� We determine V by imposing V ��� � �� Then
 the twist generating
function of F� that vanishes at the origin is L� � L� � �L�
 where L��x�X� � �x�X �
	 ln�� � jXj�� and L��x�X� � V �X��

Using formulae �����
 ����� and �����
 the Melnikov potential of the problem is

L � R � S
n��� R� L�t� a� �

X
k�Z

V �p�t � hk�a�� p�t� �
sinh�h�

cosh�t�
� �����

Obviously
 L is h�periodic in t
 so we can consider t de�ned modulo h and L as a
function over S�� S

n��� Henceforth it will be assumed that h 
 �
 cosh�h� � 	�
Now
 we focus our attention on entire perturbations
 i�e�
 maps ���	� with V an entire

function� The result about the splitting in this case is the following one�
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Theorem ��� If V is entire but not identically zero� then the manifolds Wu�s
� of the

map �
��� split� for � � j�j 
 ��

Proof� By theorem ���
 it is su$cient to check that the Melnikov potential ����� is not
constant�

First
 we note that the only singularities of p�t� are simple poles at any point tp �
� i���� iZ
 and therefore it is analytic at tp�hk for k � Znf�g� Now
 let Va� fa � R � R

be the functions de�ned by Va�t� �� V �ta� and fa�t� � Va�p�t�� � V �p�t�a� �a � Sn����
Since V is a non�zero entire function
 there exists ba � Sn�� such that Vba is a non�zero
entire function� Thus
 fba has non�removable singularities at any point tp � � i�� � � iZ

and however it is analytic at tp � hk for k � Z n f�g� Consequently
 Lba�t� �� L�t� ba� �P

k�Zfba�t� kh� has a non�removable singularity at any point in � i�� � hZ� � iZ� This
proves that L is not constant� �

Remark ��� The assumption of entire function on V has only been used to ensure that
there exist tp � � i�� � � iZ and ba � Sn��
 such that fba�t� has an isolated singularity at
tp
 and however is analytic on tp � hk for k � Z n f�g� Thus
 this assumption on V can
be relaxed
 although the entire case is the simplest case to study�

We observe that for even V 
 the maps F� are odd and hence the family fF�g is
antisymmetric� Therefore
 theorem ��� gives the following corollary�

Corollary ��� Assume that the function L given in �
��� is a Morse function� Then�
the map �
��� has at least � primary homoclinic orbits� for � � j�j 
 �� If� in addition�
the potential V is an even function� there exist at least �n antisymmetric pairs of primary
homoclinic orbits� and so at least �n primary homoclinic orbits�

��� Polynomial perturbations	 explicit computations

We show here that explicit computations of Melnikov potentials can be performed
 for
any polynomial perturbations of the McLachlan map
 i�e�
 maps ���	� with V �y� �PN

��� V��y�
 for some �nite N 
 where V� denotes a homogeneous polynomial of order ��
In this case
 the Melnikov potential ����� turns out to be a linear combination of

products of certain elliptic functions �� in the variable t � C �of periods h
 �� i� and
the homogeneous polynomials V� restricted to Sn���

L�t� a� �
NX
���

sinh��h�V��a����t�� ���t� �
X
k�Z

�sech�t � hk��� � �����

Using the Summation Formula of the Appendix
 all the elliptic functions �� �and
consequently
 the Melnikov potentials� can be explicitly computed� However
 using the
Summation Formula to �nd �� for big values of � is rather tedious� It is better to use
an idea contained in �GPB
��� The point is to note that the odd �respectively
 even�
powers of the hyperbolic function sech can be expressed as a linear combination
 with
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rational coe$cients
 of the even derivatives of sech �respectively
 sech��� This allows us
to write �� as a linear combination
 with rational coe$cients
 of the even derivatives
of �� �if � is odd� or �� �if � is even�� For example
 sech� � �sech� sech����� and
sech� � �� sech���sech�������
 so �� � ����������� and �� � ������������� Consequently

it is enough to compute �� for � � �� �� This is done in lemma A�� �see the Appendix�
and the result is�

���t� �
	

�K��

h


 �p
m�� cn

	
�K��t

h





m��



� dn

	
�K��t

h





m��


�
�

���t� �
	

�K�

h


�
�
E �
�

K �
�

� � � dn�
	

�K�t

h





m�


�
�

where
 if K�m� and E�m� are the elliptic integrals of the �rst and second kind
 the
parameter m � mT �T � �� ��� of the Jacobian elliptic functions is determined by
the equation K�� �mT ��K�mT � � T�h� and KT � K�mT �
 K �

T � K�� �mT �
 E �
T �

E�� � mT �� It is equivalent to choose q � qT � e��T�h as the nome of the elliptic
functions� For the notations about elliptic functions we refer again to the Appendix�

Assume now that V � V�
 i�e�
 V is a quadratic form or
 in other words
 the per�
turbation rV is linear� We can write V �y� � y�By
 for some symmetric n� n matrix
B� Then
 there exists an orthogonal matrix Q � �q� � � � qn� such that diag�b�� � � � � bn� �
Q�BQ
 where bi are the eigenvalues of B and qi are their respective �normalized� eigen�
vectors�

Proposition ��� Suppose det�B� �� � and that B does not have multiple eigenvalues�
Then�

�� The invariant manifolds Wu�s
� are transverse along exactly �n primary homoclinic

orbits O���i��� �� � f�� �g� i � f�� � � � � ng�� for � � j�j 
 �� These perturbed
homoclinic orbits are created from the unperturbed ones

O���i��� � �� ��h�� � kh��qi��k�Z � � � f�� �g� i � f�� � � � � ng�


� The homoclinic area between the primary homoclinic orbits O���i��� and O	��j���
is given by the asymptotic expression

�W �O���i����O	��j���� � ����	�i�j � O�����

where
���	�i�j � ���	�i�j�h� � sinh��h���K��h�� �bi�� � bj�	 � �

with �� � E �
��K

�
� and �� � E �

��K
�
� �m��

Proof� We note that Q�Sn��� � Sn��
 so we can perform the change of variables a� Qa
in Sn�� and then
 V �Qa� �

Pn
i�� bi�ai�

�
 where bi �� �
 for all i
 and bi �� bs
 for all i �� s�
It is easy to check that the only critical points of the restriction of V to Sn�� are
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f�qi � � � i � ng
 all of them being non�degenerate� Moreover
 from the properties of
the Jacobian elliptic function dn�ujm�
 the real critical points of �� are fkh�� � k � Zg

that are also non�degenerate� Consequently
 L is a Morse function over �R�hZ� � Sn��

and its critical points are ��h����qi�
 for � � f�� �g
 i � f�� � � � � ng� Now the �rst part
of the proposition follows from theorem ����

For the second part
 it is enough to observe that

�W �O���i����O	��j���� � ��L��h����qi�� L��h����qj�� � O�����

and L��h����qi� � sinh��h�V ��qi�����h��� � sinh��h�bi��K��h����
 where we have
used that dn��jm� � � and dn�Kjm� �

p
��m� �

Finally
 we study the linear potentials �constant perturbations rV �
 that is
 V � V��
Thus
 V �y� � b�y
 for some vector b � Rn n f�g
 and the critical points of V in Sn��

are �q
 where q � b� jbj� Of course
 they are non�degenerate� Then
 using the same
arguments as in the proof of the preceding proposition
 we get the following result�

Proposition ��� With the previous notations and assumptions�

�� The invariant manifolds Wu�s
� are transverse along exactly � primary homoclinic

orbits� bO����� �� � f�� �g�� for � � j�j 
 �� These perturbed homoclinic orbits
are created from the unperturbed ones

bO����� � ����h�� � kh��q��k�Z � � � f�� �g�


� The homoclinic area between the primary homoclinic orbits bO����� and bO�	 ��� is
given by the asymptotic expression

