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Abstract

We give a precise statement for KAM theorem in a neighbourhood of an elliptic equilib-
rium point of a Hamiltonian system. If the frequencies of the elliptic point are nonresonant
up to a certain order K > 4, and a nondegeneracy condition is fulfilled, we get an estimate
for the measure of the complement of the KAM tori in a neighbourhood of given radius.
Moreover, if the frequencies satisfy a Diophantine condition, with exponent 7, we show
that in a neighbourhood of radius r the measure of the complement is exponentially small
in (1/r)Y0+Y, We also give a related result for quasi-Diophantine frequencies, which
is more useful for practical purposes. The results are obtained by putting the system
in Birkhoff normal form up to an appropiate order, and the key point relies on giving
accurate bounds for its terms.



1 Introduction

We consider an analytic Hamiltonian system, with n degrees of freedom, having the origin
as an elliptic equilibrium point. In suitable canonical coordinates, the Hamiltonian takes

the form
H(q,p) =Y Hi(q,p), (1)

5>2
where H; is a homogeneous polynomial of degree s in (¢, p) for every s > 2, and

n

Hy(q,p) = % SN (af+9p7) (2)

J=1

We are concerned with the existence of n-dimensional invariant tori in a neighbourhood
of the elliptic point.

We begin by showing, in section 2, that the Hamiltonian (1-2) is nearly-integrable
by putting it in Birkhoff normal form up to an appropiate degree K > 4, provided the
frequency vector A = (Aq,...,A,) is nonresonant up to order K. Using results from the
paper [6] by Giorgilli et al., we state a quantitative version of Birkhoff theorem, which gives
estimates for the homogeneous terms of the part in normal form and for the homogeneous
terms of the remainder (proposition 1).

In section 3, like in Poschel’s paper [13], we consider action—angle variables in a neigh-
bourhood of radius r. Assuming a suitable nondegeneracy condition (we deal with the
isoenergetic case), we apply the known KAM theorem and show in theorem 3 that most
trajectories in a neighbourhood of radius r lie in invariant tori: we get for the relative
measure of their complement an estimate of the type O (T(K_:%)/Z). In fact, an estimate
like this was already obtained in [13] but, furthermore, we specify the smallness condition
on r required for its validity.

The extra information provided in theorem 3 with respect to [13] becomes important in
section 4, where we assume that A satisfies a Diophantine condition: with given 7 > n—1
and v > 0,

k-A > = Vkezm\ {0}, (3)

where we write |k|, = 377_, |k;|. Wesay A to be 7,y-Diophantine. Our main contribution,
already announced in [5], is to show that in this case we can choose the degree K as a
function of r, giving rise to an exponentially small estimate of the type

ew{-(4)") )

for the measure of the complement of the invariant set (theorem 4). To understand the
fact that, in the Diophantine case, the measure of the complement of the invariant tori is
exponentially small, we notice that the size of the perturbation in applying KAM theorem
is very small near the elliptic point. Hence, we can ensure the preservation of the invariant
tori under a Diophantine condition with a very small value of the parameter.

However, our estimate (4) is not very useful from a practical point of view. Indeed,
if the frequency vector A is not exactly known, it cannot be decided if it satisfies the



Diophantine condition (3). For this reason, we have also included estimates for the “quasi-
Diophantine” case, in section 4. We remark that, if the vector A is known up to a precision
d > 0, it has no sense to check the Diophantine condition beyond a certain finite order
N = N(1,7,0). So we assume A to be “Diophantine up to precision §” (see a concrete
definition in section 4). Then, we see in theorem 5 that exponentially small estimates
of the type (4) hold except in a neighbourhood of radius O (d). So we can say that
such estimates are still valid, for practical purposes, if § is small. This suggests that, in
studying the behaviour of the system around an elliptic fixed point, it does not really
matter whether its frequencies are or are not exactly Diophantine, unless we look at a
very small neighbourhood of the fixed point.

Since the measure of the region not covered by invariant tori, near the elliptic point,
is neglectible from a practical point of view, we can consider theorems 4 and 5 as results
of practical stability. This agrees with the known fact that, in order to detect unstable
trajectories numerically, one cannot begin too close to the elliptic point.

As a technical remark, we point out that the estimates given in [6], based in the
Giorgilli-Galgani algorithm, did not allow us to obtain the exponent 1/(7 + 1) of (4)
directly, but a worse one. Nevertheless, we have carried out an improvement of the
estimates of [6], without modifying the algorithm. In this way we obtain the exponent
1/(7 4+ 1), that seems to be optimal in the frame of our scheme.

It has to be recalled that exponentially small measure estimates for the complement
of the invariant tori were first obtained by Neishtadt [12], for a system with two degrees
of freedom in the case of degeneracy.

We also quote a result, related to our theorem 4, which has recently been established
in [10]: for a fixed KAM torus of a nearly-integrable Hamiltonian, it is shown that in a
neighbourhood of radius r there exist many n-dimensional invariant tori, and the measure
of their complement is exponentially small.
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2 The Birkhoff normal form

Let us consider the Hamiltonian (1-2) and, given K > 4, assume that its frequency vector
A 1s nonresonant up to order K:

k- A#£0  VkeZ' 0< k|, <K (5)



The well-known Birkhoff theorem [1, 11] states that, in some neighbourhood of the origin,
there exists a canonical transformation W) near to the identity map, such that H) =
H o W) s in Birkhoff normal form up to degree K:

HI) (g, p) = A~ T+ Z5)(1) + RE) (g, p), (6)
with ) ) .
2™y =3 2, RWqgp = > RYep), (7)
S5k i

where every Z,([) (uniquely determined) is a homogeneous polynomial of degree s/2 in
the action variables

1

fj=§(qf+pf), i=1,...,n,

(K)(q, p) is a homogeneous polynomial of degree s in (g, p). Since the Hamil-

S

and every R
tonian

REN(TY = X T+ 2)(1)
is integrable and in a neighbourhood of radius 7 one has R") = O (TK+1), it turns out

that H) is a nearly-integrable Hamiltonian near the origin. Our aim is to apply KAM
theorem to H.

