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BIFURCATION AT COMPLEX INSTABILITY
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Abstract. The properties of motion close to the transition of a stable family of periodic
orbits to complex instability is investigated with two symplectic 4D mappings, natural
extensions of the standard mapping. As for the other types of instabilities new families
of periodic orbits may bifurcate at the transition; but, more generally, families of isolated
invariant curves bifurcate, similar to but distinct from a Hopf bifurcation. The evolution
of the stable invariant curves and their bifurcations are described.

1. Introduction

Complex instability is a type of generic instability in Hamiltonian systems with more than
2 degrees of freedom. It was described and named so by Brouckel™ in a study of periodic or-
bits in the elliptic RTBP, in which he classified all the possible instability types of periodic
orbits in 3-degree of freedom Hamiltonian systems. In real problems, it appears in celestial
mechanics®! and galactic dynamicsPBHHMBLIOLILIZT iy particle accelerator problems!™, and
actually, in many engineering problem with 3 or more degrees of freedom. On the other
hand, complex instability has been studied by mathematical techniques only during about
the last decadel'JIELI],

In this paper, we are concerned with the intricacies in phase space associated to the
transition from stability to complex instability. We refer to the numerical study of this
transition as well as the description of the bifurcating objects done by Pfenniger'”), We
shall briefly review those results and we shall concentrate, specially, on the evolution of
the stable bifurcating invariant curves when varying some parameter. There appear two
types of bifurcations resembling the bifurcations of periodic orbits: the ‘period-doubling’
bifurcation and the bifurcation of a pair of asymmetric invariant curves.

2. Symplectic mappings

As well known, Hamiltonian systems can be transformed into symplectic mappings by
means of the Poincaré sections. In 3-degree of freedom systems, there corresponds a 4D
section space. Thus, let us consider a symplectic mapping T, 0 a fixed point, A the Jacobian
matrix around the origin, and A, 1/A, i, and 1/ the eigenvalues of A.

From stability, there are only three routes to instability as a system parameter is
changed: 1) A pair of eigenvalues A, A on the unit circle in the complex plane bifurcates



onto the real axis at (1,0) —tangent bifurcation—; 2) the same occurring at (—1,0) —period
doubling bifurcation—; 3) the four eigenvalues collide simultaneously by conjugate pairs
on the unit circle and leave it into the complex plane; this is the transition to complex
instability, also called Krein collision. Let us denote k the rotation number corresponding
to the ratio between the modulus of the eigenvalues and 27. If k is rational, & = p/q,
where ¢ is the smallest positive integer, then ¢ periodic orbits may bifurcate, because
the eigenvalues are then integer roots of 1. But, usually, &k is irrational and there are no
bifurcating families of periodic orbits but of invariant curves at the transition point.

In order to describe the transition from stability to complex instability we have used!'’]
two 4D natural generalizations of the standard map inspired by the symplectic Froeschlé
map, the mappings 7T, and T,

x Dz, 4+ Kysin(z,+22) + Lysin(zy+zo+ a3+ 24)]
Ta X1+ X2

T, = .. . d?2 1
T Dlzs+ Kysin(zs+xs) + Losin(zi+zo+a3+24)] (mod 2m) (1)
T4 T3+ X4
x D[z, 4+ Kysin(z,+22) + Ly tan(z1+ a2+ 23+ 24)]
Ta _ X1+ X2

T T o Dlzs 4+ Kysin(azs+x4) + Lotan(z+ a2+ 23+ 24)] (mod 27) (2)
T4 T3+ X4

The dissipation parameter D is only used for computing purposes. When D < 1, D =1,
D > 1 the mappings are respectively volume contracting, preserving and dilating. We
study the mappings around x = 0; they have the same Jacobian A but different non-linear
properties as described below. We restrict the parameter space by taking Ly, = —L, = L,
K, = K and K, = 0; the transition takes place when L = —K/4 = L.,;; in the interval
—8 < K < 0. L is a varying parameter and K assumed not to depend on L (see [10] for a
discussion of the parameters).

3. Transition stability-complex instability

Striking phase structures appear at the transition from stability to complex instability.
The main results are that, as in classical pitchfork bifurcations, the bifurcating structures
may be “direct” (the bifurcating objects unfold on the unstable side), or they may be
“inverse” (the bifurcating objects unfold on the stable side) as the parameter L is varied.
For the mapping T (7%), the bifurcation is direct (inverse), and the bifurcating objects
exist for L > Loyt (L < Lepir)-

When the rotation number k is rational, then we find g-periodic orbits which bifurcate.
In [10], a detailed description of such periodic orbits and their stability properties are given.

