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Abstract

We give a precise statement for KAM theorem in a neighbourhood of an elliptic equilib�
rium point of a Hamiltonian system� If the frequencies of the elliptic point are nonresonant
up to a certain order K � �� and a nondegeneracy condition is ful�lled� we get an estimate
for the measure of the complement of the KAM tori in a neighbourhood of given radius�
Moreover� if the frequencies satisfy a Diophantine condition� with exponent � � we show
that in a neighbourhood of radius r the measure of the complement is exponentially small
in ���r��������� We also give a related result for quasi�Diophantine frequencies� which
is more useful for practical purposes� The results are obtained by putting the system
in Birkho	 normal form up to an appropiate order� and the key point relies on giving
accurate bounds for its terms�



� Introduction

We consider an analytic Hamiltonian system� with n degrees of freedom� having the origin
as an elliptic equilibrium point� In suitable canonical coordinates� the Hamiltonian takes
the form

H�q� p� 

X
s��

Hs�q� p�� ���

where Hs is a homogeneous polynomial of degree s in �q� p� for every s � �� and

H��q� p� 

�

�

nX
j��

�j
�
q �j � p �j

�
� ���

We are concerned with the existence of n�dimensional invariant tori in a neighbourhood
of the elliptic point�

We begin by showing� in section �� that the Hamiltonian ���� is nearly�integrable
by putting it in Birkho� normal form up to an appropiate degree K � �� provided the
frequency vector � 
 ���� � � � � �n� is nonresonant up to order K� Using results from the
paper ��� by Giorgilli et al�� we state a quantitative version of Birkho	 theorem� which gives
estimates for the homogeneous terms of the part in normal form and for the homogeneous
terms of the remainder �proposition ���

In section �� like in P�oschel�s paper ����� we consider actionangle variables in a neigh�
bourhood of radius r� Assuming a suitable nondegeneracy condition �we deal with the
isoenergetic case�� we apply the known KAM theorem and show in theorem � that most
trajectories in a neighbourhood of radius r lie in invariant tori� we get for the relative
measure of their complement an estimate of the type O

�
r�K�����

�
� In fact� an estimate

like this was already obtained in ���� but� furthermore� we specify the smallness condition
on r required for its validity�

The extra information provided in theorem � with respect to ���� becomes important in
section �� where we assume that � satis�es a Diophantine condition� with given � � n��
and � � ��

jk � �j � �

jkj ��
�k � Zn n f�g � ���

where we write jkj� 

Pn

j�� jkj j� We say � to be �� ��Diophantine� Our main contribution�
already announced in ���� is to show that in this case we can choose the degree K as a
function of r� giving rise to an exponentially small estimate of the type

exp

�
�
�

�

r

���������
���

for the measure of the complement of the invariant set �theorem ��� To understand the
fact that� in the Diophantine case� the measure of the complement of the invariant tori is
exponentially small� we notice that the size of the perturbation in applying KAM theorem
is very small near the elliptic point� Hence� we can ensure the preservation of the invariant
tori under a Diophantine condition with a very small value of the parameter�

However� our estimate ��� is not very useful from a practical point of view� Indeed�
if the frequency vector � is not exactly known� it cannot be decided if it satis�es the

�



Diophantine condition ���� For this reason� we have also included estimates for the �quasi�
Diophantine� case� in section �� We remark that� if the vector � is known up to a precision
� � �� it has no sense to check the Diophantine condition beyond a certain �nite order
N 
 N��� �� ��� So we assume � to be �Diophantine up to precision �� �see a concrete
de�nition in section ��� Then� we see in theorem � that exponentially small estimates
of the type ��� hold except in a neighbourhood of radius O ���� So we can say that
such estimates are still valid� for practical purposes� if � is small� This suggests that� in
studying the behaviour of the system around an elliptic �xed point� it does not really
matter whether its frequencies are or are not exactly Diophantine� unless we look at a
very small neighbourhood of the �xed point�

Since the measure of the region not covered by invariant tori� near the elliptic point�
is neglectible from a practical point of view� we can consider theorems � and � as results
of practical stability� This agrees with the known fact that� in order to detect unstable
trajectories numerically� one cannot begin too close to the elliptic point�

As a technical remark� we point out that the estimates given in ���� based in the
Giorgilli�Galgani algorithm� did not allow us to obtain the exponent ���� � �� of ���
directly� but a worse one� Nevertheless� we have carried out an improvement of the
estimates of ���� without modifying the algorithm� In this way we obtain the exponent
���� � ��� that seems to be optimal in the frame of our scheme�

It has to be recalled that exponentially small measure estimates for the complement
of the invariant tori were �rst obtained by Neishtadt ����� for a system with two degrees
of freedom in the case of degeneracy�

We also quote a result� related to our theorem �� which has recently been established
in ����� for a �xed KAM torus of a nearly�integrable Hamiltonian� it is shown that in a
neighbourhood of radius r there exist many n�dimensional invariant tori� and the measure
of their complement is exponentially small�
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� The Birkho� normal form

Let us consider the Hamiltonian ���� and� given K � �� assume that its frequency vector
� is nonresonant up to order K�

k � � �
 � �k � Zn� � 	 jkj� � K� ���

�



The well�known Birkho� theorem ��� ��� states that� in some neighbourhood of the origin�
there exists a canonical transformation ��K�� near to the identity map� such that H�K� 