However, for our purposes we need to bound from below the radius of the neighbour-
hood where the transformation to Birkhoff normal form holds. Besides, we need bounds
for the terms of the normal form (to satisfy the smallness condition for KAM theorem).
Having these ideas in mind, we state below a quantitative version for Birkhoff theorem
(proposition 1). Such a version comes from the results obtained by Giorgilli et al. [6], but
we improve their estimates on the terms Z,, RU). This improvement is crucial in order

to get the exponent 1/(7 + 1) appearing in the bound (4).

In [6], the canonical transformation bringing to normal form is constructed through
the Glorgilli-Galgani algorithm (see also [7, 8, 15]), a variant of the Lie series method.
In that scheme, the transformation is obtained as the flow of a unique nonautonomous
Hamiltonian. We point out that the case concerned in [6] is more general than the one
considered here, since it also involves resonant normal forms. We give in appendix A a
description of the Giorgilli-Galgani algorithm.

In dealing with normal forms near a fixed point of a Hamiltonian system, it is usual
to consider the complex canonical coordinates (x,y) defined by the linear change
1 . ? . .
j = ﬁ(%‘ —ipj), Y= —ﬁ(%‘ +ipi),  J=L....n
(these coordinates make simpler the resolution, in terms of coefficients, of the homological
equations arising in the construction of normal forms). Making use of the notation 2" =

!

! v / .
y" =y, ' ryn, we write

I

Hy(z,y) = Z hy i’y
v, €N
[+ =5

Un

l/]‘---
Ly L'y

Note that ¢, p are real if ¥ = 2x, and hence the Hamiltonian H is “real” whenever its
coefficients satisfy the relation A, , = et R .

3



We introduce some definitions. Given r > 0, we consider the real and complex poly-
disks of radius r centred at the origin:

B,={(a.n) € R ¢ l(qp) <} ={(a,y) €C* : [(x,y)| < v, §=ia},
B = {(x.y) € C™ ¢ |(a,y)l < v}

where we define
(a:p)| = max \Ja? +pf [(z,y)] = max ]z 4+ [yl

In order to give estimates, we introduce a norm for the polynomials involved. Like in [6],

for a given homogeneous polynomial fs(x,y) = Z fl,w/:z;”y”/, we define the norm
lv+v|=s
£l =" 32 1fow] (8)
lv+v!| =s

(for an alternative norm, see [15]). This definition also makes sense if f; is a vector-valued
function; each coefficient f,,s is then a vector and |f, .| denotes its Euclidean norm (the
same remark holds for a matrix-valued or tensor-valued function).

For a function f(x,y), we denote |f| its supremum norm on B,. Given f =3, f,.

one has
1 < Dl

If there exist a, b such that ||fs|| < a°b for every s, then f is analytic on B, for r < 1/a.

We consider lower bounds for the small divisors in the nonresonance condition (5), up
to successive orders. For s < K| let a5 be the decreasing sequence (o < as_1) defined by

as = min |k-A|. (9)

0<|k|, <s

The improvement of the estimates given in [6] comes from the following remark: in the
construction of the normal form described above, the obtainment of Z, only involves small
divisors up to order s — 1. This allows us to get better estimates, with expressions of the

type az---a,_; in the denominators instead of aj~°, as shown in the next proposition.

Proposition 1 Let H(z,y) = X0 Hy(w,y) be a Hamiltonian with Hy = X - I, and
assume that ||Hs|| < ¢*72d for s > 2. Let K > 4 given and assume that X is nonresonant
up to order K. Let ag, for s < K, be lower bounds for the small divisors as in (9).

Then, there exists a canonical transformation W) | near to the identity map, such that

HE) = H o WE) s in the Birkhoff normal form (6-7) up to degree K, and one has:
(6¢d)’ ™ (s — 2)!
Q51

20d2 (200([)5_2 (I( . 3);([{ _ 2)5—]&"4—2

s—K+2
Qg OO0

1
a) |2 <8 for s even, 4 < s < K.

b R

< fors> K +1.



c) Defining

* O{I(

"K T EASned K

the transformation W is analytic on B,,;\, and, for any r < rj, one has the

inclusion W) (B) D B,/s.

(10)

(K)

This proposition improves the results of [6, theorem 5.5]. The proof is deferred to
appendix A.

3 KAM tori and estimates

3.1 Recalling KAM theorem

In this section we recall a statement of KAM theorem to be used later. Let us consider a
nearly-integrable Hamiltonian written in action—angle variables

H(g, I) = h(l) + f(, 1),

with ¢ € T" and [ € G C R". The perturbation f is assumed to be of size . To show
that most of the trajectories of ‘H lie in n-dimensional invariant tori, one usually imposes
one of the following nondegeneracy conditions on the frequency map w = Vh:

det (%(1)) £0  or  det ( E_?;Q “E)[) ) £0

for every I € G. We call these conditions Kolmogorov nondegeneracy and isoenergetic
nondegeneracy, respectively.