When the rotation number k is irrational, stable (unstable) invariant curves bifurcate
for the mapping T (7). In order to find the stable invariant curves for the mapping 75,
we exploit the property that they become attracting limit cycles as soon as dissipation
(D < 1) occurs. Starting at D < 1, the method consists in progressively increasing D while
controlling the convergence of the consequents onto the invariant curves. When D = 1, we
have reached the desired invariant curve. Fig. 1 shows such an example of bifurcation.

We are now interested in describing the typical bifurcations along of a family of stable
invariant curves when varying some parameter (L). Let us fix a value of K such that we
have an irrational k& and let us study the family of stable invariant curves of 7T, which
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Figure 1. Projections of the invariant curves in mapping T., ' = —1, for values L = 0.26 (inner one),

L =0.30, L =0.35 (outer one) (Lepri¢ = 0.25)
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Figure 2. Evolution of the stable bifurcating invariant curves for mapping 7s, K = —1, Lcr: = 0.25

bifurcates at the transition. In order to describe it, we define, for a given invariant curve,
T the value of @5 > 0 when “x; = 07, that is, when |[|2|| < ¢, € a small positive quantity.

At first, the invariant curves are stable, but as L increases, the stability character
changes and there appear other bifurcations (see Fig. 2, where a representation of the
invariant curves by their 259 value when varying L is given). In particular, we distinguish
two different regions in Fig. 2, corresponding to two different kinds of bifurcations. We
describe region 1 (Fig. 3) with some detail: we notice, first, a deviation of the family of
stable invariant curves, for L > 0.3805; there appear slightly unstable invariant curves.
We also remark a gap between I = 0.387 and L = 0.388, which is due to a resonance
associated to a family of 28-periodic orbits, which has a transition from stability to complex
instability; thus, we may expect new bifurcating families of invariant curves there, which
we have not followed yet. Finally, there is a change of stability (by a pitchfork bifurcation)
and there bifurcate “double-periodic” invariant curves (the invariant curve makes 2 turns
before closing in section space) apart from the central invariant curve which becomes
unstable. Fig. 4 shows a ‘double-periodic’ invariant curve. Some branches of invariant
curves in this figure remain to be continued; presumably they become unstable and our
numerical method is unable to determine unstable invariant curves.

We consider now region 2 (Fig. 2). Again a change of stability occurs together with a
new pitchfork bifurcation. It has, however, a different meaning here: for a fixed value of L,
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Bifurcations of the invariant curves in region 1
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’Double-periodic’ invariant curve in Region 2, mapping 7T, K = —1, . = 0.395

L > 0.435, we have three values of 24, the external ones which correspond to two different
asymmetric stable invariant curves and the central one which is the central invariant curve
which has become unstable. We show two asymmetric invariant curves in Fig. 5.

The effect of the bifurcation on the chaotic neighbourhood of the central periodic family
can be summarized as follows.
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Two asymmetric bifurcated invariant curves; mapping 7s, K = —1, L. = 0.44
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Figure 6. Nekhoroshev estimation for m

In the direct case (mapping 7%), the chaotic orbits originating around the central
complex-unstable orbit are confined for a long time. As an example and in order to give a
Nekhoroshev estimation of the powerful confinement, we fix a number of iterates N (say
N = 10%), we fix the initial conditions close to the origin (say z; = 0.01, for ¢ = 1,2,3, 4),
we define d = max, <y ||T7(x)]|, x = (1, 22, 23, ¥4) and we compute d when varying the
parameter L, for a K fixed. Afterwards, we compute the necessary number m of iterates
in order to have, for each value of L, a value of d, d’, such that d" > 1.01d. For K = —1,
we observe a huge number of iterates m between L..;; = 0.25 < L < 0.27, and we can fit
m by a Nekhoroshev expression n ~ exp[0.08418/(L — L.;;)'3™%], for 0.27 < L < 0.305
(see Fig. 6). To summarize, invariant curves and confined chaotic orbits coexist.

In the inverse case (mapping 7%), the transition to chaos is immediate and no con-
finement occurs. The invariant tori surrounding the stable central family dissolve before
the transition to complex instability. See [10] for the numerical details to reach the last
invariant torus by means of the dissipation parameter.
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