H ���K� is in Birkho	 normal form up to degree K�

H�K��q� p� 
 � � I � Z�K��I� �R�K��q� p�� ���

with
Z�K��I� 


X
s even
��s�K

Zs�I�� R�K��q� p� 

X

s�K��

R�K�
s �q� p�� ���

where every Zs�I� �uniquely determined� is a homogeneous polynomial of degree s�� in
the action variables

Ij 

�

�

�
q �j � p �j

�
� j 
 �� � � � � n�

and every R�K�
s �q� p� is a homogeneous polynomial of degree s in �q� p�� Since the Hamil�

tonian
h�K��I� �
 � � I � Z�K��I�

is integrable and in a neighbourhood of radius r one has R�K� 
 O
�
rK��

�
� it turns out

that H�K� is a nearly�integrable Hamiltonian near the origin� Our aim is to apply KAM
theorem to H�K��

However� for our purposes we need to bound from below the radius of the neighbour�
hood where the transformation to Birkho	 normal form holds� Besides� we need bounds
for the terms of the normal form �to satisfy the smallness condition for KAM theorem��
Having these ideas in mind� we state below a quantitative version for Birkho	 theorem
�proposition ��� Such a version comes from the results obtained by Giorgilli et al� ���� but
we improve their estimates on the terms Zs� R�K�

s � This improvement is crucial in order
to get the exponent ���� � �� appearing in the bound ����

In ���� the canonical transformation bringing to normal form is constructed through
the Giorgilli�Galgani algorithm �see also ��� �� ����� a variant of the Lie series method�
In that scheme� the transformation is obtained as the �ow of a unique nonautonomous
Hamiltonian� We point out that the case concerned in ��� is more general than the one
considered here� since it also involves resonant normal forms� We give in appendix A a
description of the GiorgilliGalgani algorithm�

In dealing with normal forms near a �xed point of a Hamiltonian system� it is usual
to consider the complex canonical coordinates �x� y� de�ned by the linear change

xj 

�p
�

�qj � ipj�� yj 
 � ip
�

�qj � ipj�� j 
 �� � � � � n

�these coordinates make simpler the resolution� in terms of coe�cients� of the homological
equations arising in the construction of normal forms�� Making use of the notation x� 


x ��
� � � �x �n

n � y�
�


 y
���
� � � � y ��n

n � we write

Hs�x� y� 

X

�����Nn

j���� j��s

h����x
�y�

�

�

Note that q� p are real if y 
 ix� and hence the Hamiltonian H is �real� whenever its
coe�cients satisfy the relation h���� 
 ij���

� j�h�����

�



We introduce some de�nitions� Given r � �� we consider the real and complex poly�
disks of radius r centred at the origin�

Br �

n

�q� p� � R�n � j�q� p�j � r
o



n
�x� y� � C�n � j�x� y�j � r� y 
 ix

o
�bBr �


n
�x� y� � C�n � j�x� y�j � r

o
�

where we de�ne

j�q� p�j �
 max
j�������n

q
q �j � p �j � j�x� y�j �
 max

j�������n

q
jxjj� � jyjj��

In order to give estimates� we introduce a norm for the polynomials involved� Like in ����
for a given homogeneous polynomial fs�x� y� 


X
j���� j��s

f����x
�y�

�

� we de�ne the norm

kfsk �

X

j���� j��s
jf���� j ���

�for an alternative norm� see ������ This de�nition also makes sense if fs is a vector�valued
function each coe�cient f���� is then a vector and jf���� j denotes its Euclidean norm �the
same remark holds for a matrix�valued or tensor�valued function��

For a function f�x� y�� we denote jf jr its supremum norm on bBr� Given f 

P

s fs �
one has

jf jr �
X
s

kfsk rs�

If there exist a� b such that kfsk � asb for every s� then f is analytic on bBr for r 	 ��a�

We consider lower bounds for the small divisors in the nonresonance condition ���� up
to successive orders� For s � K� let 
s be the decreasing sequence �
s � 
s��� de�ned by


s �
 min
	�jkj��s

jk � �j � ���

The improvement of the estimates given in ��� comes from the following remark� in the
construction of the normal form described above� the obtainment of Zs only involves small
divisors up to order s� �� This allows us to get better estimates� with expressions of the
type 
� � � �
s�� in the denominators instead of 
 s��

K � as shown in the next proposition�

Proposition � Let H�x� y� 

P

s��Hs�x� y� be a Hamiltonian with H� 
 � � I� and
assume that kHsk � cs��d for s � �� Let K � � given and assume that � is nonresonant
up to order K� Let 
s� for s � K� be lower bounds for the small divisors as in �	
�
Then� there exists a canonical transformation ��K�� near to the identity map� such that
H�K� 
 H ���K� is in the Birkho� normal form ����
 up to degree K� and one has

a� kZsk �
�

 ��cd�s�� �s� ��!


