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� Introduction

In ����� E� De Giorgi ���	 stated the following conjecture


Conjecture �DG�� Let u 
 Rn � ���� �� be a smooth entire solution of the semilinear

equation 
u � u� � u satisfying the monotonicity condition

�xnu � � in Rn� �����

Then all level sets fu � sg of u are hyperplanes� at least if n � ��

The �atness of the level sets of u can be rephrased by saying that u depends only
on one variable� For the model equation chosen by De Giorgi� this is equivalent to the
existence of a unit vector a � Rn and a constant b � R such that

u�x� � tanh

�
�p
�
ha� xi� b

�
�x � Rn�

When n � �� this conjecture was proved in ���� by N� Ghoussoub and C� Gui ���	 �see also
���	 for further extensions of this result�� More recently� the second and third authors ��	
have established the conjecture in the case n � �� The higher dimensional cases are
still open� The proofs for n � � and � use some techniques developed by H� Berestycki�

�



L� Ca�arelli and L� Nirenberg in ��	 for the study of symmetry properties of positive
solutions of semilinear elliptic equations in halfspaces�

More generally� the same symmetry question can be raised for bounded entire solutions
of semilinear equations of the form


u� F ��u� � � in Rn� �����

under the monotonicity assumption ������ By �u is an entire solution�� we simply mean
that u is a solution in all space Rn� The results of ���	 for n � � and the results of the
present paper for n � � establish the following


Theorem ��� Assume that F � C��R�� Let u be a bounded solution of ����� satisfying

������ If n � � or n � �� then all level sets of u are hyperplanes� i�e�� there exist a � Rn

and g � C��R� such that

u�x� � g�ha� xi� for all x � Rn�

In this paper we make a short survey on this problem and� at the same time� we prove
Theorem ��� in dimension three� This extends to all nonlinearities F � C� the results
of the second and third authors ��	� where Theorem ��� was proved when n � � for a
class of nonlinearities F which included the model case F ��u� � u� � u� The extension of
the present paper is based on new energy estimates which follow from a local minimality
property of u� discussed in Section � below� In addition� we prove in Section � a symmetry
result for semilinear equations in the halfspace R�

�� Finally� in Section � we establish that
an asymptotic version of the conjecture of De Giorgi �already considered by L� Modica
in ���	� is true when n � �� namely that the level sets of u are �at at in�nity� As we
will see below� this result is related to the Bernstein problem about the �atness of entire
minimal graphs�

In some cases it is helpful to make the additional hypothesis �consistent with the
original conjecture of De Giorgi� but not present in it� that

lim
xn���

u�x�� xn� � inf u and lim
xn���

u�x�� xn� � supu �x� � Rn��� �����

where x � �x�� xn�� x� � Rn�� and xn � R� Here� the limits are not assumed to be
uniform in x� � Rn��� Even in this simpler form� conjecture �DG� was �rst proved in ���	
for n � �� in ��	 for n � �� and it remains open for n � ��

In Theorem ��� the direction a of the variable on which u depends is not known a priori�
Indeed� if u is a one�dimensional solution satisfying ������ we can slightly rotate coordinates
to obtain a new one�dimensional solution still satisfying ������ The same remark holds in
the case when the additional assumption ����� is made� Instead� if one further assumes
that the limits in ����� are uniform in x� � Rn�� then an a priori choice of the direction a
is imposed� namely a �x � xn� and furthermore one knows a priori that every level set of u
is contained between two parallel hyperplanes� With the additional assumption that the
limits in ����� are uniform in x� � Rn��� the question of De Giorgi is known as �Gibbons

�



conjecture�� and it is by now completely settled� The conclusion u � u�xn� has been
recently proved by N� Ghoussoub and C� Gui ���	 for the case n � � and� independently
and using di�erent techniques� for general n by M�T� Barlow� R�F� Bass and C� Gui ��	�
H� Berestycki� F� Hamel and R� Monneau ��	� and A� Farina ���	� These results apply to
equation ����� for various classes of nonlinearities F which always include the Ginzburg�
Landau model 
u � u� � u�

The �rst positive partial result on conjecture �DG� was established in ���� by L� Mo�
dica and S� Mortola ���	� They proved the �atness of the level sets in the case n � �� under
the additional assumption that the level sets fu � sg are the graphs of an equi�Lipschitz
family of functions of x�� Note that� since �xnu � �� each level set of u is the graph of
a function of x�� Their proof was based on a Liouville�type theorem for non�uniformly
elliptic equations in divergence form� due to J� Serrin� and on the observation that the
bounded ratio

� 
�
�x�u

�x�u

solves� after an appropriate change of independent variables� an equation of this type�
The idea of considering � occurs also in ��� ��� �	� But this time a di�erent Liouville�

type theorem� due to H� Berestycki� L� Ca�arelli and L� Nirenberg ��	� is used �see The�
orem ��� below�� This theorem does not require the assumption that � is bounded� but
instead a suitable compatibility condition between the growth of � and the degeneracy of
the coe�cients of the equation�

L� Modica proved in ���	 that if u is a bounded solution of ����� and F � � on the
range of u� then the pointwise gradient bound

jruj� � �F �u� in Rn

holds� This bound was extended in ���	 by L� Ca�arelli� N� Garofalo and F� Segala to
more general equations� They also proved that if equality holds at some point� then the
level sets of u are hyperplanes �regarding this fact� see also the survey article ���	 by
B� Kawohl��

The plan of the paper is the following

�� Introduction�
�� On the relation between �DG� and the Bernstein problem�
�� Proof of Theorem ��� for n � ��
�� The monotonicity assumption and local minimality�
�� Energy estimates� Completion of the proof of Theorem ��� for n � ��
�� A symmetry result in R�

��
�� A partial result for n � ��

� On the relation between �DG� and the Bernstein problem

In this section we describe the heuristic argument �that we make rigorous in Section ��
establishing a relation between the conjecture of De Giorgi and the Bernstein problem
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about the �atness of entire minimal graphs� This problem� after a long series of partial
results starting with S� Bernstein� was completely settled in ���� with the famous work
���	 of E� Bombieri� E� De Giorgi and E� Giusti �see also the nice presentations in ���� ��	
on this and related problems�� It is now known that the following two statements hold