We need a statement of KAM theorem expliciting the smallness condition on ¢ and an
estimate for the complement of the invariant set. Several statements, for the Kolmogorov
version or for the isoenergetic one, have been established in [12, 13, 2, 4, 9] (see also [3]
for general reference about the subject). The statement reproduced below is taken from
[4, 9], where the isoenergetic version is considered. Nevertheless, the ideas there contained
also apply to the Kolmogorov version, which is simpler.

We begin with some definitions. Given a set G C R", we consider analytic functions
on complex neighbourhoods of T" x . Given p = (p1,p2) > 0 (i.e. p; >0, 5 = 1,2),
we introduce the sets:

Wo(T") = {6 : Red € T, [Imd|., < pi}.
Vo, (G):={1e€C" : |I-T|<pywith I' € G},

where || and |-| = |-|, denote, respectively, the supremum norm and the Euclidean norm
for n-vectors. We then define:

D,(G) =W, (T") x V,,(G).



For a given function g(/) of the action variables, defined on V,(G), n > 0, we consider
the supremum norm:

9l == sup |g(D)],  lglg = lglao - (11)
1€V, (G)

Even if ¢ is vector-valued (or matrix-valued), these definitions make sense by considering
in |g(I)| the Euclidean norm.

Given a function f(¢, ) of the action-angle variables, analytic on the domain D,(G),
p = (p1,p2) > 0, we consider its Fourier expansion f(¢, 1) = > fu(I) ¢'®? and define

keZn
the following exponentially weighted norm (see also [14]):

1l = 22 |frla,, - €™ (12)

keZn

We use this norm to express the smallness condition for KAM theorem.

We introduce a quantitative version for the isoenergetic condition. For a function h([)
defined on ¢ C R”, and given p > 0, we say that the associated frequency map w = Vh
is p-isoenergetically nondegenerate if w does not vanish on GG and

% yo 4 ewll)

51 >ulv]  Yoe (), VEER, VIeG. (13)

It may be assumed without loss of generality that w, (/) # 0 for I € . Under the
isoenergetic nondegeneracy, and given a constant a > 0, the following map is a local
diffeomorphism (see [4]):

w([l)
Qonall) = ,ah(l)], I , 14
= (20 am). rea (14
where we use the notation v = (vy,...,v,-1) for v = (v1,...,v,-1,v,). Our choice of the

constant @ in theorem 2 is related to the estimates given in the technical lemma 8 (see
appendix B), which are better in this way.

Before giving the statement of the isoenergetic KAM theorem to be used later, we
introduce some technical definitions. Given G C R™ and b > 0, we define the set

G-b={I€CG : [+bC G},

where [ 4+ b means the closed ball of radius b centred at I. Moreover, given ' C R™ and
D > 0, we say that F'is a D-set if, for any 0 < by < bs,

mes [(F — by) \ (F — by)] < D(by — by).

Theorem 2 (Isoenergetic KAM Theorem) Let G C R" a compact, and consider the
Hamiltonian H(p, 1) = h(I)+ f(o, 1), real analytic on D,(G). Let w = Vh, and assume
the bounds:

0*h

£ <M, lwlg <L and lw, (1) > 1 VI eg.

g7p2




Assume also that w is u-isoenergetically nondegenerate on G. With a = 16M/I*, assume
that the map Q = Q. is one-to-one on G, and that its range F' = Q(G) is a D-set;
denote P =diam F'. Let 7 > n —1 and v > 0 given, and define the set

~ 2
G, i= {] €g— =, w(l) is T,V-Diophantine} .
7

For some constants Cy, Cy, Cs, Cy, Cs, depending only onn, 7, p1, M, L, [, u, if
€= Hf”g,p < 01727 v < miﬂ(Csz,Cg), (15)

then there exists a real continuous map T : W%(T”) X GW — D,(G), analytic with
respect to the angular variables, such that:

a) For every I € éw the set T (T" x {I}) is an invariant torus of H, contained in
T™ x G, its frequency vector is colinear to w(I) and its energy is h(1I).

b) mes [(T" x G)\ T (T x G, )| < (C4D + C5P"1) 7.
See the proof in [4, 9]. The statement (and a somewhat simpler proof) is also valid

in the Kolmogorov case, with small changes. We also remark that, for a fixed ¢, we may
choose v ~ /¢ and the measure of the complement in part (b) becomes O (1/z).

3.2 Applying KAM theorem

Now, our aim is to apply KAM theorem to the Hamiltonian H®) = o) 4+ R intro-
duced in (6-7). We put this Hamiltonian in action—angle variables through the known
canonical change

g =21 cosdj,  pp=4/21;-sing;,  j=1,...n
l’j:\/[»j'e_i(b]v yj:_i\/fj'ei¢]7 J=1...,n (16)

To obtain invariant tori in B,, we consider the set of actions corresponding to this neigh-

bourhood:

We have:

2
gr::{IER” 1 >0, |[|OO§%}.

We use the notation I > «a, where ¢ € R, to mean that I; > a for j = 1,...,n. The
change (16) maps (¢,1) € T" x G, — (x,y) € B,. However, to fulfil the conditions
of theorem 2 the Hamiltonian H(®) should be analytic on some complex neighbourhood
D, (G,). This cannot be guaranteed because it is not possible to define \/]7 analytically
around the coordinate hyperplanes I; = 0. Hence we have to remove a suitable neigh-
bourhood of these hyperplanes, but we shall show in the proof of theorem 3 that this does
not affect essentially our measure estimates. Such an approach has already been carried
out by Poschel [13], also in applying KAM theorem to a Hamiltonian in Birkhoff normal
form up to a certain order. For r, py given, we shall take for theorem 2 the domain