� � � �
s��
for s even� � � s � K�

b�
���R�K�

s

��� � ��d� ���cd�s�� �K � ��!�K � ��s�K��


� � � �
K��
 s�K��
K

for s � K � ��

�



c� De�ning

r�K �


K

���ncdK
� ����

the transformation ��K� is analytic on bBr�
K

and� for any r � r�K� one has the

inclusion ��K� �Br� 	 Br���

This proposition improves the results of ��� theorem ����� The proof is deferred to
appendix A�

� KAM tori and estimates

��� Recalling KAM theorem

In this section we recall a statement of KAM theorem to be used later� Let us consider a
nearly�integrable Hamiltonian written in actionangle variables

H��� I� 
 h�I� � f��� I��

with � � Tn and I � G 
 Rn� The perturbation f is assumed to be of size �� To show
that most of the trajectories of H lie in n�dimensional invariant tori� one usually imposes
one of the following nondegeneracy conditions on the frequency map  
 rh�

det

�
�

�I
�I�

	
�
 � or det

� ��
�I

�I� �I�

�I�� �

	
�
 �

for every I � G� We call these conditions Kolmogorov nondegeneracy and isoenergetic
nondegeneracy� respectively�

We need a statement of KAM theorem expliciting the smallness condition on � and an
estimate for the complement of the invariant set� Several statements� for the Kolmogorov
version or for the isoenergetic one� have been established in ���� ��� �� �� �� �see also ���
for general reference about the subject�� The statement reproduced below is taken from
��� ��� where the isoenergetic version is considered� Nevertheless� the ideas there contained
also apply to the Kolmogorov version� which is simpler�

We begin with some de�nitions� Given a set G 
 Rn� we consider analytic functions
on complex neighbourhoods of Tn � G� Given � 
 ���� ��� � � �i�e� �j � �� j 
 �� ���
we introduce the sets�

W	��T
n� �
 f� � Re� � Tn� jIm�j� � ��g�

V	��G� �
 fI � Cn � jI � I �j � �� with I � � Gg�

where j�j� and j�j 
 j�j� denote� respectively� the supremum norm and the Euclidean norm
for n�vectors� We then de�ne�

D	�G� �
 W	��T
n�� V	��G��

�



For a given function g�I� of the action variables� de�ned on V
�G�� � � �� we consider
the supremum norm�

jgjG�
 �
 sup
I�V��G�

jg�I�j � jgjG �
 jgjG�	 � ����

Even if g is vector�valued �or matrix�valued�� these de�nitions make sense by considering
in jg�I�j the Euclidean norm�

Given a function f��� I� of the actionangle variables� analytic on the domain D	�G��
� 
 ���� ��� � �� we consider its Fourier expansion f��� I� 


X
k�Zn

fk�I� ei k	� and de�ne

the following exponentially weighted norm �see also ������

kfkG�	 �

X
k�Zn

jfkjG�	� � ejkj�	� � ����

We use this norm to express the smallness condition for KAM theorem�

We introduce a quantitative version for the isoenergetic condition� For a function h�I�
de�ned on G 
 Rn� and given � � �� we say that the associated frequency map  
 rh
is ��isoenergetically nondegenerate if  does not vanish on G and




��I �I� v � � �I�






 � � jvj �v � h�I�i
 � �� � R� �I � G� ����

It may be assumed without loss of generality that n�I� �
 � for I � G� Under the
isoenergetic nondegeneracy� and given a constant a � �� the following map is a local
di	eomorphism �see �����

"��h�a�I� �


�
�I�

n�I�
� a h�I�

	
� I � G� ����

where we use the notation v 
 �v�� � � � � vn��� for v 
 �v�� � � � � vn��� vn�� Our choice of the
constant a in theorem � is related to the estimates given in the technical lemma � �see
appendix B�� which are better in this way�

Before giving the statement of the isoenergetic KAM theorem to be used later� we
introduce some technical de�nitions� Given G 
 Rn and b � �� we de�ne the set

G� b �
 fI � G � I � b 
 Gg �
where I � b means the closed ball of radius b centred at I� Moreover� given F 
 Rn and
D � �� we say that F is a D�set if� for any � � b� 	 b��

mes ��F � b�� n �F � b��� � D�b� � b���

Theorem � �Isoenergetic KAM Theorem� Let G 
 Rn a compact� and consider the
Hamiltonian H��� I� 
 h�I� � f��� I�� real analytic on D	�G�� Let  
 rh� and assume
the bounds 




��h�I�






G�	� �M� jjG � L and jn�I�j � l �I � G�

�



Assume also that  is ��isoenergetically nondegenerate on G� With a 
 ��M�l�� assume
that the map " 
 "��h�a is one�to�one on G� and that its range F 
 "�G� is a D�set�
denote P 
 diamF � Let � � n� � and � � � given� and de�ne the set

bG� �


�
I � G � ��

�
� �I� is �� ��Diophantine

�
�

For some constants C�� C�� C�� C�� C�� depending only on n� � � ��� M � L� l� �� if

� �
 kfkG�	 � C��
�� � � min�C���� C�� � ����

then there exists a real continuous map T � W ��
�

�Tn� � bG� �� D	�G�� analytic with
respect to the angular variables� such that

a� For every I � bG� � the set T �Tn � fIg� is an invariant torus of H� contained in
Tn � G� its frequency vector is colinear to �I� and its energy is h�I��

b� mes
h
�Tn � G� n T

�
Tn � bG�

�i
� �C�D � C�P

n��� ��

See the proof in ��� ��� The statement �and a somewhat simpler proof� is also valid
in the Kolmogorov case� with small changes� We also remark that� for a �xed �� we may
choose �  p

� and the measure of the complement in part �b� becomes O �
p
���

��� Applying KAM theorem

Now� our aim is to apply KAM theorem to the Hamiltonian H�K� 
 h�K� �R�K� intro�
duced in ����� We put this Hamiltonian in actionangle variables through the known
canonical change

qj 

q

�Ij � cos�j� pj 

q

�Ij � sin�j� j 
 �� � � � � n�

We have�
xj 


q
Ij � e�i�j � yj 
 �i

q
Ij � ei�j � j 
 �� � � � � n� ����

To obtain invariant tori in Br� we consider the set of actions corresponding to this neigh�
bourhood�

Gr �


�
I � Rn � I � �� jIj� � r�

�

�
�

We use the notation I � a� where a � R� to mean that Ij � a for j 
 �� � � � � n� The
change ���� maps ��� I� � Tn � Gr ��� �x� y� � Br� However� to ful�l the conditions
of theorem � the Hamiltonian H�K� should be analytic on some complex neighbourhood

D	 �Gr�� This cannot be guaranteed because it is not possible to de�ne
q
Ij analytically

around the coordinate hyperplanes Ij 
 �� Hence we have to remove a suitable neigh�
bourhood of these hyperplanes� but we shall show in the proof of theorem � that this does
not a	ect essentially our measure estimates� Such an approach has already been carried
out by P�oschel ����� also in applying KAM theorem to a Hamiltonian in Birkho	 normal
form up to a certain order� For r� �� given� we shall take for theorem � the domain

Gr�	� �


�
I � Rn � I � ���� jIj� � r�

�

�
�

�



which is nonempty if �� 	 r���� Fixed r� we shall see in theorem � that the appropiate
values for the main parameters of theorem � are �  rK�� and �  ��  r�K������

To apply theorem �� we have to require the frequency map �K� 
 rh�K� to be isoen�
ergetically nondegenerate on the neighbourhood considered� In fact we only assume the
nondegeneracy at the origin itself� since this su�ces to ensure it in a small neighbourhood�
De�ning

A �

��Z�

�I�
� ����

a constant symmetric matrix� we have

�K��I� 
 � � AI �
X
s even

�s�K

rZs�I��

and we require that

det

�
A �
�� �

	
�
 �� ����

This implies that� for some � � � depending on A and �� one has

jAv � � �j � � jvj �v � h�i� � �� � R� ����

This expression of the isoenergetic nondegeneracy will allow us to use the quantitative
version ����� which is more useful for giving estimates�

If we were dealing with the Kolmogorov nondegeneracy� we should impose the condi�
tion

detA �
 �

instead of ����� In this case� the statement and the proof of our results would be analogous
and somewhat simpler� Moreover� we point out that higher order conditions are also
possible for both types of nondegeneracy� such conditions would be useful if the frequency
map were degenerate at the origin and nondegenerate near it�

With the setup described above and some technical lemmas stated in appendix B� we
are able to apply theorem � to our Birkho	 normal form�

Theorem � Let H�x� y� 

P

s��Hs�x� y� be a real Hamiltonian with H� 
 � � I� and
assume that kHsk � cs��d for s � �� Let K � � given and assume that � is nonresonant
up to order K� Consider the transformed Hamiltonian H�K� given by proposition �� and
denote �K� 
 rh�K�� Let r�K de�ned as in ���
� Assume that the isoenergetic condi�
tion ���
 holds� with A de�ned by ���
� Let � � n � � given� For some constants c�� c�
and c� depending only on n� � � c� d� �� A� given

� 	 r � c�r
�
K ����

and de�ning

��K�
r 
 c�r

�

�
�r

r�K

	�K�����
� ����

one has

�



a� There exists a subset bG�K�
r 
 Gr such that� for every I � bG�K�

r � the vector �K��I�
is �� ��K�

r �Diophantine� and there is an n�dimensional invariant torus of the Hamil�
tonian H�K�� contained in Br� having the frequency vector colinear to �K��I� and
energy h�K��I��

b� Denoting T �K�
r the set �lled with the invariant tori of part �a
� the following bound

holds

mes
h
Br n T �K�

r

i
� c�

�
�r

r�K

	�K�����
�mesBr � ����

Proof �Along this proof� the symbols � and  express that the involved constants do
not depend on r� ��� K��

We assume �n �
 � otherwise a permutation of the variables may be done� We de�ne

M 
 jAj � L 
 j�j � l 
 j�nj � ����

and consider � � � �depending only on A and �� such that ���� holds� In order to apply
theorem � to the normal form H�K� 
 h�K� �R�K�� we �rst see that for r small enough
�K� satis�es on Gr�	� the conditions required for the frequency map� with the constants
�M � �L� l��� ��� instead of M � L� l� � respectively� Actually� in the �rst part of this
proof we do not need to restrict ourselves to the set Gr�	�� since �K� is a polynomial map�
For technical reasons to be clari�ed later� we consider the set

eGr 


�
I � Rn � jIj� � �r�

�

�

�without the restriction I � ��� which contains a neighbourhood of Gr�	��
We are going to estimate the functions