�W
h bO������ bO�	 ���i � � b�����	 � O�����

where b�����	 � b�����	 �h� � sinh�h� jbj ��K���h�
hb��� � b��	 i �

with b��� � �b��� �� � f�� �g�� and b�� � � �
p
m��� b�� � ��pm���

The conditions det�B� �� �
 B without multiple eigenvalues �for the quadratic po�
tentials� and b �� � �for the linear ones� are the conditions of generic position for L to
be a Morse function� The condition B without multiple eigenvalues is equivalent to the
complete breakdown of the central symmetry�

The examples of this subsection show that the lower bounds on the number of ho�
moclinic orbits provided by theorem ��� are optimal�
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��� Polynomial perturbations	 weakly hyperbolic cases

It is a very well�known fact that the splitting size for analytic area preserving maps in
the plane is exponentially small in the hyperbolicity parameter h
 for families of maps
with degenerate to the identity when h � � �FS���� Here
 e�h stands for the eigenvalues
of the di�erential of the perturbed map on the perturbed weakly hyperbolic �xed point�
Then
 there arises the natural question about whether a similar result holds for analytic
and symplectic maps in higher dimensions� We show here some results that lead us to
believe that the answer is a$rmative�

For the sake of brevity
 we restrict ourselves to the case V �y� � y�By
 but the
same study can be carried out for any concrete polynomial perturbation� Using that

q� � e��
��h and the formula

q
�Km����� � �

P
k	� q

	k����
� �WW��
 page ����
 we get

�����i�i�h� � ����bih
�� sinh��h�e��

��h

���X
k	�

exp����k�k � ���h�

���
�

�

Thus
 the homoclinic area between O���i��� and O���i��� �i � f�� � � � � ng�
 is a priori
exponentially small in h� A priori means that the �rst order term in � is exponentially
small in h� Of course
 this does not imply that the higher order terms are also exponen�
tially small in h� All the others homoclinic areas are not a priori exponentially small

or are trivially zero because of the odd character of F��

It is important to remark that this is only a partial result� we have assumed that h
is small enough
 but �xed
 and �� �� If � and h tend simultaneously to zero
 then one
is confronted with the di$cult problem of justifying that some errors that seem to be

O���� can be neglected in front of the main term that is O�e��
��h�� Thus
 the question

is whether some asymptotic formulae like

�W �O���i����O���i���� � ������i�i�h� � ����bi�e
����h�

hold
 when � and h tend to zero in any independent way� At the present moment
 we do
not have an analytical proof of these asymptotic formulae
 but
 concerning the planar
case �n � ��
 in �DR��a� we have succeeded in proving that the Melnikov method gives
the correct asymptotic exponentially small behaviour under a generic assumption on
the perturbative potential V �y�
 for � � O�hp� and p 
 �� Besides
 there is numerical
evidence that the hypothesis � � O�hp�
 p 
 �
 can be improved up to � � o��� �DR��b��
�It is important to remark here that such numerical experiments require an expensive
multiple�precision arithmetic in order to detect the exponentially small size of the split�
ting��

Nevertheless
 from the computations above
 it turns out that the exponentially small
splitting can only take place along the direction of the t coordinate over �
 since a
directional derivative of L is exponentially small only in the t direction� �Recall that the
di�erential of L measures the distance between the perturbed invariant manifolds�� This
leads us to propose an a$rmative answer about the exponentially small character of the
splitting of the separatrices
 at least in one direction� To give a dynamical interpretation
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of this distinguished direction
 we note that if h� � the action of the unperturbed map
over � tends to a �ow whose orbits are the coordinate curves fa � constantg of the
parametrization ��t� a�� It is important to observe that this direction does not depend
on the perturbation�

Moreover
 the computations above show that the distinguished pairs of homoclinic
orbits which give a priori exponentially small splittings are just the interlaced pairs

i�e�
 the pairs created from unperturbed orbits situated on the same coordinate curve
fa � constantg �in a interlaced way� of the separatrix ��

Finally
 we want to stress that a priori exponentially small asymptotic expressions
can be computed for the splitting angles in the t�direction over �� However
 it seems
better to work with the homoclinic area since it is an homoclinic invariant
 whereas the
splitting angles are not�

� A magnetized spherical pendulum

Finally
 as a second example
 we focus our attention on Hamiltonian maps that arise
from perturbations of a central �eld� The exact manifold is the same as in the previous
example�

��� Unperturbed problem

First
 we give some well�known de�nitions and results� Let T � Rn � R be the so�called
kinetic energy T �y� � �

�
jyj� and let V � Rn � R � R be the potential energy� The

Hamiltonians H � R�n � R � R of the form H�x� y� t� � T �y� � V �x� t�
 are called
natural� The Hamiltonian equations can be written as )x � ��V �x� t���x� Notice that
if V �x� t� is even in the spatial variable x
 the Hamiltonian map is odd�

When V �x� t� � Vc�jxj��
 for some function Vc � ����� � R
 the Hamiltonian �eld
is an �autonomous� central �eld
 and hence the angular momenta are preserved� Let
An��

� � f�ra� &ra� � a � S
n��� �r� &r� � R

�g be the manifold of zero angular momenta�
Using the central symmetry
 we can reduce on An��

� the Hamiltonian system to one
degree of freedom� )r � ��V �

c �r��r� that is
 if r�t� is a solution of the reduced system

then ��t� a� � �r�t�a� &r�t�a� is a solution of the original system
 for all a � Sn���

In �Gru
	�
 one of the �rst papers on the generalization of the Melnikov method for
high�dimensional �continuous� systems
 an �undamped� magnetized spherical pendulum
was considered� It is given by the �autonomous� central �eld with Vc�r

�� � �r�� r�����
Obviously
 the cases n 
 � have no real physical meaning and the cited reference does
not deal with them
 but the generalization is trivial and it is interesting in order to
compare with the section before� The following lemma follows from a straightforward
computation on the reduced system )r � r � �r�
 i�e�
 a Du$ng equation�

Lemma ��� Let �t
��p� be the solution of the Hamiltonian equations of this magnetized

spherical pendulum� with initial condition p at t � �� Given h 
 �� let F� be the
Hamiltonian map �h

� � R�n � R
�n � Then�
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�i� The origin is a hyperbolic �xed point of F�� Moreover� Spec�DF����� � fe�hg�
�ii� The invariant manifolds of F� are completely doubled� giving rise to the separatrix

� � f�ra� &ra� � &r� � r� � r�� r �� �� a � S
n��g�

�iii� The di�eomorphism � � R � Sn��� � de�ned by

��t� a� � �r�t�a� &r�t�a�� r�t� � sech t� �����

veri�es
�s

����t� a�� � ��t � s� a�� �t� s � R� a � S
n��� �����

��� Perturbed problem

Let us consider a perturbation that preserves the natural character
 i�e�
 the perturbed
Hamiltonians are

H��x� y� t� � T �y� � �jxj� � jxj���� � �V �x� t�h�� h 
 �� � � R�

where V � V �x� �� is ��periodic in �� We determine V by imposing V ��� �� 	 �� Small
values of h correspond to a rapidly forced pendulum of angular frequency �radians per
second� � � ���h� We denote by F� the Hamiltonian map �h

� 
 where �t
��p� is the

solution of the Hamiltonian equations of H�
 with initial condition p� �The dependence
on the parameter h is omitted to simplify the notation��

Using equations ����	�
 ����� and �����
 the Melnikov potential L � R � S
n��� R of

the problem turns out to be

L�t� a� � �
Z
R

V �r�t� s�a� s�h� ds � �
Z
R

V �r�s�a� �s� t��h� ds� r�s� � sech s� �����

Now
 we consider polynomial perturbations
 that is
 we assume that the Taylor�
Fourier expansion of the potential V has a �nite number of terms� We write

V �x� �� �
X

	k��
�K

�Ck���x� cos���k�� � Sk���x� sin���k���� �����

where K is a �nite subset of f�k� �� � Z� � k � �� � � �g and Ck��
 Sk�� are homogeneous
polynomials of degree �� In this case
 the Melnikov potential can be explicitly computed�
The result is summarized in the following lemma
 whose proof is straightforward�

Lemma ��� Let P���� �� � �� be the polynomials generated by the recurrences

P���� � �� P���� � �� P������ �
�� � ��

��� � ��
P������� ���	�

Then� the Melnikov potential ���
� with V given in ����� is

L�t� a� � �
X

	k��
�K

fsech��k����P����k���Ck���a� cos�k�t�� Sk���a� sin�k�t��g� �����

where � � ���h is the frequency of the perturbation�
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A typical di�erence between the continuous and discrete frames is revealed here�
the Melnikov potential ����� is an entire periodic function in the complex variable t

whereas the Melnikov potential ����� is a doubly periodic one with singularities� An�
other di�erence is that a theorem like ��� does not hold for the pendulum
 since there
exist perturbative potentials V �x� �� such that the Melnikov potential ����� vanishes
identically�

We also notice that sech��k���� � sech�k���h� � e��
��h
 when h � �� Thus
 a

discussion on a priori exponentially small splittings for this rapidly forced magnetized
pendulum
 along the lines of the previous section
 can be given for any polynomial
perturbation� As in the previous section
 the exponentially small asymptotic expressions
predicted by the Melnikov method are far of being proved for n 
 �� However
 it is
well�known that for some perturbations of the rapidly forced planar pendulum �DS���

the Melnikov method gives the right answer�

Finally
 we consider the perturbative potential

V �x�� x�� �� �
�

�� � �
x��x

�
� � x��� cos������

which was already studied in �Gru
	�� In that paper
 the general �non�Hamiltonian� case
is considered
 and consequently the symplectic structure is not taken into account
 even
in the examples where it was possible
 like the one above� Using the formula �����
 we
get the Melnikov potential L�t� a� � � sech �


�
sin� cos�t
 where a � �cos�� sin�� � S

��
Its gradient is just the vector�valued Melnikov function used in �Gru
	� to measure the
splitting� Obviously
 it is easier to compute a real�valued function than a vector�valued
one� For higher dimensional cases
 the saving of work is still bigger�

Appendix� Elliptic functions

A function that plays an important role in the computation of the in�nite sums that ap�
pear in Melnikov potentials
 is a complex function � satisfying the following properties

where T� h 
 � are given parameters�

�C�� � is meromorphic on C �

�C�� � is T i�periodic and its derivative is h�periodic�

�C�� The set of poles of � is hZ� T iZ
 and all of them are simple and of residue ��

Remark A�� Conditions �C����C�� determine a function except for an additive con�
stant� if �� satis�es also �C����C��
 ��� ���

� is an entire doubly periodic function
 and
it must be a constant� thus
 ��z�� ���z� � az � b
 but a � � due to the T i�periodicity�

The function � can be expressed in terms of Jacobian elliptic functions
 Theta func�
tions
 or Weierstrassian functions� The Jacobian elliptic functions are well adapted
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to pencil�and�paper computations
 whereas the Theta functions are the best from the
numerical point of view
 and the Weierstrassian functions are the natural choice for
theoretical work on account of their symmetry in the periods� Here
 we deal with
pencil�and�paper computations
 so our choice are the Jacobian elliptic functions�

For a general background on elliptic functions of any kind
 we refer to �AS��
 WW����
We follow the notation of the �rst reference�

Given the parameter m � ��� ��
 we recall that

K � K�m� ��
Z ���

�
���m sin������ d�� E � E�m� ��

Z ���

�
���m sin����� d��

are the complete elliptical integrals of the �rst and second kind and that

E�u� � E�ujm� ��
Z u

�
dn��vjm� dv�

is the incomplete elliptic integral of the second kind
 where dn is one of the well�known
Jacobian elliptic functions� Moreover
 introducing K � � K ��m� �� K�� � m�
 E � �
E ��m� �� E���m�
 we also recall that the nome q
 jqj � �
 is de�ned by q � q�m� ��
e��K