2
Gropy 1= {[ eR": I>2py, |I]. < %}

7



which is nonempty if p; < r?/4. Fixed r, we shall see in theorem 3 that the appropiate
values for the main parameters of theorem 2 are ¢ ~ r®+1 and ~ ~ py ~ r(E+D/2,

To apply theorem 2, we have to require the frequency map w®) = VAE) to be isoen-
ergetically nondegenerate on the neighbourhood considered. In fact we only assume the
nondegeneracy at the origin itself, since this suffices to ensure it in a small neighbourhood.
Defining
Ao 0*Z,

2 EN

(17)
a constant symmetric matrix, we have

WwIENDy =X+ AT+ Y VZ(D),
6<s<k

and we require that
A A
det ( AT o ) # 0. (18)

This implies that, for some p > 0 depending on A and A, one has
Av4+EXN > plv] Yoe (W), VEeR. (19)

This expression of the isoenergetic nondegeneracy will allow us to use the quantitative
version (13), which is more useful for giving estimates.

If we were dealing with the Kolmogorov nondegeneracy, we should impose the condi-
tion

det A#0

instead of (18). In this case, the statement and the proof of our results would be analogous
and somewhat simpler. Moreover, we point out that higher order conditions are also
possible for both types of nondegeneracy: such conditions would be useful if the frequency
map were degenerate at the origin and nondegenerate near it.

With the setup described above and some technical lemmas stated in appendix B, we
are able to apply theorem 2 to our Birkhoff normal form.

Theorem 3 Let H(x,y) = 3,59 Hs(x,y) be a real Hamiltonian with Hy = X -1, and
assume that ||Hsl| < ¢#=2d for s> 2. Let K > 4 given and assume that ) is nonresonant
up to order K. Consider the transformed Hamiltonian HY) given by proposition 1, and
denote W) = VRE)  Let v%. defined as in (10). Assume thatl the isoenergetic condi-
tion (18) holds, with A defined by (17). Let 7 > n — 1 given. For some constants ¢, ¢
and c3 depending only onn, 7, ¢, d, X\, A, given

0<r<cry (20)
and defining
(K-3)/2
- 7
o= et () 1)
Tk

one has:



a) There exists a subset Gﬁ]{) C G, such that, for every I € @5,]{), the vector W) (I)
) _Diophantine, and there is an n-dimensional invariant torus of the Hamil-
tonian HX), contained in B,, having the frequency vector colinear to W) (1) and

energy hU(T).

1S T, 0

b)  Denoting T\X) the set filled with the invariant tori of part (a), the following bound
holds:
] 2\ (K=3)/2
mes {B,, \ 7:,(1‘)} <e3 (—) -mes B, . (22)

Ik
Proof (Along this proof, the symbols < and ~ express that the involved constants do
not depend on r, pz, K.)

We assume A, # 0; otherwise a permutation of the variables may be done. We define
M = A, L =1}, L=\, (23)

and consider p > 0 (depending only on A and A) such that (19) holds. In order to apply
theorem 2 to the normal form H®) = pE) ¢ R(K), we first see that for r small enough
w) satisfies on G, ,, the conditions required for the frequency map, with the constants
2M, 2L, 1/2, /2 instead of M, L, I, pu respectively. Actually, in the first part of this
proof we do not need to restrict ourselves to the set G, ,,, since w®) is a polynomial map.
For technical reasons to be clarified later, we consider the set

~ 37“2

(without the restriction I > 0), which contains a neighbourhood of G, ,,.

We are going to estimate the functions

‘ Hw®) 0*Z,
Mo -x= Y vam,  Elnoas vy T2
A<o<K 6<s< K

on G, and V., (gﬂ), respectively, with p, < r?/4 to be fixed appropiately. Taking into
account that I; =1 2;y;, we can look at the derivatives of Z; as homogeneous polynomials
in x, y. So we can consider their norm as defined in (8). Let us check the following
inequalities:

0*Z,
012

be the coefficient of I" in VZ,. Then,

2
S
<zl (24)

S
VZ | < =24, <
Ivzi<s. | .

Indeed, let ZNW = (ZNu,u,j)

=1,...

n - n s
IVzdi= ¥ |2.f< X YlEu=X ¥ wlzld=5lzl,

2|v|;=s-2 2|v|,=s5—25=1 J=12y|,=s

namely the first inequality of (24). The second one follows in a similar way.

For s even, 4 < s < K, we get from proposition 1 the inequality

LiGed)s—2 2K+~ 1)
2| < SO T2RT (—) ) (25)
30 Tk



where (' is a constant not depending on s (we need this exponent s — 4 in order to obtain
1/(t 4+ 1) in (4); it cannot be reached from the original estimates of [6]). Then, making
use of the notations (11), we get the estimates

) . g2 (=2)/2 o\
- 2 2
s 8 i) 2 E () e e
S5 AT
Hw®) 52 (s—4)/2 r\ r?
oA S Y Tz T2 Y S ) 2 2D
Cropo 65;5\%3?{ 6265\%3?( K (TK)

where we have bounded the finite sums by the corresponding series and we have assumed,
for instance, that r < rj /2. Then, with an appropiate value for ¢; in (20), we can obtain
the inequalities

D)
ol

- [ ~
< 2L and w(I‘)([)‘ > 5 VI e g,. (28)

n

Gr,p2

aw(I\’)
oo | M- A 2 M

instead of e, ¢/, [, M respectively, we can deduce that w®) is Z-isoenergetically nonde-

Moreover, using (19) and applying lema 9 with ‘w(K) —A

generate on G,.