�a� Every smooth entire solution � 
 Rm � R of the minimal surface equation

div

�
r�p

� � jr�j�

�
� � �����

is an a�ne function if m � ��
�b� If m � � there exist non a�ne entire and smooth solutions of ������

A natural method in the analysis of entire solutions of PDE�s� �rst used by W�H� Flem�
ing in ���	 �precisely in connection with the Bernstein problem�� is the analysis of the
blow�down family of functions associated to the solution� This leads in some cases to an
understanding of the behaviour at in�nity of the solution�

In our case� we assume that u is a bounded solution of ����� satisfying ����� and ������
and that F � C��R� satis�es

F � F �m� � F �M� in �m�M�

where m � inf u and M � supu� Note that for the model case 
u � u� � u in conjecture
�DG�� we have F �u� � ��� u������ m � �� and M � �� so that the previous condition is
satis�ed� We then de�ne uR�x� � u�Rx� and study the behaviour of uR as R��� The
functions uR are bounded entire solutions of the rescaled PDE�s

�

R

uR � RF ��uR�

corresponding to the �rst variation of the functionals ER������ de�ned by

ER�v��� 
�

Z
�

�
�

�R
jrvj� � RF �v�

�
dx �����

�where we emphasize also the dependence on the domain of integration�� A classical
result of L� Modica and S� Mortola ���	 states that the functionals ER����� ��converge to
a constant multiple of the area functional� Speci�cally� setting

cF �

Z M

m

p
�F �s� ds�

the following three properties hold


�i� �Lower semicontinuity� If E has locally �nite perimeter in Rn� then

lim inf
i��

ERi
�ui��� � cFP �E���

�



whenever � 	 Rn is an open set� Ri �� and ui converge to �E in L�
loc�R

n�� Here
�E denotes the function equal to M on E and equal to m on Rn n E� and P �E���
denotes the perimeter of E in �� which coincides with the surface measure of �
�E
if �E is su�ciently regular �see for instance ���	��

�ii� �Approximation� If E has locally �nite perimeter in Rn� then there exists a family
�vR� 	 H�

loc�R
n� converging to �E in L�

loc�R
n� and such that

lim sup
R��

ER�vR��� � cFP �E���

whenever � 	 Rn is a bounded open set with P �E� ��� � ��

�iii� �Coercivity� If Ri �� and �ui� 	 H�
loc�R

n� satis�es

sup
i

ERi
�ui��� �� �� 		 Rn�

then there exists a subsequence ui�k� and a set of locally �nite perimeter E in Rn

such that ui�k� converge to �E in L�
loc�R

n� as k ���

The Modica�Mortola theorem states that the functionals ER converge �in an appropri�
ate variational sense� to the perimeter functional as R � �� Consider now a level set
fu � sg of an entire solution of ����� satisfying ����� and ������ and an arbitrary radius
r � �� Then fuR � sg 
 Br� a rescaled copy of fu � sg 
BRr� is expected �heuristically�
to be closer and closer in Br to a stationary surface of the area functional� as R��� We
notice also that� due to ������ fu � sg is a graph along the xn direction� so we may expect
the limiting stationary surface to be a graph as well� For the purpose of this heuristic
discussion we have identi�ed stationary solutions and local minimizers� but this issue is
far from being trivial �see Section ���

Since r is arbitrary and we know that every entire minimal graph de�ned on Rm �
Rn�� is a hyperplane for m � n� � � �� we may conclude that the level sets fu � sg are
expected to be ��at� at in�nity whenever n � �� This provides a strong indication of why
De Giorgi�s conjecture should be true� at least asymptotically� for n � ��

This argument will be made rigorous in Section �� where we establish that the rescaled
level sets R���fu � sg 
BRr� are closer and closer to a minimal graph in Br as R tends
to � through subsequences �see also the nice results in ���	 on convergence of stationary
solutions of ������

� Proof of Theorem ��� for n � �

In this section we present the method leading to Theorem ��� in dimensions two and three�
In dimension two� the proof coincides with the one given by Ghoussoub and Gui in ���	�
and it will be completed in this section� When n � � the method described here is the
�rst step towards the theorem� but in this dimension the proof needs some additional work
and will be completed in Section �� Note that in dimension three� Theorem ��� extends

�



the results of ��	� in which only a particular class of nonlinearities �including the model
case F ��u� � u� � u� was considered�

The idea is the following� Consider the functions

	 
� �xnu � � and �i 
�
�xiu

�xnu
�
�xiu

	

for each i � �� � � � � n� �� The goal is to prove that every �i is constant in Rn� since this
clearly implies that ru � ajruj for some constant unit vector a� and hence that the level
sets of u are hyperplanes orthogonal to a�

Notice that since
	�r�i � 	r�xiu� �xiur	

and since both �xiu and 	 solve the same linear equation 
v � F ���u�v� we have

div�	�r�i� � 	
�xiu� �xiu
	 � ��

The conclusion that �i is necessarily constant in dimensions two and three uses the fol�
lowing Liouville�type theorem due to H� Berestycki� L� Ca�arelli and L� Nirenberg ��	�

Theorem ��� Let 	 � L�loc�R
n� be a positive function� Assume that � � H�

loc�R
n� satis�

�es

� div�	�r�� � � in Rn �����

in the distributional sense� For every R � �� let BR � fjxj � Rg and assume that there

exists a constant C independent of R such thatZ
BR

�	��� dx � CR� �R � �� �����

Then � is constant�

The proof of this result is based on a simple Caccioppoli type estimate for the function �
�see ��	 or ��	��

To apply this theorem to the conjecture of De Giorgi� note that 	�i � �xiu� Therefore�
in this case� condition ����� will hold ifZ

BR

jruj� dx � CR� �R � �� �����

for some constant C independent of R�
Next� we point out that since u � L��Rn� is a solution of 
u� F ��u� � �� then jruj

also belongs to L��Rn�� This is easily proved using standard interior W ��p estimates for
the Laplacian in every ball of radius � in Rn� Therefore� estimate ����� is obviously true
when n � �� This �nishes the proof of Theorem ��� for n � ��

�



We conclude this section with some comments on the sharpness of the previous argu�
ment� In Section � we will prove the energy upper bound

R
BR

jruj� dx � CRn�� in every
dimension n� and wee will see that this bound is sharp� However� the optimal �maximal�
exponent 
n such thatZ

BR

�	��� dx � CR�n �R � � �� � constant �����

in the Liouville�type theorem above �assuming that equality holds in ������ is not presently
known this is an interesting open problem� In ��	 it is proved that 
n is strictly less than
n for n � �� Also� a sharp choice of the exponents in the counterexamples of ���	 shows
that 
n � � � �

p
n� � when n � �� Finally� note that if we had 
n � n � � for some n�

then the argument above would establish the conjecture of De Giorgi in dimension n�

� The monotonicity assumption and local minimality

In this section we investigate in detail the consequences of the monotonicity assumption
������ We begin by introducing the notion of stability�

De�nition ��� �Stability� We say that a solution u of ����� is stable if the second varia�
tion of energy ��E����� with respect to compactly supported perturbations � is nonnegative�
that is� if Z

Rn

�jr�j� � F ���u���
�
dx � � �� � C�

c �Rn�� �����

We have used the notation E� for the energy� as in ������ It is a well known fact in
the theory of maximum principles that the stability condition ����� is equivalent to the
existence of a strictly positive solution 	 of 
	 � F ���u�	� That is� we have the following


Proposition ��� Let H 
 Rn � R be a bounded continuous function� ThenZ
Rn

�jr�j� � H�x���
�
dx � � �� � C�

c �Rn� �����

if and only if there exists a continuous function 	 
 Rn � ����� such that 
	 � H�x�	
in the sense of distributions�

Proof� Condition ����� implies that the �rst eigenvalue of the Schr!odinger operator
�
�H�x� in each ball BR is nonnegative� Since the �rst eigenvalue in BR is a decreasing
function of R� it follows that all these �rst eigenvalues are positive� This implies that� for
every constant cR � �� there exists a unique solution 	R of	


	R � H�x�	R in BR

	R � cR on �BR�

�



and� moreover� 	R � � in BR� We choose the constant cR such that 	R��� � �� Then�
by the Harnack inequality� a subsequence of �	R� converges locally to a solution 	 � � of

	 � H�x�	�

Conversely� multiplying the equation 
	 � H�x�	 by ���	� integrating by parts� and
using the Cauchy�Schwarz inequality� we obtain ������

As a corollary� we can prove that every monotone solution is stable�

Corollary ��� �Monotonicity implies stability� Every bounded entire solution u of

����� satisfying the monotonicity assumption ����� is stable�

Proof� We simply have to notice that 	 � �xnu is strictly positive and solves the
linearized equation 
	 � F ���u�	� Then� the stability of u follows from Proposition ���
with H � F ���u��

We say that u is a local minimizer of E� if the energy does not decrease under compactly
supported perturbations� i�e��

E��u��� � E��v��� whenever fu �� vg 	 � 		 Rn�

Corollary ��� indicates a connection between the monotonicity assumption and the local
minimality of u with respect to the energy E�� since the stability property is a necessary
condition for local minimality� Indeed� we will now see that the monotonicity assumption
����� implies the local minimality of u in a certain class of compactly supported pertur�
bations �a stronger property than stability�

For this purpose� let us introduce the functions u and u 
 Rn�� � R de�ned by

u�x�� 
� lim
xn���

u�x�� xn� and u�x�� 
� lim
xn���

u�x�� xn�� �����

Notice that u and u are well de�ned if ����� holds� Moreover� if u is bounded and satis�es
������ then a simple limiting argument �see ��	 for details� shows that u and u are also
bounded entire solutions of the same equation ������ now on Rn��� In particular� u and u
belong to C���

loc �Rn��� for each 
 � ��� �� �this follows from local W ��p estimates applied to
the equation and to the linearized equations satis�ed by u� u� and their �rst derivatives��

The following is the main result of this section�

Theorem ��� �Monotonicity implies local minimality� Let u be a bounded entire

solution of ����� satisfying ������ and let � 	 Rn be a smooth bounded domain� ThenZ
�

�
�

�
jruj� � F �u�

�
dx �

Z
�

�
�

�
jrvj� � F �v�

�
dx

for every function v � C���� such that v 
 u on �� and

u�x�� � v�x�� xn� � u�x�� for all x � �x�� xn� � �� �����

�



It seems that L� Modica was already aware �see ���	� of the connection between the
monotonicity assumption ����� and the local minimality of u� although ���	 does not con�
tain an explicit proof of this fact�

We now give the proof of Theorem ���� which is based on some more or less known
results about calibrations for scalar functionals of the Calculus of Variations� After giving
the proof of the theorem� we will explain in more detail its geometric motivation and� at
the same time� we will prove an analogous result fore more general functionals�

Proof of Theorem ���� We denote the energy in � of a function w � C���� by

E�w� �

Z
�

�
�

�
jrwj� � F �w�

�
dx�

and we consider the set

U � f�x� s� � ��R 
 u�x�� � s � u�x��g 	 ��R

and the class of functions

A � fw � C���� 
 u�x�� � w�x� � u�x�� �x � �g
� fw � C���� 
 �x�w�x�� � U �x � �g�

Note that the function v in the statement of the theorem may not belong to A� since the
inequalities in ����� are not strict� However� since �xnu � �� we have that u � A� In
particular� we have that u � ��v � u� � A for every � � ��� ��� and that u � ��v � u� 
 u
on ��� Hence� by letting � � �� we see that the theorem will be proved if we show that

E�u� � E�w� for every w � A such that w 
 u on ��� �����

We are going to prove the last inequality using the theory of calibrations and extremal
�elds of the Calculus of Variations� We construct a calibration F for the functional E and
the solution u� that is� a functional F � F�w� de�ned for w � A satisfying the three
following properties


