
Perturbation of Quadrics

Josep Clotet�� M�Dolors Magret�� Xavier Puerta�

Abstract� The aim of this paper is to study what happens when a slight perturbation a�ects the
coe�cients of a quadratic equation de�ning a variety �a quadric� in Rn� Structurally stable quadrics
are those a small perturbation on the coe�cients of the equation de�ning them does not give rise to
a �di�erent� �in some sense� set of points� In particular	 we characterize structurally stable quadrics
and give the �bifurcation diagrams� of the non
stable ones �showing which quadrics meet all of their
neighbourhoods�	 when dealing with the �a�ne� and �metric� equivalence relations� This study can be
applied to the case where a set of points	 which constitute the set of solutions of a problem	 is de�ned by
a quadratic equation whose coe�cients are given with parameter uncertainty�

Keywords� quadric� versal deformation� bifurcation diagram

AMS classi�cation� ��M��� ��D��� ��D��

�� Introduction

The concept of structural stability was �rst introduced by A�A� Andronov and L�
Pontryagin in the qualitative theory of dynamical systems �see �AP����� Roughly speak�

ing� a structurally stable element is an element whose 	behaviour
 does not change when
su�ering small perturbations� In the case of control systems this property has been widely
studied by several authors� Here we will use the notion of structural stability with respect
to an equivalence relation de�ned on a topological space X� as appears in �Wi����

In the case where X is a di�erentiable manifold and the equivalence relation is induced
by the action of a Lie group G on X� so that the orbits are also manifolds� then the
condition of structural stability is equivalent to the maximal dimension of the orbit�

V� I� Arnold considered the manifold of square matrices under the linear group action

and presented explicitly miniversal deformations� which are the orthogonal linear varieties

�Dep� Matem�atica Aplicada I� Universitat Polit�ecnica de Catalunya �ETSEIB�
Av� Diagonal	 �� ����� 
 Barcelona
E
mail� clotet�ma��upc�es	 dolors�ma��upc�es

�Dep� Matem�atica Aplicada I� Universitat Polit�ecnica de Catalunya �EUPB�
Av� Doctor Mara�n�on	 
�� �����
Barcelona
E
mail� coll�ma��upc�es



to the orbits� The techniques used in this paper will be those used in �Ar���� that is to
say� we will consider miniversal deformations and derive from them the calculus of the
dimension of orbits �by explicitly calculating a basis of the othogonal space to the orbit�

with respect to a scalar product��

Our goal is to study what happens when applying a small perturbation to the coe�
cients of a quadratic equation which de�nes a quadric� That is to say� to know whether
this small perturbation gives rise to a set of points of the same type or not �after de�ning

an equivalence relation to identify 	similar
 sets of points��

A quadric in Rn is generally thought as the set of solutions of an equation de�ned by a
symmetric square real matrix of order n��� Then we identify the quadric with a matrix
de�ning it and consider the di�erentiable manifold of symmetric square matrices�

Obviously� there exist equations expressed by means of di�erent symmetric square

matrices giving rise to the same set of points �for example� the sets of solutions of the
equations given by the matrices A and �A� � � R�� are the same�� Besides� there exist
di�erent matrices such that the corresponding equations have no real points satistying

them �in particular� they give rise to the same set of points� the empty set��� Nevertheless�
for our study it is convenient to deal with the di�erentiable manifold S of �all� symmetric
square matrices�

The equivalence relations considered in S will be that coming from the ane equiv�

alence and from the metric equivalence of quadrics� These equivalence relations may be
viewed as those induced by the action of suitable Lie groups�

This fact allows us to use Arnold�s techniques� that is to say� miniversal deformations�
In particular� we can identify structurally stable matrices by a previous calculation of the
dimension of their orbits�

In the case of non�structurally stable matrices giving rise to a non�empty set of points
we will explicitly describe the corresponding bifurcation diagrams from the study of the
partitions in S with respect to these equivalence relations� This allows to present the
quadrics which meet every neighbourhood of the given quadric� again identifying the

quadric with a symmetric square matrix de�ning it�

The authors want to acknowledge Prof� Ferran Puerta for suggesting the problem and
for his encouragement during the preparation of the manuscript and also to Prof� Josep

Ferrer for most interesting discussions�
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�� Preliminaries and notation

Throughout the paper we have tried to follow standard notations� The most commonly
used symbols are the following ones�

Rwill denote the �eld of real numbers�

R
� is the set of all non�zero real numbers�

Mn�m�R� is the set of n�m matrices with real coecients�

Given a matrix M � Mn�m�R�� M t will stand for the transpose of M and rkM will
denote the rank of M �

In the particular case where n � m� we will simply denote the set of n� n matrices by

Mn�R��

The trace of the matrix M � Mn�R� will be denoted by trM �

Gln�R� is the set of invertible matrices inMn�R�� that is to say� the general linear group
of order n�

On�R� is the set of matrices M in Mn�R� such that M tM � In� that is to say� the

orthogonal group of order n�

Sn�� is the set of symmetric square matrices of order n�

An is the set of skew�symmetric square matrices of order n�

If X is a di�erentiable manifold and x � X� TxX is the tangent space of X at x�

If G is a group acting on X� O�x� denotes the orbit of x in X under the action of G�

Let F be a vector subspace in Rn� Then F� denotes the orthogonal complement to F

with respect to a scalar product � � � de�ned in Rn�

Finally� if X� Y are di�erentiable manifolds and � � X �� Y is a di�erentiable mapping�
d� denotes the di�erential of ��

�



We list now brie�y a few of the basic de�nitions about quadrics which will be mentioned
later�

A quadric Q in Rn is generally thought as a set of points in Rn with coordinates �x�� � � � � xn�

satisfying� in a given system of coordinates� an equation of the form

xtA�x� �Btx� c � �

where x � �x� � � � xn�t� A� � Mn�R� is a symmetric matrix� B � Mn���R� and c � R�

Equivalently� this equation can be written in the form

X tAX � �

with A �

�
A� B

Bt c

�
� Mn���R� and X � �x� � � � xn ��t� �Note that A is also a

symmetric matrix��

In the case where n � � they are classically called conics�

It is possible that the set of solutions of such an equation is the empty set� Actually�

di�erent equations of this type give rise to the empty set� For example� when considering
the equations � � �� �x�� � �� etc�

Besides� it is obvious that� for all � � R�� the symmetric square matrix �A de�nes the
same set of points than A�

Let X tAX � � be the equation of a quadric in a given system of coordinates� Let us
consider another system of coordinates with origin in P � �p� � � � pn�t and axis directions
given by the vectors in Rn whose coordinates are the columns of a matrix S � Gln�R��
If �x� � � � xn�t are the coordinates of the point x in the new system of coordinates and

X � �x� � � � xn ��t� then the equation of the quadric in the new system of coordinates

is X
t
A�X � �� with A� �

�
S P

� �

�t
A
�

S P

� �

�
� In the case where S � On�R� the metric

concepts attached to the quadric are preserved�

A quadricQ de�ned by the equationX tAX � � is said to be degenerate if rk�A� � n��
and non�degenerate otherwise�

The centers of a quadric Q may be de�ned as the set of points in Rn whose coordinates

are solutions of the system A�Z � �B� Note that Q is a quadric with center if rk�A�� �
rk�A�jB� and that Q has an unique center if rk�A���� rk�A�jB�� � n� The centers
thus de�ned coincide with the set of centers of symmetry of Q�

The concepts of ane and metric equivalence of quadrics are as follows�

De�nition �� Let Q� Q� be the quadrics de�ned by the equations X tAX � � and

X tA�X � �� respectively� Then Q and Q� are called a�ne equivalent �and we write

�



Q � Q�� if there exists a matrix
�

S P

� �

�
with S � Gln�R�� P � Mn���R� and � � R�

such that A� � �
�

S P

� �

�t
A
�

S P

� �

�
�

De�nition �� Let Q� Q� be the quadrics de�ned by the equation X tAX � � and
X tA�X � �� respectively� Then Q and Q� are called metrically equivalent �and we write

Q � Q�� if there exists a matrix
�

S P

� �

�
with S � On�R�� P � Mn���R� and � � R� such

that A� � �
�

S P

� �

�t
A
�

S P

� �

�
�

We have the following Classi�cation Theorem �see� for instance� �Pu	
�� �Xa�����

Theorem �� Let Q be the quadric de�ned by the equation X tAX � �� Let us denote by
s�A� and s�A�� the minimum between the number of positive eigenvalues and the number

of negative eigenvalues of the matrices A and A�� respectively� Then rk�A�� rk�A���
s�A�� s�A�� is a complete system of invariants of the a�ne class of Q� Moreover Q is
a�ne equivalent to the quadric de�ned by the equation

x�� � � � �� x�r� � x�r��� � � � �� x�r � � or �

if Q has center�s�� and

x�� � � � �� x�r� � x�r��� � � � �� x�r � �xr�� � �

if Q does have no center�

Besides� Q is metrically equivalent to the quadric de�ned by the equation

��x
�
� � � � �� �rx

�
r � � or � � or �

if Q has center�s�� and of the form

��x
�
� � � � �� �rx

�
r � ��xr�� � �

if Q does have no center� where ��� � � � � �r are the non�zero eigenvalues of A��

These equations are called reduced a�ne equation �respectively� reduced metric equa�

tion� of Q�

Note that r � rk �A�� and r� � maxf r�A���s�A��
� �

r�A���s�A��
� g�
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�� Geometrical study

We denote by Sn�� the di�erentiable manifold of symmetric square matrices of order
n� � with real entries�

The de�nitions in the preceding Section lead up to consider the following equivalence
relations in Sn���

De�nition �� Two matrices A and A� in Sn�� are said to be a�ne equivalent �and

we write A � A�� if there exists a matrix
�

S P

� �

�
with S � Gln�R�� P � Mn���R� and

� � R� such that A� � �
�

S P

� �

�t
A
�

S P

� �

�
�

De�nition �� Two matrices A and A� in Sn�� are said to be metrically equivalent �and

we write A � A�� if there exists a matrix
�

S P

� �

�
with S � On�R�� P � Mn���R� and

� � R� such that A� � �
�

S P

� �

�t
A
�

S P

� �

�
�

Let G�� G� be the Lie groups

G� � R
� �Gln�R�� R

n� G� � R
� �On�R�� R

n

where the group operations are the natural ones�

���� S�� P�� � ���� S�� P�� � ������ S�S�� P� � P�� in G�

���� S�� P�� � ���� S�� P�� � ������ S�S�� P� � P�� in G�

The starting point in the geometrical approach to the problem of studying the e�ects
of small perturbations on the coecients of the matrices is� in order to use Arnold�s
techniques� to view the equivalence classes with respect to the equivalence relations in
Sn�� de�ned above as the orbits of the following group actions on Sn���

�i � Gi � Sn�� �� Sn��

���� S� P �� A� �� �

�
StA�S StA�P � StB

P tA�S � BtS P tA�P � �BtP � c

�
� �

�
S P

� �

�t

A

�
S P

� �

�

for i � �� �� respectively�

Note that in our set�up the orbits are di�erentiable manifolds ��Hu�����

Miniversal deformations is the main tool we will make use of in our study� We brie�y
recall the basic de�nitions of deformations and versality �see� for example� �Ar ��� and

�Ta��� for further details��
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Let X be a manifold� x � X and G a Lie group acting on X via an action

� � G �X �� X

�g� x� �� ��g� x�

De�nition 
� A deformation of x is a di�erentiable mapping � � U �� X� with U an
open neighbourhood of the origin in Rl� such that ���� � x�

De�nition �� A deformation � � U �� X of x is called versal at � if for any other
deformation of x� 	 � V �� X� there exists an open set V � � V with � � V �� a di�erentiable

mapping 
 � V �� U with 
��� � � and a deformation of the identity I � G� � � V � �� G�
such that 	��� � ������� ��
����� for all � � V ��

A versal deformation with minimum number of parameters l is called a miniversal
deformation�

To �nd versal deformations� the key point is the following result� proved by V� I� Arnold
in the case where G � Gln�R� acting on X �Mn�R� in �Ar���� whose generalization was
given by A� Tannenbaum in the case of a Lie group acting on a manifold �see �Ta�����

Theorem �� A di�erentiable family � � U �� X� where U is an open neighbourhood of

the origin in Rl� is a versal deformation of ���� � x if and only if it is transversal to the
orbit O�x� at x� that is to say� TxX � TxO�x�	 d�T��U��

As an immediate consequence� we obtain a miniversal deformation�

Corollary �� Let us �x any scalar product in X� Let l be the dimension of TxO�x���
fv�� � � � � vlg a basis of TxO�x�� and U an open neighbourhood of the origin in Rl� Then for

any x � X� the manifold x � TxO�x�� de�nes a miniversal deformation of x� That is to
say� the mapping � � U � Rl �� X� ���� � � � � �l� �� x� ��v� � � � �� �lvl is a miniversal
deformation of x�

The following homogeneity property allows to choose a suitable element from each

equivalent class� thus making easier the calculations�

Proposition �� Let X be a di�erentiable manifold and x�� x� � X be two equivalent
elements �with respect to the equivalence relation de�ned in X derived from any action of
a Lie group acting on X�� Then there exists a di�eomorphism f � X �� X preserving

the orbits such that f�x�� � x��

Proof� If g � G is an element such that x� � ��g� x��� it suces to consider the mapping

f � X �� X

x �� ��g� x�

�



It is easy to check that this map is a di�eomorphism� 


From now on� we will consider the manifoldX � Sn�� and the following scalar product
in Sn��� � A�� A� �� tr�A�A

t
���

Note that� in particular� we have TASn�� � Sn�� for all A � Sn���

Let A �
�

A� B

B
t

c

�
� Sn�� be a symmetric square matrix of order n � �� with A� �

Mn�R�� B � Mn���R�� c � R� If � is the action of a Lie group G acting on Sn�� so

that the orbits are di�erentiable manifolds� it is well�known that TAO�A� � d��A�I�TIG�
where �A is the mapping

�A � G �� Sn��
g �� �A�g� � ��g�A�

In the particular cases of the actions �� and �� de�ned at the beginning of this Section
we obtain the following characterization of the tangent vector subspaces to the orbits�

Proposition �� Let us denote by TAO��A�� TAO��A� the tangent spaces to the orbits
O��A�� O��A� of A � Sn�� with respect to �� and ��� respectively� Then

TAO��A� �
n �

S
t
A� � A�S � �A� A�P � �B � S

t
B

P
t
A� � B

t
S � �B

t �BtP � �c

����� � R� S � Mn�R�� P � Rn
o

TAO��A� �
n �

S
t
A� � A�S � �A� A�P � �B � S

t
B

P
t
A� � B

t
S � �B

t �BtP � �c

���� � � R� S � An�R�� P � Rn
o

where An�R� is the manifold of skew�symmetric matrices �S � �St� of order n�

Proof� For i � �� �� let us consider �iA � Gi �� Sn�� de�ned by

�iA��� S� P � � �

�
StA�S StA�P � StB

P tA�S �BtS P tA�P � �BtP � c

�
� Sn��

Then

�iA�� � ��� I � �S� �P � � �

�
I � �St �
�P t �

�
A

�
I � �S �P

� �

�
�

�
A� B

Bt c

�
� �

�
�A� � StA� � A�S A�P � �B� StB

P tA� � BtS � �Bt �BtP � �c

�
� O����

Then the result follows from the fact that G� is an open submanifold of R�Mn�R��Rn�

It follows from elementary Di�erential Geometry that TIG� � R�Mn�R� � Rn� On the
other hand� TIG� � R� An�R� � Rn� This also follows from elementary properties in
Di�erential Geometry and from the fact that TIOn�R� � An�R�� 


In spite of the description above� it is not so easy to determine these tangent spaces

or even only to calculate their dimension� It is easier to deal with their orthogonal vector

�



subspaces �with respect to any scalar product�� Next Theorem shows that TAO��A��

and TAO��A�� may be identi�ed with the sets of solutions of suitable linear equations
systems�

Theorem �� Let us consider the following scalar product in Sn��	 � A�� A� �� tr�A�A
t
���

Let M �
�

M� M�

M
t

�
M�

�
be a square matrix of order n � �� with M� a symmetric matrix in

Mn�R�� M� � Mn���R�� M� � R� Then

�a� M � TAO��A�� ��

�	

	�

M�A� �M�B
t � �

M t
�A� �M�B

t � �
M t

�B �M�c � �

�b� M � TAO��A�� ��

�	

	�

M�A� �A�M� �M�B
t �BM t

� � �
M t

�A� �M�B
t � �

tr�M�A�� � �M t
�B �M�c � �

Proof� First� let us observe that

� �� M�

�
StA� � A�S � �A� A�P � �B � StB

P tA� �BtS � �Bt �BtP � �c

�
�

� trM

�
StA� � A�S � �A� A�P � �B � StB

P tA� � �Bt �BtS �BtP � �c

�
� �tr �M�A�S �M�B

tS� � ��M t
�A� �M�B

t�P � ��tr �M�A�� � �M t
�B �M�c�

�a� Let us assumeM � TAO��A��� This holds if� and only if� for all � � R� S � Mn�R�
and P � Rn�

�tr �M�A�S �M�B
tS� � ��M t

�A� �M�B
t�P � ��tr �M�A�� � �M t

�B �M�c� � �

In particular� if P � � and � � �� this equation is equivalent to

tr ��M�A� �M�B
t�S� � � S � Mn�R�

Let us denote by Eij the matrices with the only non�zero entry being � at the position
�i� j� �row i and column j�� Varying S � Eij in the equation above it is not dicult to
check that this equation is equivalent to

M�A� �M�B
t � �

Let us assume now that S � � and � � �� We denote by ei the the n � ��matrices
with an only non�zero entry being � in row i� The equation

�M t
�A� �M�B

t�P � � P � Rn

�



is equivalent to
�M t

�A� �M�B
t�ei � � � � i � n

and these last equations hold if� and only if�

M t
�A� �M�B

t � �

Finally� if S � � and P � �� the equation above is equivalent to

tr �M�A�� � �M t
�B �M�c � �

We already know that M�A� �M�B
t � � and thus

tr �M�A�� �M t
�B � �

obtaining

M t
�B �M�c � �

The converse is straightforward true�

�b� Let us assume now M � TAO��A�
�� This holds if� and only if� for all � � R�

S � An�R� and P � Rn�

�tr �M�A�S �M�B
tS� � ��M t

�A� �M�B
t�P � ��tr �M�A�� � �M t

�B �M�c� � �

In particular� if P � � and � � �� this equation is equivalent to

tr ��M�A� �M�B
t�S� � � S � An�R�

Let us denote by Eij � i �� j� the matrices with the only non�zero entries at the positions
�i� j� and �j� i� �row i and column j and row j and column i� respectively�� where the entries
are � and ��� respectively� The equation above is equivalent to the system of equations

tr��M�A� �M�B
t�Eij� � � � � i� j � n� i �� j

and these equalities hold if� and only if�

M�A� �A�M� �M�B
t �BM t

� � �

Let us assume now that S � � and � � �� We denote by ei the n � ��matrices with
the only non�zero entry being � in row i� As in �a�� the equation

�M t
�A� �M�B

t�P � � P � Rn

��



is equivalent to
M t

�A� �M�B
t � �

Finally� if S � � and P � �� the equation above is equivalent to

tr�M�A�� � �M t
�B �M�c � �

The converse is also straightforward true� 


We observe that� after Theorem �� a miniversal deformation can be explicitly described�
for any A � Sn��� Also the dimensions of the orbits with respect to �� and �� can be
calculated�

We remember now the notion of structural stability as appears in �Wi����

De�nition �� Let X be a topological space and � an equivalence relation de�ned on
X� Then x � X is structurally stable if and only if there exists a neighbourhood U of x

such that x � y for all y � U �

Remark� In the case where X is a di�erentiable manifold and � is the equivalence
relation de�ned by the action of a Lie group acting on X� giving rise to orbits which are
also di�erentiable manifolds� we have that the following statements are equivalent�

�a� x is structurally stable�

�b� O�x� is an open submanifold�

�c� dimO�x� � dim X�

�d� dimTxO�x�� � ��

This characterization allows to know� from the study of the systems in the statement
of Theorem �� which matrices A � Sn�� are structurally stable under the equivalence

relations deduced from the actions of the Lie groups G� and G��

Note that when dealing with the equivalence relation derived from the action �� the
structurally stable matrices can be characterized as follows�

Proposition �� Structurally stable matrices in Sn�� under the ane equivalence re�

lation are those symmetric matrices A �

�
A� B

Bt c

�
such that A� and A have full

rank�

��



Proof� This follows from the lower semicontinuity of the rank of the matrices or the direct
inspection of the linear equations system in the statement of Theorem � �a�� 
�

Similarly� we note that there are no structurally stable symmetric matrices in Sn��
with respect to the equivalence relation derived from the action ���

To �nish this Section� we study whether the partitions of Sn�� in orbits� according to
both lie group actions� are strati�cations of Sn�� and� if so� the regularity properties they
satisfy� recalling �rst the concept of strati�cation�

De�nition �� If X is a di�erentiable manifold� a partition X � �i�IXi is called a

strati�cation of X when it is locally �nite �that is to say� for all x � X� there exists a
neighbourhood U of x meeting only a �nite number of subsets Xi� and for all i � I� Xi is
a di�erentiable submanifold of X� Then each Xi is called a stratum�

Note that the partition in Sn�� according to the ���action is �nite� Therefore this

partition is a strati�cation� the strata being the orbits under this action� Let us de�
note by �� � �A�Sn��O��A� this strati�cation� Nevertheless� we can observe that the
partition deduced from the ���action is not locally �nite� therefore the partition of Sn��
corresponding to this action is not a strati�cation�

Let us remember the Whitney regularity condition �see �Gi���� for instance�� Let U �
V be two disjoint submanifolds of Rp� and let x � U �V � V is said to be Whitney regular
over U at x when the following condition holds� let �ui�� �vi� be two sequences� in U and
V � respectively� converging to x and such that ui �� vi i� Let us denote by Li the line

spanned by vi � ui and Ti be the vector subspace TyiV � If �Li�i converges to L and �Ti�i
converges to T � in the corresponding Granssmannians of subpaces of Rp� then L � T �
Since given a di�eomorphism of an open set M of Rp onto another open set M � of Rp

mapping U � V and x to U �� V � and x�� respectively� V is Whitney regular over U at x if�
and only if� V � is Whitney regular over U � at x�� we can de�ne the Whitney regularity
condition in the case of an arbitrary di�erentiable manifold X�

A strati�cation � of a di�erentiable manifold X is said to be a Whitney strati�cation
if for any pair of strata U� V � �� V is Whitney regular over U at x whenever U � V �� ��

To �nish this geometrical approach� we can state the following result� which is a
straightforward consequence of the combination of several facts mentioned previously�

Proposition �� The strati�cation in Sn�� de�ned by the ���action is Whitney regular�

Proof� This follows from the fact that the strata are in this case the ��nitely many� orbits

under this action�

��



�� Perturbation of quadrics

Let Q be a �non�empty� set of points �x�� � � � � xn� in Rn given by an equation of the

form X tAX � �� A � Sn��� X � �x� � � � xn ��t� that is to say� a quadric�

Obviously� two quadrics Q� and Q� de�ned by equations X tA�X � �� X tA�X � �
with A�� A� � Sn�� are equivalent with respect to the ane equivalence �respectively�
with respect to the metric equivalence� if� and only if� so are the matrices A� and A��

The concept of structurally stable quadrics will be translated to the concept of struc�
turally stable matrices de�ning the quadric� In general� we will identify the quadric with
a matrix de�ning it and make use of the geometric study made in x� in Sn��� Further
details about the relationship between symmetric square matrices and quadrics with re�

spect to the ane and metric equivalence can be found in �Pu	
�� Chapter ��� x� and
x��� Concretely� we can state the following de�nition�

De�nition 	� We will say that a quadric is structurally stable when it is de�ned by a
structurally stable matrix A � Sn���

The Remark at the end of the preceding Section shows that there are no structurally
stable quadrics with respect to the metric equivalence� When considering the ane equiv�
alence� structurally stable quadrics are those which are both non�degenerate and with
center �note that the center is unique in this case��

In particular� in the case where n � �� the only structurally stable conics are ellipses
and hyperbolas �and imaginary ellipses� if we wished to take in consideration imaginary
conics�� Obviously� in all these cases the dimension of the orbits is ��

Let us consider the case of the parabola and the ane equivalence� A reduced ane

equation is� x� � �y � �� It is obvious that we can always restrict ourselves to consider
the reduced equation� as deduced from the homogeneity property in Proposition ��

A matrix A � Sn�� de�ning this conic is then

A �

�
B � � �

� � �
� � �

�
CA

The set of solutions of the system in Theorem � �a� is�

�	

	�
�
B � � �

� m �
� � �

�
CA
�������m � R

�	�
	�

��



We deduce that

TAO��A	
� �

�
��
�
B � � �

� � �
� � �

�
CA
�
��

and dimTAO��A� � ��

When considering the metric equivalence� a metric reduced equation is x�� �y � �� a
matrix A de�ning this conic is

A �

�
B � � �

� � �
�

� �
� �

�
CA

and the set of solutions of the system in Theorem � �b� is�

�	

	�
�
B ��m� � �

� m� m�

� m� �

�
CA
�������m�� m� � R

�	�
	�

We deduce that

TAO��A	
� �

�
��
�
B � � �

� � �
� � �

�
CA �

�
B �� � �

� � �
� � �

�
CA
�
��

and dimTAO��A� � ��

The other cases can be handled in a similar way�

Next Tables show the dimension of the orbits with respect to both equivalence relations
in the cases of conics in R� and quadrics in R	�

Conic
Dimension of the orbit

with respect to ��

Dimension of the orbit

with respect to ��

Ellipse 
 	 or � ���

Hyperbola 
 �

Parabola � �

Non�parallel lines � �

Parallel lines � 	

Double line 	 	

Line 	 	

��� depending on the eigenvalues of A� being equal or dierent� respectively�

Table �� Conics in R� and dimension of orbits
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Quadric
Dimension of the orbit

with respect to ��

Dimension of the orbit

with respect to ��

Ellipsoid �� ��
 or � ���

Hyperboloid of one sheet �� 
 or � ����

Hyperboloid of two sheets �� 
 or � ����

Elliptic paraboloid � 
 or � ����

Hyperbolic paraboloid � �

Real con � 
 or � ����

Real elliptic cylinder � � or 
 ����

Hyperbolic cylinder � 


Parabolic cylinder � 


Non�parallel planes � 


Parallel planes � �

Double plane � �

Plane � �

��� depending on the eigenvalues of A� being all equal� two of them equal or dierent� respectively�

���� depending on the eigenvalues of A� being two of them equal or dierent� respectively�

Table �� Quadrics in R	 and dimension of the orbits

Since the strati�cation �� of Sn�� is Whitney regular� a miniversal deformation is a
parametrized family which is generically transverse to the strati�cation� That is to say�

the set of families which are transverse to the strati�cation is an open and dense set in
Sn��� According to Thom theorem� the induced partition in the space of parameters is
also a �Whitney� strati�cation and the codimensions are the same�

Thus we can show the bifurcation diagrams� obtained from the miniversal deforma�

tions� From them we can deduce the quadrics meeting all neighbourhood of a given one�
and which are the most probable� Concretely� we show the case of the parabola� the other
cases being handled similarly�

When dealing with the ane equivalence� we have to study which conics are de�ned
by a matrix of the form �

B � � �
� m �
� � �

�
CA

where m � R�

It is easy to check that there are only the following possibilities�

�� m � �� in which case the conic is a parabola

��



�� m � �� in which case the conic is a �real� ellipse

�� m � �� in which case the conic is a hyperbola

We obtain the following bifurcation diagram�

 

parabola

hyperbola ellipse

Figure �� Bifurcation diagram of the parabola

In the other cases we obtain the following bifurcation diagrams�

ellipse

line

parabola

hyperbola

non-parallel lines

parallel linesparallel lines

double line

hyperbola

parallel imaginary lines

ellipse

imaginary ellipse

non-parallel imaginary lines

non-parallel lines

parabola

hyperbola

non-parallel lines

parabola

ellipse

parallel lines

non-parallel lines

hyperbola

Figure �� Bifurcation diagrams with respect to the a
ne equivalence of conics in R�

Remark� Note that a perturbation of an 	imaginary
 conics and quadrics may give rise
to a real conic or quadric�
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A similar study can be done in Rn� n � �� Here we present some examples in the case
where n � ��

�����
�
�
�
��
��
��
��
�
�
�
�

������
��
��
��

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

��������������������������

�������������
�������������
�������������
�������������

������������

������������������

��������
��������
��������
��������

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������

������
������
������
������

�����������
�����������
�����������
�����������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������
����
��
��
��

������
��
��
��
��

��������

����������

������

������������
������������
������������
������������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

hyperboloid of two sheets ellipsoid

elliptic paraboloid

real con

hyperbolic paraboloid

hyperbolic cylinder

��������������

hyperbolic cylinder

real con

hyperbolic paraboloid

hyperboloid of two sheets

hyperboloid of one sheet

������
��
��
��

������

����

elliptic paraboloid

hiperboloid of two sheets
ellipsoid

hiperbolic paraboloid

hiperboloid of one sheet

real con

hiperboloid of two sheets
hiperboloid of one sheet

ellipsoid

elliptic paraboloid

elliptic cylinder

real con

hyperboloid of one sheet

hyperboloid of one sheet

hyperbolic paraboloid

hyperbolic cylinder

hyperboloid 

of two sheets

real con

hyperboloid of two sheets

elliptic cylinder

parabolic cylinder

hyperboloid of one sheet

non-parallel planes

Figure �� Bifurcation diagrams with respect to the a
ne equivalence of quadrics in R	
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