Next we prove that the map Q) :=Q_x) ), , defined according to (14) and taking

a=2"M/[?, is one-to-one on G, C G.. First, we consider the case K = 4:

X+ A1 1
0W(1) = (ﬁ a ()\ g 51%1)) ,

where A and A, denote, respectively, the first n — 1 rows and the last row of the matrix
A. From the isoenergetic condition, and taking into account (14), we see that the map
O™ is a local diffeomorphism, and thus there exists a constant ro, > 0 (depending only
on A and A) such that QM is one-to-one on g~,,0. To deduce that Q%) is one-to-one on G,
for r small enough, we will use lemma 10. Proceeding like in (26-27), we can obtain the
following bounds:

4 6
‘wu«') —wW| < T _, ‘hu«')_hu) <0 .
o (k) o (k)
After some calculations one gets, for any I € ,CZ, the bounds:
w(I() [ _w(4) [ . w(4) [ 4
QI (1) — (1 0 ()4) ( ()K)‘ (0 <,
D W ()] (&)
6

which lead to
‘Q(K) _ 0

~ N 7 .

9 (rk)

This bound is going to substitute ¢ in lemma 10. The parameters M, M, m, m, M’
appearing in that lemma are provided by lemma 8. Indeed, using (28), it is easy to check

10



that we can take as M, M, m, m some constants depending only on the current M, L, [,
p introduced in (23) and (19). For M’, we use the bound

93HK) $3 32 (s—6)/2 §3y5—6 1
o3 |~ S Z g HZSH T j Z (T*7)5_4 j (T*>)2 ’
I g<e<k 6<s<k B K

which comes from the inequality

OPZ, §3
|55 < 512
obtained like (24). So we can take
v (L & h ) L 12M 2ML 1
\4M | ar | l 2?2 = ()

Now we are ready to apply lemma 10. With a convenient value for ¢, it is easy to check
that (20) implies the smallness condition required in lemma 10. Then, we deduce that
Q@) is one-to-one on the set G, — r’  where ¢ is a constant. This set contains g,

2
.
(TK)

provided we assume the inequality

crt 3r?
<2
4

r?{)z B

which can also be included in condition (20).

Y

7“2_'_
2

~

From now onwards we restrict ourselves to G, ,,; note that QU (G, ) is a D-set with
D~ (rz)n_l, and its diameter is P ~ r2. It has to be noticed that if we had applied
lemma 10 directly on G, or G, ,,, then we would have had to remove a relatively large
neighbourhood of the coordenate hyperplanes I; = 0, and this would affect the estimate
for the measure of the complement given in part (b).

We have to check (15) in order to apply theorem 2. We consider the parameter o)
defined in (21) instead of 7, and the complex domain will be D, (G, ,,), with p; =1 and

pa ~ o) in such a way that the choice of py allows us to fulfil the second inequality

of (15).

The remainder R (¢, I) is analytic on the complex neighbourhood D, (G,.,,), with
p = (1,p2). Indeed, since Rel; > 0 on this neighbourhood, the coordinate change (16)
is analytic on it. To check the first inequality of (15), we have to consider the norm (12),
defined in terms of Fourier coefficients. By a property of the norm (12) established in
[14], one has

HR(I{) o < (coth” %) ‘R(K)

29
D(2,09)(Grrz ) (29)

where, in the right hand side of this inequality, we have considered the supremum norm
on Dz,p,) (Gr.p,)- To bound this norm, it will be better to consider the coordinates (z,y)
because we can then use our estimates on the homogeneous terms. From proposition 1,
and proceeding as in (25), we obtain for s > K 4+ 1 the estimate




where C' is a constant not depending on s. Using that py < r?/4 (otherwise the set G, ,,
is empty), for (¢, 1) € D,y (Gr,p,) We have

2 2
2l sl < 1] ol <[5+ e <
2 4
Then, proceeding like in (26-27),
K ( s (7r)® (7r)E+1
R o) S 2 |REO|(7r) = > g = (30)
(2,02)\ Y702 s>K+1 s>K+1 (TK) (TK)

provided we assume, for instance, the inequality r < rj; /14, which can be included in (20).

Putting the bounds (29-30) together, we see from (21) that HR(K) < (U(K))Z and

r

gr,pQ P

hence the first inequality of (15) is satisfied taking the constant ¢ appropiately.

Applying theorem 2, we obtain invariant tori parametrized by the set

40.7(,1()

r

Gﬁ]{) = {] €Gr, — cw(l)is T, U(K)—Diophantine} \

and we have proved part (a). Let us denote S{®) the set filled with these invariant tori
in the action-angle coordinates, and T,(%) the same set in the original coordinates. By
part (b) of theorem 2, and recalling that D ~ r**=2 P ~ r?  we get the estimate

r r

) ) 7\ E-3)/2
mes {(T” X Grpp) \ S(I‘)} < 2725 (K) o p2n (T) :

TK
To bound the measure of the complement of the invariant set with respect the whole
neighbourhood of radius r, we have to add to this estimate the measure of the part
removed in considering G, ,, instead of G,. However, this does not affect our estimate,
since the measure of the part removed has the same order. Indeed, we have:

et ! 7\ (5=8)/2
mes (G, \ Gr,,) < n () Qmmw%”d“mw%(_J |

*
Tk
and hence

mes [(T" x G,)\ S| < mes [(T" x G,,,) \ S| + (27)" - mes (G, \ G..1.,)
- (K—3)/2
< (—) ) (31)

Ik
Finally, we have to move this bound to the neighbourhood B5,, defined in terms of the
old coordinates. The change to action—angle variables is measure-preserving, since it is
canonical. This change relates T" x G, and B,; hence we get for the measure of B, \7:,(1"')
the same bound (31). Using that mesB, ~ r**, we deduce the bound of part (b),
concerning the relative measure inside B,. O