�a� F�u� � E�u��
�b� F�w� � E�w� for all w � A�
�c� F is a null�lagrangian� i�e�� F�w� � F� ew� for every pair of functions w � A and ew � A
such that w 
 ew on ���

The existence of such functional F immediately implies ����� and hence the theorem�
Indeed� for each w � A such that w 
 u on ��� we have F�u� � F�w� by �c�� and therefore

E�u� � F�u� � F�w� � E�w�

by �a� and �b��
To construct F � we consider the one�parameter family of functions futgt�R de�ned by

ut�x� 
� u�x�� xn � t� for x � � and t � R�

�



The functions ut are all solutions of the same semilinear equation �the Euler�Lagrange
equation of E� and� moreover� their graphs are pairwise disjoint �due to the assumption
�xnu � ��� Because of these two properties� the family futgt�R is called an extremal �eld

with respect to E � Next� we de�ne the vector �eld � � ��x� �s� 
 U 	 ��R �� Rn�� by	
�x�x� s� � rut�x�

�s�x� s� � �
� jrut�x�j� � F �s��

where t � t�x� s� is the unique real number such that

ut�x� � ut�x�s��x� � s� �����

Note that t exists and is unique due to the hypothesis �tu
t � � and the fact that �x� s� �

U � i�e�� limt��� ut�x� � u�x�� � s � u�x�� � limt��� ut�x�� Finally� we de�ne the
calibration F by

F�w� �

Z
�
fh�x�x�w�x���rw�x�i � �s�x�w�x��g dx

�

Z
�

�
hrut�rwi � �

�
jrutj� � F �w�

�
dx�

for w � A� where t � t�x�w�x�� is de�ned by ������ i�e�� by ut�x� � w�x�� and r denotes
always the gradient with respect to x � Rn�

We need to show that F satis�es properties �a�� �b� and �c�� Note that �b� is obvious�
by the Cauchy�Schwarz inequality� Property �a� is also immediate� since t�x� u�x�� 
 ��
Property �c� will follow from the fact that � is a divergence�free vector �eld�

To verify that div� � �� note �rst that u is a C� function in Rn� since the linearized
equation 
�xiu � F ���u��xiu implies �by local W ��p estimates� that �xiu � W ��p and
hence u �W ��p 	 C� for p � n� Now� the implicit function theorem applied to ����� gives
that t � t�x� s� is a C��U� function� Moreover� di�erentiating ����� we obtain	

�tu
t �st � ��

rut � �tu
trxt � ��

�����

In particular� � is a C� vector �eld on U � We have

divx �
x � 
ut � hr�tut�rxti � 
ut � hr�tut� �struti

by ������ and
�s�

s � hrut� �str�tuti � F ��s��

and therefore div� � 
ut � F ��s� � 
ut � F ��ut� � ��
Finally� we can verify property �c�� Let w � A and ew � A satisfy w 
 ew on ��� De�ne

� � ew � w and w� � w � �� ew � w� � w � �� for � � � � �� We have that � 
 � on ��

��



and w� � A for all � � ��� �	� For these values of � � we have

d

d�
F�w� � �

d

d�

Z
�
fh�x�x�w� ��rw� i � �s�x�w� �g dx

�

Z
�
fh�s�x�x�w� ��rw� i� � h�x�x�w� ��r�i � �s�

s�x�w� ��g dx�

Integrating by parts the second term in the last expression� using � 
 � on �� and
div� 
 � in U � we �nally obtain

d

d�
F�w� � �

Z
�
fh�s�x�x�w� ��rw� i� � divx �

x�x�w� ��

�h�s�x�x�w� ��rw� i� � �s�
s�x�w� ��g dx �

Z
�
�div��x�w� �� dx � ��

and hence F�w� � F� ew��

Let us explain the construction of the previous proof in a more geometric way and� at
the same time� include more general functionals E of the form

E�w��� 
�

Z
�
f�x�w�rw� dx for w � C�����

where the integrand f�x� s� p� is bounded from below� of class C� in all arguments� and con�
vex with respect to p� Here� and in the following� we use the standard notation f�x�w�rw�
for f�x�w�x��rw�x���

Given a vector �eld � � ��x� �s� de�ned on an open subset W of Rn�R and satisfying

�s�x� s� � f��x� s� �x�x� s�� ��x� s� �W�

where f��x� s� p�� is the conjugate function of f�x� s� p� with respect to p� there holds �by
de�nition�

f�x� s� p� � h�x�x� s�� pi � �s�x� s� ��x� s� p� �W �Rn� �����

Then� by integration� we obtain

E�w��� �
Z
�
fh�x�x�w��rwi � �s�x�w�g dx �����

for every w � C���� whose graph is contained in W � On the other hand� we have equality
in ����� for a given function u if� in addition�	

�x�x� u� � �pf�x� u�ru�

�s�x� u� � �f�x� u�ru� � h�pf�x� u�ru��rui �x � �� ������

��



We are assuming� in particular� that W contains the graph f�x� u�x�� 
 x � �g of u� Note
that ����� and ������ imply

�s�x� u� � f��x� u� �x�x� u�� �x � ��

Assume now that � is divergence free in W � and take any other function v � C����
whose graph is contained in W and such that fu �� vg 		 � �by this we mean that
fu �� vg has compact closure contained in ��� Then� denoting by �u and �v the graphs
of u and v on � respectively �both oriented so that the s�component of the normal is
negative�� we get

E�v��� �
Z
�
fh�x�x� v��rvi � �s�x� v�g dx

� �ux of � through �v � �ux of � through �u

�

Z
�
fh�x�x� u��rui � �s�x� u�g dx � E�u����

Notice that the second equality follows by the divergence theorem using the fact that � is
divergence�free in W � and that �u and �v have the same boundary in W � Here� we have
assumed that the x�slice of W is an interval for each x� We have thus proved the following
result�

Theorem ��	 Let � 	 Rn and W 	 ��R be open sets and let u � C���� be such that

its graph �u is contained in W � Let us assume that

fs � R 
 �x� s� �Wg

is an interval for each x � �� and that there exists a divergence�free vector �eld � � ��x� �s�
in W satisfying ����� and ������� Then u is a local minimizer of E����� with respect to

compact perturbations in W � i�e��

E�u��� � E�v��� whenever fu �� vg 		 � and �v 	W�

This method applies to minimizers with Dirichlet boundary conditions� By analogy
with the theory of minimal surfaces� we call the vector �eld � a calibration for u in W
relative to the integrand f  see ���� ��	� The existence of a calibration is not only su�cient
for minimality but� to a certain extent� also necessary �a statement in this directions in
the context of Geometric Measure Theory can be derived from Sections � and � of ���	��
The previous proof is based on the fact that� for divergence�free �� integrals of the type

F��w��� 
�

Z
�
fh�x�x�w��rwi � �s�x�w�g dx ������

are invariant integrals or null�lagrangians� that is� as we have seen before they depend only
on the value of w on the boundary of � �see also Section ������� of ���	� or Sections ������

��



����� and ����� of ���	�� Both null�lagrangians and calibrations are classical tools to prove
minimality and� in fact� are essentially the same�

A more analytic proof of the null�lagrangian property of F�� which hides the geometric
signi�cance of this property� can be obtained as in the proof of Theorem ���� That is� �rst
one notices that� since � is divergence�free in W � the Euler�Lagrange equation of F�

div ��x�x�w�� � h�s�x�x�w��rwi � �s�
s�x�w� � �divx �

x � �s�
s� �x�w� � � ������

is satis�ed by every w � C���� whose graph is contained in W �this property is also
sometimes taken as de�nition of null�lagrangian� see ���	�� Then� if w and ew belong to
C���� are such that their graphs are contained in W and fw �� ewg 		 �� we can de�ne
w� � w � �� ew � w� for � � ��� �	 and use the fact that all functions w� solve ������� to
obtain

d

d�
F��w� ��� � � �� � ��� �	�

Hence F��w��� � F�� ew���� As in the previous proof� the assumption that the x�slices
of W are intervals plays a role �here it guarantees that the graph of each function w� is
contained in W ��

When trying to apply Theorem ���� the delicate part is obviously the construction of ��
There is however a simple way to accomplish it whenever the solution u can be embedded
in a one�parameter family of solutions ut of the Euler�Lagrange equation of E �

div


�pf�x� ut�x��rut�x��

�
� �sf�x� ut�x��rut�x�� for all �x� t�� ������

whose graphs foliate the open region W � Such a family of solutions is called an extremal

�eld with respect to E �see ���	� Section �����
More precisely� we assume that W is covered by a regular family of pairwise disjoint

graphs �t of solutions ut of ������� where t belongs to an open interval of I 	 R� Then�
for every �x� s� �W we take the unique t � t�x� s� � I such that ut�x� � s� and set	

�x�x� s� � �pf�x� ut�x��rut�x��

�s�x� s� � �f�x� ut�x��rut�x�� � h�pf�x� ut�x��rut�x���rut�x�i� ������

By regular family we mean the following
 locally the graphs �t can be represented as
level sets feu � tg of a C��W � function eu� which obviously satis�es the condition �seu �� ��
This property is ful�lled if� for instance� �tu

t�x� �� � for every t � I and every x � ��
The integral F� associated to such a vector �eld � through ������ is the Hilbert invariant
integral relative to the extremal �eld futg� and in fact the following theorem holds �see
���	� Section �����

Theorem ��
 The vector �eld � de�ned by ������ is a calibration of each ut in W � that is�

� is a divergence�free vector �eld satisfying ����� and ������� Consequently� all functions

ut are local minimizers of E����� in W �

��



Proof� The vector �eld � satis�es ������ for each ut by construction� It also satis�es
����� on W � by the de�nition ������ and the assumption that f is convex with respect to p�
It remains to prove that � is divergence�free� This can be done in two di�erent ways�

The �rst way consists of simply computing the divergence� Since ut�x�s��x� � s� we
deduce 	

�tu
t �st � �

rut � �tu
trxt � ��

������

Now� using de�nition ������� we compute the divergence at a point �x� s�� All expressions
are evaluated at x� s � ut�x� and p � rut�x�� where t � t�x� s�� We have

divx�
x � div



�pf�x� ut�x��rut�x��

�
� h�psf� �tutrxti� h�ppf � r�tut�rxti

and� using �������

�s�
s � ��sf �tut �st� h�pf�r�tut �sti� h�psf �tut �st�ruti

�h�ppf � r�tut �st�ruti� h�pf�r�tut �sti
� ��sf � h�psf�ruti� h�ppf � r�tut �st�ruti�

Using ������ and ������� we see that each one of the three terms in the last expression is
the opposite of the corresponding term in the expression for divx�

x� Hence� we conclude
div� � � in W �

Let us present a second way� more geometric� to prove that � is divergence�free� Since
this property is local� we can assume in the following that� in a su�ciently small ball
B 	W � there exists eu � C��B� such that �t 
B � feu � tg for each t � I� We denote by
J the interval eu�B��

Next� we consider the following auxiliary functional
 for every ew � C��B� taking values
in J and such that �s ew � �� the level set f ew � tg is the graph of a C� function wt de�ned
on an open subset of �t of Rn� and therefore we can set

G�w� �

Z
J

E�wt��t� dt�

Using this de�nition� we �rst prove that eu is a stationary point for G� The proof is based
on the following lemma� whose elementary proof is left to the reader�

Lemma ��� Let B 	 Rn�� be a ball and let eu � C��B� be satisfying �seu � � on B�
Let also B� 		 B be a concentric ball� Then� denoting by � 
 B � Rn the orthogonal

projection on fs � �g and setting �t � ��feu � tg�� there exist constants � � � and M � �
such that

��f ew � tg� � �t
and kwt � utkC���t� �Mk ew � eukC��B�

for each t � v�B�� provided k ew� eukC��B� � � and the support of ew� eu is contained in B��

��



Proof of Theorem ��� continued� Let � � C�
c �B� and consider ew � eu � �� for �

small enough� Lemma ��� gives

d

d�
G�eu � ���

����
�	


�

Z
J

d

d�
E��eu � ���t��t�

����
�	


dt � ��

Hence eu is a stationary point for G�
Using the coarea formula �see for instance ���	�� we can give a canonical representation

of G with the Lagrangian

L�y� q� � f

�
y��p

x

ps

�
ps where y � �x� s� and q � �px� ps��

Indeed� we haveZ
J

E�wt��t� dt �

Z
J

Z
�t

f�x�wt�rwt� dx dt �

Z
J

Z
�t

f�y���x ew��s ew��p
� � jrwtj� dHn�y� dt

�

Z
J

Z
f ew	tg

f

�
y���x ew

�s ew
�

�s ew
jr ewj dHn�y�dt �

Z
B

f

�
y���x ew

�s ew
�
�s ew dy�

Since eu is a stationary point of G� it follows that eu satis�es the Euler�Lagrange equation

div ��qL�y�reu�� � � in B�

Substituting the expression for L� we eventually obtain

div

�
��pf�x� s���xeu

�seu �� f�x� s���xeu
�seu �� h�pf�x� s���xeu

�seu ��
�xeu
�seu i

�
� � ������

for each �x� s� � B� Finally� if we take � as in ������ and take into account that

��xeu�x� s�

�seu�x� s�
� rut�x��

������ reduces to div� � � in B�

	 Energy estimates� Completion of the proof of
Theorem ��� for n � �

In this section we establish some a priori estimates for bounded entire solutions u of ������
The �rst one� stated below� does not require the monotonicity assumption on u and was
proved by L� Modica in ���	� Throughout this section� we consider the constant

cu � minfF �s� 
 inf u � s � supug�

that is� the in�mum of F on the range of u�

��



Theorem 	�� �Monotonicity formula and lower bounds� Let u be a bounded entire

solution of ������ Then

��R� 
� R��n

Z
BR

�
�

�
jruj� � F �u�� cu

�
dx

is nondecreasing in ������ In particular� if u is not constant then there exists a positive

constant c such thatZ
BR

�
�

�
jruj� � F �u�� cu

�
dx � cRn�� �R � �� �����

Modica also proved in ���	 the pointwise gradient bound

jruj� � ��F �u� � cu� in Rn�

where� as before� the monotonicity assumption on u is not required�
The proof of the energy upper boundZ

BR

�
�

�
jruj� � F �u�� cu

�
dx � CRn�� �R � �� �����

which plays a crucial role in our proof of the De Giorgi conjecture in dimension three� is
more delicate and requires some additional work� Here� the monotonicity assumption on
u is needed� In ��	 we gave a simple proof of this estimate for a special class of nonlinear�
ities F � It was based on a �sliding� argument using the functions ut�x� � u�x�� xn � t� of
the previous section� In the present paper� we use the local minimality property of u to
extend the energy upper bound ����� to every nonlinearity F � C�� The precise result is
the following


Theorem 	�� �Upper bounds� Let u be an entire solution of ����� satisfying ������ If
either n � � or u satis�es ������ then ����� holds for some constant C independent of R�
In particular� we have thatZ

BR

jruj� dx � CRn�� �R � ��

When n � �� the previous theorem establishes estimate ������ As we saw in Section ��
this completes the proof of Theorem ��� and of De Giorgi�s conjecture in dimension three�

Proof of Theorem ���� Let m � inf u� M � supu� and s � �m�M 	 be such that
cu � F �s�� If u satis�es ����� then u 
 m and u 
M � and hence we can perform a simple
energy comparison argument� Indeed� let �R � C��Rn� satisfy � � �R � � in Rn� �R 
 �
in BR��� �R 
 � in Rn n BR and kr�Rk� � �� and consider

vR 
� ��� �R�u � �Rs�

��



This function satis�es the conditions stated for v in Theorem ��� when � � BR� and hence
we can compare the energy of u with the energy of vR in BR� Taking into account that
F �s� � cu� we obtainZ

BR

�
�

�
jruj� � F �u�� cu

�
dx �

Z
BR

�
�

�
jrvRj� � F �vR�� cu

�
dx

�

Z
BRnBR��

�
�

�
jrvRj� � F �vR�� cu

�
dx � CjBR n BR��j � CRn��

for every R � �� with C independent of R�
We now consider the case when condition ����� is dropped but n � �� When n � ��

Theorem ��� is a consequence of Theorem ���� which is already proved in dimension ��
Indeed� that the energy is bounded by CR �and not only by CR�� follows easily from the
one�dimensionality of u and an ODE argument �see ��	��

Assume now that n � �� Notice that m � inf u and M � supu� and de�ne

em � supu and fM � inf u�

Obviously em and fM belong to �m�M 	� By Lemma ��� and Lemma ��� of ��	 we know that
u and u are either constant or monotone one dimensional solutions in R�� The proof of
this fact is based on the stability of u and on the proof of the conjecture of De Giorgi in
Rn�� � R� �see ��	 or next section� where we will recall the ideas involved in the proof��
Moreover� by a simple ODE argument �see also ��	�� we have

F � F �m� � F �em� in �m� em� �����

in case m � em �i�e�� u is not constant� and

F � F �fM� � F �M� in �fM�M� �����

in case fM �M �i�e�� u is not constant��
In all four possible cases �that is� each u and u is constant or one dimensional� we

deduce from ����� and ����� that em � fM and that there exists s � �em�fM 	 such that
F �s� � cu �recall that cu is the in�mum of F in the range of u�� We conclude that

u�x�� � em � s � fM � u�x�� �x� � R��

and hence we can apply Theorem ��� to make the comparison argument with the function
vR � ��� �R�u � �Rs as before� and hence obtain the desired energy upper bound�


 A symmetry result in R�

�

In this section we continue the study of symmetry properties for semilinear elliptic equa�
tions� that we write here in the form 
u � f�u� � �� but now in halfspaces Rn