��K� If any of the numbers m
 q
 K
 K �
 E
 E � or K ��K is given
 all the rest are
determined� From a numerical point of view
 it is better to �x �rst the nome q
 and
after compute the rest of parameters and elliptic functions
 since the q�series are rapidly
convergent�

It is not di$cult to check �see �DR���� that

�T �z� � ��KT�h���E �
T �K

�
T � ��z � ��KT�h�E��KTz�h � K �

T ijmT �

veri�es �C����C��
 where the nome is determined by q � qT � e��T�h
 and mT 
 KT 
 K �
T 


ET 
 E �
T are the associated parameters� �The dependence on h is not explicitly written��

Thus

K �

T�KT � ��� log���qT � � T�h� �A���

Given an isolated singularity z� � C of a function f 
 let us denote a�j�f� z�� the
coe$cient of �z�z���j in the Laurent expansion of f around z�� Obviously
 a�j�f� z�� � �
if z� is a pole of f and j is greater than its order�

Proposition A�� �Summation Formula
 Let f be a function verifying�

�P�� f is analytic in R and has only isolated singularities on C �

�P
� f is T i�periodic for some T 
 ��

�P
� jf�t�j � Ae�cj�tj when j�tj � �� for some constants A� c � ��

Then� ��t� ��
P

k�Zf�t � hk� is analytic in R� has only isolated singularities in C �
and is doubly periodic with periods h and T i� Moreover� ��t� can be expressed by the
following sum

��t� � � X
z�Sing

T
	f


res��T �� � t�f���� z� � � X
z�Sing

T
	f


X
j	�

a�	j��
�f� z�

j+
�
	j

T �z � t�� �A���

where SingT �f� is the set of singularities of f in IT � fz � C � � � �z � Tg�
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Proof� See �DR��
 Prop� ����� �

If f is meromorphic in C 
 the same happens to �
 and then � is elliptic� From a
computational point of view
 this is the interesting case
 since then �A��� is a �nite sum
and can be explicitly computed
 as the following lemma
 used in section �
 shows�

Lemma A�� Let ���t� �
P

k�Zf
��t � kh�� where f � sech� Then�

���t� �
	

�K��

h


 �p
m�� cn

	
�K��t

h





m��



� dn

	
�K��t

h





m��


�
�

���t� �
	

�K�

h


�
�
E �
�

K �
�

� � � dn�
	

�K�t

h





m�


�
�

Proof� Clearly
 f � sech satis�es properties �P����P�� with T � ��� Moreover
 the
singularities of f in I�� � fz � C � � � �z � ��g are simple poles� � i�� and �� i��

with a���f� � i��� � �a���f� �� i��� � � i� Thus
 from �A��� we get

���t� � i ������ i��� t�� ������ i��� t�� �

From equation �A��� with T � ��
 and using that E�u � �K � i� � E�u� is a constant

and that E��u� � �E�u�
 we have

���t� � i��K���h�� i�K �
�� � E �

���� E�v�� � K �
�� ijm��� � E�v��jm�����

where v � u�K �
�� i and u � �K��t�h�

In �WW��
 pages 	�� and 	�
� we �nd the following formulae

E�v � K �i�� E�v� � i�K � � E �� � cn�v� ds�v��

cn�v��� ds�v��� �
dn�v� � cn�v�

sn�v�
� ds�v� � cs�v��

Therefore
 we arrive at the following expression for ��

���t� � � i��K���h��ds�u�K �
�� ijm��� � cs�u�K �

�� ijm�����

and the formula for �� follows from ds�u�K � i� � i
p
m cn�u� and cs�u�K � i� � i dn�u��

The formula for �� is easier
 since f � � sech� also veri�es the properties �P����P��

but with T � � instead of T � ��� It has only one singularity in I�� � i��� Moreover

� i�� is a double pole with a���f

�� � i��� � � and a���f
�� � i��� � ��� Thus
 by �A���

we get ���t� � ����� i��� t�� But E ��u� � dn��u� is an even �K � i�periodic function
 so
the formula for �� follows from �A��� for T � �� �
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