We remark that this result is a more elaborated version of Poschel’s result [13], which
provides a measure estimate like (22), also with the exponent (K — 3)/2. But we point
out that the result given in [13] does not come from a quantitative version of Birkhoff
theorem, and hence it is valid “for r small enough”, without imposing any explicit con-
dition like (20). We show in the next section that such a condition is crucial in order to
obtain an exponentially small estimate for the measure of the complement.
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4 The Diophantine and quasi-Diophantine cases

We now assume that the frequency vector A satisfies a Diophantine condition, with some
exponent 7. In this case, we prove that the parameter K" may be chosen as a function of
r. We then get, for the complement of the set filled with the invariant tori of the normal
form H) in a neighbourhood of radius r, an estimate which is exponentially small in
(1/r)Y/+D The fact that the transformation W*) is canonical allows us to ensure that
this estimate also holds for the complement of the invariant tori of the original Hamiltonian

H.

Theorem 4 Let H(x,y) = 3,59 Hs(x,y) be a real Hamiltonian with Hy = X -1, and
assume || H,|| < ¢=2d for s > 2. Assume that the vector \ is ,~v-Diophantine, with
T>n—1and v > 0. Assume also that the isoenergetic nondegeneracy condition (18)
holds, with A as in (17). For some constants ¢y and cs depending only on n, ¢, d, A, A,
i
/

0<r< k. (32)

then there exists a set T, C B, such that every point of T, belongs to an n-dimensional
invariant torus of H, and one has the bound

1 1/(r+1)
mes [B, \ T,] < ¢5 exp {_E (ﬂ) } -mesB, . (33)
r

Proof Since A is 7,v-Diophantine, one has a; > v/s7 for every s > 0. Let K > 4 to
be chosen. Applying proposition 1, we obtain a canonical transformation W) such that
HE) = HoWE) s in Birkhoff normal form up to degree K. The transformation W5) is

analytic on ZSA’,,;(, with

* 7
P . 34
K= 548ned K7+t (34)

By part (c) of proposition 1, we have W) (By,) D B, if r < r3 /2. We shall apply
theorem 3 with 2r instead of r in order to get invariant tori of HE) on B,,. Many of
these tori will give, through the transformation W), invariant tori of H on B,. Indeed,
we assume

2r < dirye, (35)

with ¢} = min(¢y,1/7e). Applying theorem 3 (taking some 7/ > n — 1 instead of 7,
for instance 7/ = n), we get a subset 7’2(,,1‘) C By, filled with invariant tori of H®), and
satisfying the estimate:

mes [Bgr \ 7’2(,,1()} < ey e B2 mes By, < e e % mes By, .

Taking 7, := ¥ (T9) 1 B,, we have W) (By, \ 7)) 5 B, \ T,. Using that W)

is measure-preserving, we obtain

mes [B, \ T,] < mes [Bgr \ 7’2(,,1()} < e K3 mes By, . (36)

Since the only restriction on K is the inequality (35), we choose K = {(047/7“)1/““)}

with ¢y = ¢]/1096ncd (we use the notation [] for the integer part of a real number).

13



Note that condition (32) guarantees that K > 4. With our choice of K, we easily get
from (36) the bound (33). O

In the frame of theorem 4, another remarkable fact which can be deduced from theo-
rem 3 is that the frequencies of the invariant tori in B, are 7/, o*-Diophantine, with some
7" > n — 1 (which can be different from 7), and

1/(7+1
o < K= L exp {_ (1) [ )} ‘
.

This indicates that most of the invariant tori obtained for r small are very fragile, in the
sense that a very small perturbation of the Hamiltonian would destroy them.

An important question from a practical point of view, which was proposed to us by
M.V. Matveyev, is whether the exponentially small estimates are still valid if the frequency
vector X is not exactly Diophantine. In fact, if A is known only approximately it cannot be
decided if it satisfies a Diophantine condition. Nevertheless, if A is “quasi-Diophantine”,
we can still expect good measure estimates for the complement of the invariant tori.

Note that, if we know X up to a precision § > 0 (i.e. we know an approximation X',
with |X — A] <), then it has no sense to check the Diophantine condition (3) beyond a
certain finite order. Given 7, v and 4, we say A to be 7,v-Diophantine up to precision ¢ if

kA >——  VkeZ" 0< |k, <N, (37)

where
Y 1/(r+1)
N = N(r,7,6):= (5) .

For this definition, the restriction 7 > n — 1 is not necessary. Note that if A\’ is an
approximation to A with |\ — A| < § and

k- XN|> L WkeZ" 0< |k, <N, (38)

then we can deduce that A is 7,v-Diophantine up to precision .

The next theorem gives estimates for the quasi-Diophantine case. The only significa-
tive difference with respect to theorem 4 is that, for very small values of r (of the order
of the precision d), we cannot choose the parameter K larger than N.

Theorem 5 Consider the same situation of theorem 4, but assuming only that X is T,~-
Diophantine up to precision §. Define

F:=max (r, csd)

and assume

" Cq7Y
0<r< T
Then, one has the bound
1 1/(7+1)
mes [B, \ T,] < ¢5 exp {_E <c4~’y) } -mes B, . (39)
T

14



Proof We proceed as in theorem 4. By (37), one has as > ~v/s” for 0 <s < N. Let K
to be chosen, with 4 < K < N. The inequalities (34-35) and the restriction K < N lead

us to take K = {(047/7:)1/(7“)}, and we get the bound (39). O

It follows from this theorem that exponentially small estimates in 1/r, like those of
theorem 4, can be ensured in an “annulus” centred at the elliptic point. They hold for

Cq7Y

6 <7 < s

but not for r < ¢4, so they cannot be considered as asymptotic estimates. The relative
width of this annulus is given by

A7THLS
B =p(r7,0):=1- T

Note that, if <, the neighbourhood where these estimates do not hold is not relevant,
since its radius is of the order of the precision. Thus, in the quasi-Diophantine case we
can still say that exponentially small estimates (in 1/r) hold for practical purposes, since
such estimates are not essentially modified by the fact that the frequency vector is not
exactly Diophantine.