� �

��



fx � Rn 
 xn � �g� More precisely� we study bounded solutions of the problem
����

u � f�u� � � in Rn

�

u � � in Rn
�

u � � on �Rn
��

�����

We always assume that f is a Lipschitz function on ����� and that u � C��Rn
�� is a

bounded solution of ����� continuous up to the boundary of Rn
�� Applying standard W ��p

estimates in every ball or half ball of radius � in Rn
�� we see that jruj is globally bounded

in Rn
� as well�

As in the previous sections� the goal is to establish that the level sets of u are hyper�
planes or� equivalently� that u � u�xn� is a function of xn alone� This symmetry question
is slightly easier than the question in the whole of Rn� since we know that at least one
level set of u is a hyperplane� namely the ��level set�

In ��	 and ��	� H� Berestycki� L� Ca�arelli and L� Nirenberg proved that every solution
u of ����� �not necessarily bounded� satis�es

�xnu � � in Rn
�

when n � � or when n � � and f��� � �� In ��	 the same authors developed the technique
that we have used in Section � �that is� the idea of applying a Liouville theorem to the
equation satis�ed by the quotient of partial derivatives of u� to prove the following result�

Theorem 
�� �Symmetry in R�
� and R�

�� Let u be a bounded solution of ������ If

n � � then u depends only on xn� i�e�� u � u�xn�� If n � � the same conclusion holds if

one assumes in addition that f��� � � and f � C� ��������

S�B� Angenent ��	� P� Cl"ement and G� Sweers ���	� and H� Berestycki� L� Ca�arelli
and L� Nirenberg ��	� have also proved the same symmetry property in any number of
dimensions� but under more restrictive assumptions on f � More precisely� in ��	 the authors
established �in all dimensions n� that every bounded solution of ����� is symmetric� i�e�
u � u�xn�� if one assumes in addition the three following conditions on f 


Condition ���� For some � � � we have f � � in ��� �� and f � � in ������
Condition ���� For some s
 � ��� �� and some �
 � �� f�s� � �
s in ��� s
	�
Condition ���� For some s� � �s
� ��� f is nonincreasing in �s�� ���

When n � � we can improve this symmetry result by requiring essentially only condi�
tion ��� on f � The precise statement is the following


Theorem 
�� �Symmetry in R�
�� Let f � C�������� and assume that f � � in �����

or that f � � in ��� �	 and f � � in ����� for some � � �� Then� when n � �� every
bounded solution u of ����� depends only on x��

��



For the proof of this theorem we will need the following result established in ��	� which
was also used by the same authors in ��	 to prove Theorem ��� in Rn

�� n � �� �� This
result states that if u is a bounded solution of ����� in Rn

� and if

f�supu� � � �����

then u is symmetric� i�e�� u � u�xn��

Proof of Theorem ���� We �rst prove� following ��	� that


u � � in R�
�� �����

This is obvious in the case when f is nonnegative� Suppose now that f � � in ��� �	
and f � � in ����� for some � � �� and de�ne M � supu� If we show that M � �
then ����� follows immediately� Arguing by contradiction� suppose that M � �� Then
the open set A � fu � �g is not empty� is contained in R�

�� and the bounded function
u � � vanishes on �A and is subharmonic in A� A version of the maximum principle in
unbounded domains having an exterior open cone �see Section � of ��	� gives that u�� � �
in A� a contradiction� We have therefore established ������

Next� we use ����� to show thatZ
QR

jruj� dx � CR� �����

for every cylinder QR � B�
R � �a� a � R� 	 R�

�� where C is a constant independent of R
and a� Indeed� since �
u � � we have u��
u� �M��
u� and henceZ

QR

jruj� dx �

Z
�QR

u
�u

��
dH� �

Z
QR

u��
u� dx

�
Z
�QR

u
�u

��
dH� �M

Z
QR


u dx

�

Z
�QR

�u�M�
�u

��
dH� � CH���QR� � CR��

Since f��� � �� the result of ��	 previously mentioned gives that �x�u � � in R�
��

Hence the function
u�x�� � lim

x����
u�x�� x�� for x� � R�

is well de�ned and satis�es 
u�f�u� � � in R�� Estimate ����� implies� by letting a���
that Z

B�

R

jruj� dx� � CR� �����

for every ball B�
R 	 R� of radius R�

��



Next we show that there exists a strictly positive function 	 in R� such that


	 � f ��u�	 � � in R�� �����

This is shown using the ideas on stability of Section � and arguing as in Section � of ��	
or as in Section � of ��	� Let us recall brie�y the argument since �x�u � � solves the
linearized equation thenZ

R�
�

�jr�j� � f ��u���
�
dx � � �� � C�

c �R�
��

�see Proposition ����� Then� using the continuity of f �� one deduces thatZ
R�

�jr�j� � f ��u���
�
dx � � �� � C�

c �R��

�see the proof of Lemma ��� of ��	 for details�� Using Proposition ��� we deduce the
existence of 	 � � satisfying ������

For this choice of function 	� we can now consider the functions �i � �xiu�	 and argue
as in the proof of De Giorgi�s conjecture given in Section �� since we have ����� and ������
We deduce that each partial derivative of u is a constant multiple of 	 �and hence has
constant sign�� In particular� u is either a constant or a monotone function of only one
variable� Then the ODE u�� � f�u� � � gives that

f�supu� � ��

Since supu � supu we deduce f�supu� � � and hence ������ This implies that u � u�x���
by the result of ��	 mentioned above�

� A partial result for n � �

In this section we make rigorous the heuristic discussion of Section � and prove that in
dimensions n � � all entire solutions of ����� satisfying ����� and ����� are ��at at in�nity��
Precisely� we can prove the following result�

Theorem ��� Assume that n � �� that u is a bounded entire solution of ������ that both
����� and ����� hold and

F � F �inf u� � F �supu� in �inf u� supu��

Let �Ri� 	 ����� be converging to �� Then there exist a subsequence Ri�k� and a unit

vector a � Rn such that

lim
k��

R��n
i�k�

Z
BR

i�k�

�jruj� � j�auj�
�
dx � �� �����

Moreover� uk�x� � u�Ri�k�x� converge in L�
loc�R

n� to the characteristic function �with
values inf u and supu� of a halfspace orthogonal to a�

��



The theorem above is a slight improvement of an analogous result stated by L� Modica�
under the local minimality assumption� in ���	�

The distance between the property proved in Theorem ��� and the full De Giorgi
conjecture could be signi�cant because of the following two facts


�a� A priori the direction a depends on the sequence �Ri�� or the subsequence �Ri�k���
Notice that Theorem ��� implies� by a simple contradiction argument� the existence of
unit vectors vectors aR such that

lim
R��

R��n

Z
BR

�jruj� � j�aRuj�
�
dx � ��

However� it is not clear how a �spiraling� behaviour of the level sets of u at in�nity could
be ruled out�

�b� Even though we were able to solve the problem raised in �a�� and prove that

lim
R��

R��n

Z
BR

�jruj� � j�auj�
�
dx � �

for some unit vector a� then it is not clear how the stronger conclusion that ru is every�
where parallel to a could be drawn�

Sketch of the proof of Theorem ���� In the proof we denote by Dau the distribu�
tional derivative along a � Rn of a function u� Notice that� since

jDauj��� � sup
�
Dau��� 
 � � C�

c ���� k�k� � �
�

� sup

�
�
Z
�
u �a� dx 
 � � C�

c ���� k�k� � �

�
the mapping u �� jDauj��� is lower semicontinuous with respect to the L�

loc��� convergence
for every a � Rn and every open set � 	 Rn�

Step �� Let ui�x� � u�Rix�� With no loss of generality� we may assume that cu � ��
m � �� and M � �� By the energy upper bound ����� we infer

ERi
�ui� Br� � R��n

i E��u�BRir� � Crn��

as soon as Ri � � and r � � �we use the notation ERi
from Section ��� Hence� the

coercivity property �iii� of ��convergence �see Section �� gives a subsequence ui�k� and a
set E of locally �nite perimeter in Rn such that

lim
k��

ui�k� � �E in L�
loc�R

n��

For notational simplicity in the following we assume convergence of the original sequence
�ui��

Step �� It is well known that properties �i� and �ii� of ��convergence ensure convergence
of global minimizers to global minimizers� It is perhaps less known that under some

��



additional assumptions �satis�ed by the functionals ER� also the local minimality property
is preserved in the limit �see Section � in ���	 and ���	 for details�� Hence� since by
Theorem ��� the functions ui are local minimizers of ERi

� we obtain that E is a local
minimizer of the perimeter� i�e�

P �E��� � P �F��� whenever E
F 		 � 		 Rn �����

�where E
F denotes the symmetric diference�� Moreover� the same proof of this fact
shows that the energies ERi

�ui� �� are locally weakly� converging as measures to cFP �E� ���
i�e��

lim
i��

Z
Rn

�
�

�Ri
jruij� � RiF �ui�

�
� dx � cF

Z
Rn

� dP �E� �� �� � Cc�R
n��

By De La Vall"ee Poussin theorem �see for instance ���	� Appendix A� we obtain

lim
i��

R��n
i

Z
BrRi

�
�

�
jruj� � F �u�

�
dx � lim

i��
ERi

�ui� Br� � cFP �E�Br� �����

for each r � � such that P �E� �Br� � � �this condition holds with at most countably many
exceptions�� In particular ����� gives P �E�Br� � crn���cF � �� and hence E is neither
the empty set nor the whole space�

Step �� If n � � it is well known that every set E satisfying ����� and with nonzero
perimeter is a halfspace� This is not the case in R�� a counterexample being the Simons
cone �see for instance ���	�� In our case we can extend the conclusion up to R� noticing
that the condition ����� yields Dxn�E � � in the sense of distributions� This implies that
�E is the hypograph of a function � 
 Rn�� � R �with values in the extended real line
R�� i�e��

E �
�

�x�� xn� 
 xn � ��x��
�
�

Since E is a local minimizer� we may consider � to be an entire solution of the mean
curvature equation ����� in a generalized sense� Indeed� this viewpoint was adopted by
M� Miranda in ���� ��	 �see also Chapter �� in E� Giusti ���	� to de�ne generalized solutions
of least area problems� He proved that for every such generalized solution � the sets

P 
�
�
x � Rn�� 
 ��x� � ��� � N 
�

�
x � Rn�� 
 ��x� � ���

are both local minimizers of the perimeter in Rn��� and this allows us to prove that the
solution to the Bernstein problem is unchanged if we consider generalized solutions of �����
instead of classical ones� Indeed� we distinguish the following two cases


�a� Both P and N are negligible� In this case M� Miranda proved that � is �equivalent
to� a classical solution of ������ In particular � is an a�ne function� since n� � � ��

�b� N has positive measure� Then N must be a halfspace of Rn�� �since n� � � �� and
therefore E contains a halfspace of Rn� This implies �see ���	� Theorem ����� that E itself
is a halfspace� The case when P has positive measure can be handled in a similar way�

��



Step �� In the previous step we proved that E is a halfspace� Let a be a unit vector
perpendicular to �E� We will prove that

lim inf
i��

R��n
i

Z
BRi

�
�

�
j�auj� � F �u�

�
dx � cFP �E�B�� �����

which� together with ����� with r � �� gives ������
In order to show ����� we follow the same path of the Modica and Mortola proof of

the lower semicontinuity inequality �i� of ��convergence� Indeed� let

G�t� 
�

Z t

��

p
�F �s� ds

and notice that the Young inequality gives

R��n
i

Z
BRi

�
�

�
j�auj� � F �u�

�
dx �

Z
B�

�
�

�Ri
j�auij� � RiF �ui�

�
dx

�
Z
B�

p
�F �ui� j�auij dx �

Z
B�

j�a�G � ui�j dx�

Notice that G � ui converge in L�
loc�R

n� to G � �E � i�e�� cF�E ��E is equal to � on E and
equal to � on Rn n E�� Hence� the lower semicontinuity of directional derivatives under
L�
loc�R

n� convergence gives

lim inf
i��

R��n
i

Z
BRi

�
�

�
j�auj� � F �u�

�
dx � cF jDa�Ej�B�� � cF

Z
B���E

jh�E � aij dHn���

where �E is the inner normal to E� Since a is parallel to �E� ����� follows�
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