�K��I�� � 

X
s even
��s�K

rZs�I��
��K�

�I
�I��A 


X
s even

�s�K

��Zs

�I�
�I�

on eGr and V	�
� eGr�� respectively� with �� 	 r��� to be �xed appropiately� Taking into

account that Ij 
 i xjyj� we can look at the derivatives of Zs as homogeneous polynomials
in x� y� So we can consider their norm as de�ned in ���� Let us check the following
inequalities�

krZsk � s

�
kZsk �

������
�Zs

�I�

����� � s�

�
kZsk � ����

Indeed� let #Z��� 

�

#Z����j

�
j�������n

be the coe�cient of I� in rZs� Then�

krZsk 

X

�j�j��s��




 #Z���




 � X
�j�j��s��

nX
j��




 #Z����j




 

nX

j��

X
�j�j��s

�j jZ��� j 

s

�
kZsk �

namely the �rst inequality of ����� The second one follows in a similar way�

For s even� � � s � K� we get from proposition � the inequality

kZsk �
�

��cd�s�� �Ks��


� 

s��
K

� C

�
�

r�K

	s��
� ����

�



where C is a constant not depending on s �we need this exponent s� � in order to obtain
���� � �� in ��� it cannot be reached from the original estimates of ����� Then� making
use of the notations ����� we get the estimates
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where we have bounded the �nite sums by the corresponding series and we have assumed�
for instance� that r � r�K��� Then� with an appropiate value for c� in ����� we can obtain
the inequalities
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�I � eGr� ����

Moreover� using ���� and applying lema � with
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eGr �



���K�

�I
�A




eGr � l��� �M

instead of �� ��� l� M respectively� we can deduce that �K� is 
� �isoenergetically nonde�

generate on eGr�
Next we prove that the map "�K� �
 "��K��h�K��a � de�ned according to ���� and taking

a 
 ��M�l�� is one�to�one on Gr 
 eGr� First� we consider the case K 
 ��

"����I� 


�
� � AI

�n � AnI
� a

�
� � I �

�

�
I�AI

�	
�

where A and An denote� respectively� the �rst n� � rows and the last row of the matrix
A� From the isoenergetic condition� and taking into account ����� we see that the map
"��� is a local di	eomorphism� and thus there exists a constant r	 � � �depending only
on A and �� such that "��� is one�to�one on eGr�� To deduce that "�K� is one�to�one on Gr
for r small enough� we will use lemma ��� Proceeding like in ������� we can obtain the
following bounds�
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After some calculations one gets� for any I � eGr� the bounds�
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which lead to 
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This bound is going to substitute � in lemma ��� The parameters M � #M � m� #m� #M �

appearing in that lemma are provided by lemma �� Indeed� using ����� it is easy to check

��



that we can take as M � #M � m� #m some constants depending only on the current M � L� l�
� introduced in ���� and ����� For #M �� we use the bound
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which comes from the inequality �������Zs
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obtained like ����� So we can take
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Now we are ready to apply lemma ��� With a convenient value for c�� it is easy to check
that ���� implies the smallness condition required in lemma ��� Then� we deduce that
"�K� is one�to�one on the set eGr � c�r�

�r�K�
� � where c� is a constant� This set contains Gr

provided we assume the inequality

r�

�
�

c�r�

�r�K��
� �r�

�
�

which can also be included in condition �����

From now onwards we restrict ourselves to Gr�	� note that "�K� �Gr�	�� is a D�set with

D  �r��
n��

� and its diameter is P  r�� It has to be noticed that if we had applied
lemma �� directly on Gr or Gr�	�� then we would have had to remove a relatively large
neighbourhood of the coordenate hyperplanes Ij 
 �� and this would a	ect the estimate
for the measure of the complement given in part �b��

We have to check ���� in order to apply theorem �� We consider the parameter ��K�
r

de�ned in ���� instead of �� and the complex domain will be D	 �Gr�	��� with �� 
 � and
��  ��K�

r � in such a way that the choice of �� allows us to ful�l the second inequality
of �����

The remainder R�K���� I� is analytic on the complex neighbourhood D	 �Gr�	��� with
� 
 ��� ���� Indeed� since Re Ij � � on this neighbourhood� the coordinate change ����
is analytic on it� To check the �rst inequality of ����� we have to consider the norm �����
de�ned in terms of Fourier coe�cients� By a property of the norm ���� established in
����� one has ���R�K�

���Gr��� �	 �
�

cothn �

�
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R�K�



D�������Gr��� �

����

where� in the right hand side of this inequality� we have considered the supremum norm
on D���	�� �Gr�	��� To bound this norm� it will be better to consider the coordinates �x� y�
because we can then use our estimates on the homogeneous terms� From proposition ��
and proceeding as in ����� we obtain for s � K � � the estimate

���R�K�
s

��� � #C

�
�

r�K

	s��
�

��



where #C is a constant not depending on s� Using that �� 	 r��� �otherwise the set Gr�	�
is empty�� for ��� I� � D���	�� �Gr�	�� we have

jxjj � jyjj �
q
jIjj � ejIm�j j �

s
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�
�
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� e� � �r�

Then� proceeding like in �������
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provided we assume� for instance� the inequality r � r�K���� which can be included in �����

Putting the bounds ������ together� we see from ���� that
���R�K�

���Gr��� �	 �
�
��K�
r

��
and

hence the �rst inequality of ���� is satis�ed taking the constant c� appropiately�

Applying theorem �� we obtain invariant tori parametrized by the set

bG�K�
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�
I � Gr�	� �

���K�
r

�
� �I� is �� ��K�

r �Diophantine

�
�

and we have proved part �a�� Let us denote S�K�
r the set �lled with these invariant tori

in the actionangle coordinates� and T �K�
r the same set in the original coordinates� By

part �b� of theorem �� and recalling that D  r�n��� P  r�� we get the estimate
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r

i
� r�n����K�

r  r�n
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�r

r�K

	�K�����
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To bound the measure of the complement of the invariant set with respect the whole
neighbourhood of radius r� we have to add to this estimate the measure of the part
removed in considering Gr�	� instead of Gr� However� this does not a	ect our estimate�
since the measure of the part removed has the same order� Indeed� we have�

mes �Gr n Gr�	�� � n
�
r�
�n�� � ���  r�n����K�

r  r�n
�
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and hence
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�r

r�K

	�K�����
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Finally� we have to move this bound to the neighbourhood Br� de�ned in terms of the
old coordinates� The change to actionangle variables is measure�preserving� since it is
canonical� This change relates Tn�Gr and Br hence we get for the measure of Br n T �K�

r

the same bound ����� Using that mesBr  r�n� we deduce the bound of part �b��
concerning the relative measure inside Br� �

We remark that this result is a more elaborated version of P�oschel�s result ����� which
provides a measure estimate like ����� also with the exponent �K � ����� But we point
out that the result given in ���� does not come from a quantitative version of Birkho	
theorem� and hence it is valid �for r small enough�� without imposing any explicit con�
dition like ����� We show in the next section that such a condition is crucial in order to
obtain an exponentially small estimate for the measure of the complement�

��



� The Diophantine and quasi�Diophantine cases

We now assume that the frequency vector � satis�es a Diophantine condition� with some
exponent � � In this case� we prove that the parameter K may be chosen as a function of
r� We then get� for the complement of the set �lled with the invariant tori of the normal
form H�K� in a neighbourhood of radius r� an estimate which is exponentially small in
���r��������� The fact that the transformation ��K� is canonical allows us to ensure that
this estimate also holds for the complement of the invariant tori of the original Hamiltonian
H�

Theorem � Let H�x� y� 

P

s��Hs�x� y� be a real Hamiltonian with H� 
 � � I� and
assume kHsk � cs��d for s � �� Assume that the vector � is �� ��Diophantine� with
� � n � � and � � �� Assume also that the isoenergetic nondegeneracy condition ���

holds� with A as in ���
� For some constants c� and c� depending only on n� c� d� �� A�
if

� 	 r � c��

����
� ����

then there exists a set Tr 
 Br such that every point of Tr belongs to an n�dimensional
invariant torus of H� and one has the bound

mes �Br n Tr� � c� exp
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���������
�mesBr � ����

Proof Since � is �� ��Diophantine� one has 
s � ��s� for every s � �� Let K � � to
be chosen� Applying proposition �� we obtain a canonical transformation ��K� such that
H�K� 
 H ���K� is in Birkho	 normal form up to degree K� The transformation ��K� is
analytic on bBr�

K
� with

r�K � �

���ncdK���
� ����

By part �c� of proposition �� we have ��K� �B�r� 	 Br if r � r�K��� We shall apply
theorem � with �r instead of r in order to get invariant tori of H�K� on B�r� Many of
these tori will give� through the transformation ��K�� invariant tori of H on Br� Indeed�
we assume

�r � c��r
�
K� ����

with c�� 
 min �c�� ���e�� Applying theorem � �taking some � � � n � � instead of � �

for instance � � 
 n�� we get a subset T �K�
�r 
 B�r �lled with invariant tori of H�K�� and

satisfying the estimate�

mes
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	 Br n Tr� Using that ��K�

is measure�preserving� we obtain
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Since the only restriction on K is the inequality ����� we choose K 

h
�c���r�

�������
i

with c� 
 c�������ncd �we use the notation ��� for the integer part of a real number��
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Note that condition ���� guarantees that K � �� With our choice of K� we easily get
from ���� the bound ����� �

In the frame of theorem �� another remarkable fact which can be deduced from theo�
rem � is that the frequencies of the invariant tori in Br are � �� ��r �Diophantine� with some
� � � n� � �which can be di	erent from � �� and

��r � e��K�����  exp

�
�
�
�

r

���������
�

This indicates that most of the invariant tori obtained for r small are very fragile� in the
sense that a very small perturbation of the Hamiltonian would destroy them�

An important question from a practical point of view� which was proposed to us by
M�V� Matveyev� is whether the exponentially small estimates are still valid if the frequency
vector � is not exactly Diophantine� In fact� if � is known only approximately it cannot be
decided if it satis�es a Diophantine condition� Nevertheless� if � is �quasi�Diophantine��
we can still expect good measure estimates for the complement of the invariant tori�

Note that� if we know � up to a precision � � � �i�e� we know an approximation ���
with j�� � �j � ��� then it has no sense to check the Diophantine condition ��� beyond a
certain �nite order� Given � � � and �� we say � to be �� ��Diophantine up to precision � if

jk � �j � �

jkj ��
�k � Zn� � 	 jkj� � N� ����

where

N 
 N��� �� �� �


��
�

�

���������
�

For this de�nition� the restriction � � n � � is not necessary� Note that if �� is an
approximation to � with j�� � �j � � and

jk � ��j � ��

jkj ��
�k � Zn� � 	 jkj� � N� ����

then we can deduce that � is �� ��Diophantine up to precision ��

The next theorem gives estimates for the quasi�Diophantine case� The only signi�ca�
tive di	erence with respect to theorem � is that� for very small values of r �of the order
of the precision ��� we cannot choose the parameter K larger than N �

Theorem � Consider the same situation of theorem �� but assuming only that � is �� ��
Diophantine up to precision �� De�ne