As an illustration, we consider in the tridimensional Restricted Three Body Problem a
neighbourhood of the equilibrium point L4 (see for instance [6, 15]). If i denotes the mass
parameter, the associated frequencies A = (Aq, A2, A3) satisfy the characteristic equation

27
4 2 2 2 _
(:1; —x —I—E—a)(x —1) =0,
with
(1—2u)3V3

4 .
In the Sun-Jupiter case, we have u =~ 1048.35571 &~ 0.95387536 - 10™® and then

a=—

A= X =(0.996757526, —0.080463876, 1).

Assuming p given with precision 107, we easily see that A is known up to precision
§ ~ 4-107% After some computation, and taking into consideration (38), we have
obtained values of v, N and [ for several values of 7.

T ~ N ¢

0  0.114445-10"* 286 0.986019
0.5 0.182052-1072 274 0.998242
I 0.175564 - 1072 209  0.999635
1.5 0.458555-107% 105 0.999721
2 0.648495 1072 54 0.999605
2.5 0.917110-107% 34 0.999442

We see that, for the values of 7 considered, we get 3 quite near to 1. However, for a big
value of § one should be careful in the choice of 7 in order to get 3 as large as possible.
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Finally, we mention that quantitative estimates of the inner and outer radius of the
annulus where our estimates are exponentially small in 1/r would require explicit knowl-
edge of the constant ¢4. This could be done reviewing thoroughly the bounds given in
the present paper. However, these bounds have been carried out always considering the
worst possible case. It is clear that, in concrete examples, the explicit computation of the
Birkhoff normal form would give much better results.

A Estimates for the Giorgilli-Galgani algorithm

Let us recall the Giorgilli-Galgani algorithm as presented in [6]. For a given “generating”
function x = Y ,53 xs (the subscripts denote the degrees of homogeneous polynomials),
one defines a linear operator T in the following way: if f =375, fs, then

Txf:ZF57 (40)

s>1
where .
Fs - Zfl,s—l (41)
=1
and

S

fl,O = fl7 fl,s = LXQ.H.]CI,S—j (42)

| S.

1

j:
(the Poisson bracket is denoted L,f = {g,f}). As pointed out in [6], the operator T}
induces a canonical transformation, which can be written as (X,Y) — («,y), with

l’]‘ = TXX]‘, y]‘ = TX}/JW ] = 1,. oo (43)

These equations are formal. However, if the y, satisfy suitable estimates then the corre-
sponding series are convergent and the transformation (43) is analytic in a neighbourhood
of the origin.

Given the Hamiltonian H = > .o, Hy with H, = A - I, and assuming that A is
nonresonant up to order K, one can construct a generating function y*) = SR X
such that HE) = T o) H is formally in Birkhoff normal form up to order K. Writing
HUE) as in (6), the following homological equations have to be satisfied:

Ly, xs + Zs = F, 5> 3, (44)
where
F3 = s, (45)
s—3 [ 5—2 I
Fo=3 —— Lo 2o+ ) ——Hopisa, s> 4 (46)
=1 s—2 =1 s—2

We next give the quantitative lemmas required for the proof of proposition 1. The
first lemma improves the results of lemma 3.2 and propositions 3.3 and 3.4 of [6].
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Lemma 6 Let x =} .53 X, wilth the hypothesis
a*3b
63 ce 65

where (35 is a decreasing sequence of positive numbers. Let [ = 3751 fs be given such

that || fs|| < ¢*='d for s > 1. Then, for the scheme described in (40-42) one has:

3b("71) (36 + ga)s‘l
63 e 654—2

HXSH S \V/S Z 37

a) |fisll < Crsllfill forl,s =1, where  Cpo =

(36 + Ba+ Bac)” d
63 ce ﬁs-l—l

c) Assuming that for some K > 3 one has s = Bi for every s > K + 1 (for instance
if X s a polynomial of degree K ) and writing

b
A7T0nb + 13a ’

b) ||Fs] < for s> 1.

the canonical transformation W introduced in (43) is analytic on B, and, for any
r < r*, one has the inclusion V (B,) D B,/s.

Proof We point out that parts (a) and (b) run as in [6]; so we do not prove them here.
To see (c), write the transformation formally defined in (43) as ¥ = (\I/(l), cee \11(2”)). If

ZU) denotes, for j = 1,...,2n, the coordinates X;,...,X,,Y:,...,Y,, one can write

VO =120 = 70 £ S w0 =1, 2, (47)

5>2

where every WY is a homogeneous polynomial of degree s in (X,Y). One has:

98] < i -

s—2
36 (36 + %a) _3b (3b+ %a)S—z‘
Ba-Bey1 T B3 Br
ﬁK
6b + %a ’

<l

It follows that, for r < rg =

6b

W) — 20 rsg r2. (48)

3

We deduce that the series (47) are convergent on ZSA’,,O and hence W is analytic on this
neighbourhood.

We are going to prove the inclusion VU (B,) D B,,; from the fact that ¥ is near

to the identity, applying lemma 10. Using the Cauchy inequalities and that r < r* <
ro/ (1 + \/5), we get the bounds

02w)
(1+v2)r’ VAR VALY

‘aq;(i)

g~ l‘q,m — 79|

r r



We obtain from (48-49) the following bounds for ¥ and its total derivatives:
6b 2 50y/nb
U —id| < v/2n — 1—|—\/§r <7r2,
i <V (149 ) < 2

DY —1d|, < 27”2_5((1+\/§) 3’ < 7(;an7

3 3

2(2n)*/? 6b 2 198n*%b
LS (rz) @((Uﬂ/ﬁ)r) = By

We remark that we are using the Euclidean norm for vectors and matrices, because this
is the norm in which lemma 10 has been stated. To apply lemma 10 on the domain B,,
we can consider the following parameters:

b ~ b b ~ 198n°%/%b
5:50\/5 2, M=m=1, le—l——mn r, m:l——mn r, M’:798n .
O3 B3 B3 B3

With these parameters, the smallness condition of lemma 10 is easily verified. Then, we

\D%I;

obtain for r < r* the inclusion
200+/n br?
\J (Br) OB, — % D Br/2-
63 (1 T Bs )

a

Next we give estimates for the procedure leading to the normal form, introduced
in (44-46), improving the results contained in proposition 5.1 of [6].

Lemma 7 Let H = ) oy Hy, with Hy = -1, and assume that ||H,|| < ¢=*d for
s > 2. Assume that X is nonresonant up to order K and let oy, for s < K, be lower bounds

for the small divisors as in (9). Then, for the scheme (44—46) one has, for s =3,..., K,

I < é(6cd)5_2(3 —2)! ‘

(50)

371
Moreover,

1
Il = — Il 120 < L] (51)

Proof It is enough to prove (50), since it implies the the inequalities (51) in view of the
well-known resolution of the homological equation (44). We look for positive numbers
015, ns such that

0, scd
[ Haoprall € —25— 121,520, (52)
a3.-.a5+2
and J
sC
1 Foall € —25— s> 1. (53)
a3.-.a5+1

Like in [6, proposition 5.1] it is easy to see, by induction, that we can take 0;o = /7!,

m =1, and

d S~ . . .
0= =D JR+ D@+ +s =il 121521,
=1

ed 321 . . 1Sy
s = J2+ )2+ s —g)nms—; + gZ]d] Wi,  s>2.
1 7=1

s =
]_
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The main difference with respect to [6] is that the as have now been included directly
in (52-53) as denominators and not inside the 6, 5, ;. Proceeding like in [6], one sees that

s S ds—lcs—lbs7
where b, denotes a sequence satisfying
by < 651! Vs > 1.

It then suffices to put these inequalities together. a

Using the two previous lemmas, we are able to give estimates for the Birkhoff normal
form, including the terms of the remainder, as in theorem 5.5 of [6].

Proof of proposition 1~ We recall that part (a) has already been stated in lemma 7. To
get parts (b) and (c), we apply lemma 6 to the function H, taking y'*) as the generating
function. We consider in that lemma the values ¢, d/e, 6cd, cd instead of ¢, d, a, b,

respectively, and
s

65 =
S —_
Bs = B for s > K +1,

as provided by lemma 7. In this way, we get

for 3<s< K,

(36 + %a + [330) o %
63 ... ﬁs-l—l

e

<

for s > K + 1. Using the identity

s—K+2
Qg QK10

(K —3)I(K — 2)—K+2

By Bopr = 53...51(_15&,—1"“ —

and also the fact that (3 < d, we may arrange the bound on HRgK) and we get (b).

Finally, the assertion of part (c) is deduced taking rj somewhat smaller than the value
given by lemma 6. O

B Isoenergetic nondegeneracy: technical results

We now include some lemmas concerning the isoenergetic nondegeneracy. The first one
gives estimates for the local diffeomorphism introduced in (14). For its proof (and a
thorough motivation to the constant a), see [4].

Lemma 8 Let h be a real function of class C* on G C R”, and w = Vh. Assume the

bounds:
0*h
or?

Dh

!
| =M

< M, lwle <L and lw, (1) =1 VI €.
a

— Y

G

Assume also that w is p-isoenergetically nondegenerate on G. Let a > 2M/I* a fived
constant, and denote Q0 = Q. 1, .. One has:
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57 > | Yo eR", VICG.

_ (M sary
co\em T )

The next result establishes how a perturbation on the frequency map affects the con-
stant p of condition (13). See the proof in [4].

v

%0
) |

Lemma 9 Let A\, A € R*, and let A, A be (n x n)-matrices. Assume ‘5\ —)\‘ < &g,

A—A‘ <é, and | < min (|)\|, 5\), M > max (|A|7 AD For some p > 0, assume
that

|Av4+EXN > plv] Yoe (N, VEeR.
Then,

Ao+ €3] > (,,L— 4]‘[45 —5’) o e (i), veeR.

The last lemma says that a small perturbation of a one-to-one map is also one-to-one
provided its domain is slightly restricted. The proof is essentially given in [4] (see also

[9))-

Lemma 10 Let G C R" a compact, and let Q, Q: G — R" maps of class C2, with
0 — Q‘G < e. Assume that Q is one-to-one on G, and let F' = Q(G). Assume the
bounds:

o o) - 920 .
<M, —| <M, —| <M,
or |, ol G or*|,
oN oN
_ > _ > ~ n
8]([)U >m|v], 8]([)U >mlv| YveR", VIeG,

with 0 <m <m, M > M. Assume also that

Define I'= I — 4?7{5 , G = (Q)_l (F) One has:

a) Q is one-to-one on CN?, and (CN?) = [,

5M ~ 2
fCGcG—ﬁ.
mm m

b) G-
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