#r �
 max �r� c���

and assume
� 	 #r � c��

����
�

Then� one has the bound
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Proof We proceed as in theorem �� By ����� one has 
s � ��s� for � 	 s � N � Let K
to be chosen� with � � K � N � The inequalities ������ and the restriction K � N lead

us to take K 

h
�c���#r��������

i
� and we get the bound ����� �

It follows from this theorem that exponentially small estimates in ��r� like those of
theorem �� can be ensured in an �annulus� centred at the elliptic point� They hold for

c�� � r � c��

����

but not for r 	 c��� so they cannot be considered as asymptotic estimates� The relative
width of this annulus is given by

� 
 ���� �� �� �
 �� �����

�
�

Note that� if ���� the neighbourhood where these estimates do not hold is not relevant�
since its radius is of the order of the precision� Thus� in the quasi�Diophantine case we
can still say that exponentially small estimates �in ��r� hold for practical purposes� since
such estimates are not essentially modi�ed by the fact that the frequency vector is not
exactly Diophantine�

As an illustration� we consider in the tridimensional Restricted Three Body Problem a
neighbourhood of the equilibrium point L� �see for instance ��� ����� If � denotes the mass
parameter� the associated frequencies � 
 ���� ��� ��� satisfy the characteristic equation�

x� � x� �
��

��
� a�

��
x� � �

�

 ��

with

a 
 ���� ����
p

�

�
�

In the SunJupiter case� we have � � ���������� � ���������� � ���� and then

� � �� 
 �������������������������� ���

Assuming � given with precision ����� we easily see that � is known up to precision
�  � � ���� After some computation� and taking into consideration ����� we have
obtained values of �� N and � for several values of � �

� � N �
� �������� � ���� ��� ��������
��� �������� � ���� ��� ��������
� �������� � ���� ��� ��������
��� �������� � ���� ��� ��������
� �������� � ���� �� ��������
��� �������� � ���� �� ��������

We see that� for the values of � considered� we get � quite near to �� However� for a big
value of � one should be careful in the choice of � in order to get � as large as possible�

��



Finally� we mention that quantitative estimates of the inner and outer radius of the
annulus where our estimates are exponentially small in ��r would require explicit knowl�
edge of the constant c�� This could be done reviewing thoroughly the bounds given in
the present paper� However� these bounds have been carried out always considering the
worst possible case� It is clear that� in concrete examples� the explicit computation of the
Birkho	 normal form would give much better results�

A Estimates for the Giorgilli�Galgani algorithm

Let us recall the GiorgilliGalgani algorithm as presented in ���� For a given �generating�
function � 


P
s�� �s �the subscripts denote the degrees of homogeneous polynomials��

one de�nes a linear operator T� in the following way� if f 

P

s�� fs � then

T�f 

X
s��

Fs � ����

where

Fs 

sX

l��

fl�s�l ����

and

fl�	 
 fl � fl�s 

sX

j��

j

s
L���jfl�s�j ����

�the Poisson bracket is denoted Lgf 
 fg� fg�� As pointed out in ���� the operator T�
induces a canonical transformation� which can be written as �X�Y � �� �x� y�� with

xj 
 T�Xj � yj 
 T�Yj� j 
 �� � � � � n� ����

These equations are formal� However� if the �s satisfy suitable estimates then the corre�
sponding series are convergent and the transformation ���� is analytic in a neighbourhood
of the origin�

Given the Hamiltonian H 

P

s��Hs with H� 
 � � I� and assuming that � is
nonresonant up to order K� one can construct a generating function ��K� 


PK
s�� �s

such that H�K� 
 T��K�H is formally in Birkho	 normal form up to order K� Writing

H�K� as in ���� the following homological equations have to be satis�ed�

LH��s � Zs 
 Fs � s � �� ����

where

F� 
 H� � ����

Fs 

s��X
l��

l

s� �
L���lZs�l �

s��X
l��

l

s� �
H��l�s�l�� � s � �� ����

We next give the quantitative lemmas required for the proof of proposition �� The
�rst lemma improves the results of lemma ��� and propositions ��� and ��� of ����
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Lemma � Let � 

P

s�� �s � with the hypothesis

k�sk � as��b
�� � � ��s �s � ��

where �s is a decreasing sequence of positive numbers� Let f 

P

s�� fs be given such
that kfsk � cs��d for s � �� Then� for the scheme described in ������
 one has
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�s��
d

�� � � ��s�� for s � ��

c� Assuming that for some K � � one has �s 
 �K for every s � K � � �for instance
if � is a polynomial of degree K
 and writing

r� 

�K

���nb � ��a
�

the canonical transformation � introduced in ���
 is analytic on bBr� and� for any
r � r�� one has the inclusion � �Br� 	 Br���

Proof We point out that parts �a� and �b� run as in ��� so we do not prove them here�

To see �c�� write the transformation formally de�ned in ���� as � 
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�
� If

Z�j� denotes� for j 
 �� � � � � �n� the coordinates X�� � � � �Xn� Y�� � � � � Yn� one can write
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 T�Z
�j� 
 Z�j� �

X
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where every ��j�
s is a homogeneous polynomial of degree s in �X�Y �� One has�
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It follows that� for r � r	 
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We deduce that the series ���� are convergent on bBr� and hence � is analytic on this
neighbourhood�

We are going to prove the inclusion � �Br� 	 Br�� from the fact that � is near
to the identity� applying lemma ��� Using the Cauchy inequalities and that r � r� �
r	�
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� we get the bounds
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We obtain from ������ the following bounds for � and its total derivatives�
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We remark that we are using the Euclidean norm for vectors and matrices� because this
is the norm in which lemma �� has been stated� To apply lemma �� on the domain Br�
we can consider the following parameters�
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p
n b
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r� � M 
 m 
 � � #M 
 � �

��nb

��
r � #m 
 � � ��nb

��
r � #M � 


���n���b

��
�

With these parameters� the smallness condition of lemma �� is easily veri�ed� Then� we
obtain for r � r� the inclusion

� �Br� 	 Br � ���
p
n b r�

��
�
�� �	nb r

��

� 	 Br���

�

Next we give estimates for the procedure leading to the normal form� introduced
in ������� improving the results contained in proposition ��� of ����

Lemma 	 Let H 

P

s��Hs � with H� 
 � � I� and assume that kHsk � cs��d for
s � �� Assume that � is nonresonant up to orderK and let 
s� for s � K� be lower bounds
for the small divisors as in �	
� Then� for the scheme ������
 one has� for s 
 �� � � � �K�

kFsk �
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Moreover�

k�sk � �


s
kFsk � kZsk � kFsk � ����

Proof It is enough to prove ����� since it implies the the inequalities ���� in view of the
well�known resolution of the homological equation ����� We look for positive numbers
�l�s� �s such that

kH��l�sk � �l�scd


� � � �
s��
� l � �� s � �� ����

and

kF��sk � �scd


� � � �
s��
� s � �� ����

Like in ��� proposition ���� it is easy to see� by induction� that we can take �l�	 
 cl���
�� 
 �� and

�l�s 

cd

s

sX
j��

j�� � j��� � l � s� j��j�l�s�j � l � �� s � ��

�s 

cd

s

s��X
j��

j�� � j��� � s � j��j�s�j �
�

s

sX
j��

jdj���j�s�j � s � ��

��



The main di	erence with respect to ��� is that the 
s have now been included directly
in ������ as denominators and not inside the �l�s� �s� Proceeding like in ���� one sees that

�s � ds��cs��bs�

where bs denotes a sequence satisfying

bs � �s��s! �s � ��

It then su�ces to put these inequalities together� �

Using the two previous lemmas� we are able to give estimates for the Birkho	 normal
form� including the terms of the remainder� as in theorem ��� of ����

Proof of proposition � We recall that part �a� has already been stated in lemma �� To
get parts �b� and �c�� we apply lemma � to the function H� taking ��K� as the generating
function� We consider in that lemma the values c� d�c� �cd� cd instead of c� d� a� b�
respectively� and

�s 


s

s� �
for � � s � K�

�s 
 �K for s � K � ��

as provided by lemma �� In this way� we get

���R�K�
s

��� �
�
�b � 

�a� ��c
�s��

d
c

�� � � � �s��
for s � K � �� Using the identity

�� � � ��s�� 
 �� � � � �K��� s�K��
K 



� � � �
K��
 s�K��
K

�K � ��!�K � ��s�K��

and also the fact that �� � d� we may arrange the bound on
���R�K�

s

��� and we get �b��

Finally� the assertion of part �c� is deduced taking r�K somewhat smaller than the value
given by lemma �� �

B Isoenergetic nondegeneracy� technical results

We now include some lemmas concerning the isoenergetic nondegeneracy� The �rst one
gives estimates for the local di	eomorphism introduced in ����� For its proof �and a
thorough motivation to the constant a�� see ����

Lemma 
 Let h be a real function of class C� on G 
 Rn� and  
 rh� Assume the
bounds




��h�I�







G

�M�






��h�I�







G

�M �� jjG � L and jn�I�j � l �I � G�

Assume also that  is ��isoenergetically nondegenerate on G� Let a � �M�l� a �xed
constant� and denote " 
 "��h�a � One has

��



a�






�"

�I







G

� �La�

b�






�"

�I
�I� v






 � �

�L
jvj �v � Rn� �I � G�

c�






�
�"

�I�







G

�
�
M �

�M
�

�M

l

	
La�

The next result establishes how a perturbation on the frequency map a	ects the con�
stant � of condition ����� See the proof in ����

Lemma � Let �� #� � Rn� and let A� #A be �n � n��matrices� Assume



#� � �




 � ��


 #A�A



 � ��� and l � min

�
j�j �




#�


�� M � max
�
jAj �




 #A



�� For some � � �� assume

that
jAv � � �j � � jvj �v � h�i
 � �� � R�

Then� 


 #Av � � #�



 � �

�� �M�

l
� ��

�
jvj �v �

D
#�
E


� �� � R�

The last lemma says that a small perturbation of a one�to�one map is also one�to�one
provided its domain is slightly restricted� The proof is essentially given in ��� �see also
�����

Lemma �� Let G 
 Rn a compact� and let " � #" � G �� Rn maps of class C�� with


#"� "




G
� �� Assume that " is one�to�one on G� and let F 
 "�G�� Assume the

bounds 




�"

�I







G

�M�






� #"

�I







G

� #M�






��#"

�I�







G

� #M ��




�"

�I
�I� v






 � m jvj �





� #"

�I
�I� v






 � #m jvj �v � Rn� �I � G�

with � 	 #m 	 m� #M � M � Assume also that

� � #m�

� #M � �

De�ne #F 
 F � �M�

#m
� #G 


�
#"
��� � #F

�
� One has

a� #" is one�to�one on #G� and #"
�

#G
�


 #F �

b� G� �M�

m #m

 #G 
 G � ��

#m
�

��
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