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Summary In this paper we provide an error analysis of a fractional-
step, finite element method for the numerical solution of the incom-
pressible Navier—Stokes equations. Under mild regularity assumptions
on the continuous solution, we obtain first order error estimates in the
time step size both for the intermediate and the end-of-step veloci-
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fully discrete, finite element version of the method.
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1 Introduction

The numerical solution of the unsteady, incompressible Navier—Stokes
equations has received much attention in the last decades, and many
numerical schemes are now available for that purpose. The difficul-
ties encountered in this problem are mainly of three different kinds:
the mixed type of the equations, which is due to the coupling of
the momentum equation with the incompressibility condition, and,
subsequently, the treatment of the pressure; the advective—diffusive
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character of the equations, which have a viscous and a convective
term; and finally, the nonlinearity of the problem.

Fractional step methods are becoming widely used in this context.
By splitting the time advancement into a number of (generally two)
substeps, they allow to separate the effects of the different operators
appearing in the equations. They have been used together with dif-
ferent space discretizations, both finite difference ([1], [4], [17], [18]),
finite element ([9], [13], [20]) and spectral element methods ([29]).
However, semidiscrete presentations of these methods, in which the
space variables are not discretized, seem more appropiate to study
the time discretization itself.

The origin of this category of methods is generally credited to
the work of Chorin (see [4]) and Temam (see [25]). They developed
the well known projection method, which is a two step method in
which the second step consists of the projection of an intermediate
velocity field onto the space of solenoidal vector fields, thus enfor-
cing incompressibility. The incompatibility of the projection boun-
dary conditions with those of the original problem may introduce a
numerical boundary layer of size O(v/v §t) in these methods (see [21]
and [28]), where v is the kinematic viscosity and dt is the time step
size. However, convergence of this method to a continuous solution as
dt tends to zero was proved in [26], for the semidiscrete method, and
[5], for a fully discrete method with periodic boundary conditions.
The end—of-step velocities of the projection method do not converge
in the space H(I](Q), since they do not satisfy the correct boundary
conditions.

More recently, analytical studies of fractional step methods have
turned into obtaining error estimates in the time step size, so as to
establish their order of accuracy. Thus, J. Shen proved in [23] that
the projection method, both with and without pressure correction,
is first order accurate in a certain norm. Some imprecise steps in the
proofs in [23] pointed out by J.L. Guermond in [14] were corrected
in [24]. A more recent analysis given in [15] for a fully discrete, finite
element version of the incremental fractional step projection method
yielded error estimates of first order in the time step size and optimal
order in the mesh size, assuming a finite element interpolation satis-
fying the discrete inf-sup condition. First order error estimates were
also obtained by Long-an Ying (see [19] and the references therein)
for another fractional step method, called viscosity splitting method,
in which the viscosity is not fully uncoupled from incompressibility.
In this sense, a fully discrete version of the so called 6-scheme (see
[12]), in which viscosity and incompressibility are also coupled, was
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proved to converge to a continuous solution in [10] (see also [7] for
a convergence analysis of a related parallel scheme). In [22] another
fractional step method that keeps part of the viscous term in the se-
cond step is derived from an inexact factorization of the fully discrete
original problem; this method is referred to as Yosida scheme in this
reference.

In this paper we provide some error estimates for a viscosity split-
ting, fractional step method which was introduced and studied in [2].
It is a two—step scheme in which the nonlinearity and the incompressi-
bility of the problem are split into different steps. It allows to enforce
the original boundary conditions of the problem in all substeps of
the scheme, which led to convergence of both the intermediate and
end—of-step velocities of the method to a continuous solution in the
spaces L2(§2) and H}(2) (see [2]). Here we prove that these velocities
are first order accurate in the time step size.

Moreover, the study of this method was originally motivated by
the consideration of a well-known predictor-multicorrector algorithm
(see [3]), as detailed in [2]; this fact provides a theoretical explana-
tion of why the original boundary conditions of the problem can be
prescribed in this algorithm, and in what sense it can be understood
as a fractional step method.

The paper is organized as follows: in Section 2 we introduce the no-
tation we use and some generalities about the incompressible Navier—
Stokes equations, such as the regularity assumed for their solutions.
In Section 3 we recall the fractional step method of [2] and introduce
a finite element spatial approximation, while in Section 4 we give an
error analysis for this method; we first obtain some error estimates for
both the intermediate and the end-of-step velocities and then analyse
the pressure solution. Finally, we also give some error estimates for
the fully discrete, finite element solution which are of optimal order
in the mesh size.

2 Preliminaries

The evolution of viscous, incompressible fluid flow in a bounded do-
main 2 C IR (d = 2,3) is governed, in the primitive variable formu-
lation, by the unsteady, incompressible Navier—Stokes equations:

%_7: + (u-V)u + Vp — vAu=§f in2x(0,7T)

V.u=0 infx(0,T)
u=0 ondf? x(0,7T)
u=u" in 2 x {0}
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where u(,t) € R? is the fluid velocity at position & € £ and time
t € (0,T) (with T > 0 given), p(x,t) € R is the fluid kinematic pres-
sure, v > 0 is the kinematic viscosity (which is assumed constant),
f (@, t) is an external force term, V is the gradient operator, V- is the
divergence operator and A is the Laplacian operator (here, and in
what follows, boldface characters denote vector quantities). We con-
sider only the homogeneous Dirichlet type boundary condition (3) for
the sake of simplicity, and assume that the boundary of the domain
012 is at least of class C'.

In order to study some approximation schemes for this problem,
we first introduce some notation. We denote by (-, -) the scalar pro-
duct in L?(£2), and by ||ullo = (u,u)"/? its norm; the quotient space
L3(2) = L*(2)/IR is needed in the case of Dirichlet type bounda-
ry conditions only, since the pressure is then determined only up to
an additive constant; moreover, given m € IN, the scalar product
and norm in H™({2) are denoted by (u,v),, and |||y, respectively.
The space H'({2) contains a closed subspace H{({2) made up with
functions which vanish at the boundary of {2; the Poincaré—Friedrich
inequality ensures that ||Vullo = (Vu, Vu)'/? is a norm on H}(£2),
equivalent to the norm induced by H'(£2). The dual space of H}(£2)
is denoted by H1(£2) with norm || - ||_1, the duality pairing between
these spaces being denoted by <, >. All these definitions carry over
to d—dimensional vector valued function spaces.

Due to the incompressibility condition (2), closed subspaces of
solenoidal vector fields of these Hilbert spaces are also considered.
Thus, we define:

H={ucl?) /] V-u=0, n-u,, =0}
V={ucH}2) /| V-u=0}
Moreover, due to the unsteady character of the equations the follo-

wing definitions are also needed: given p € [1,00) and a Banach space
W, the space LP(0,T; W) is equipped with the norm:

T
oo = ([ NIy dt)

and is also a Banach space with respect to this norm. The space
of essentially bounded functions on (0,7") into W is denoted by
L°°(0,T;W). When W is a Hilbert space with scalar product (.,.)w,
the space L2(0,T; W) is likewise with respect to:

(o) = [ (o) vle)w de
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In this notation, assuming f € L?(0,7;H (£2)) and uy € H pro-
blem (1)-(2)-(3)-(4) has at least one solution (u, p) which satisfies u €
L®(0,T; H)N L?(0,T;V) (see [27]). Uniqueness and more regularity
of the solution can also be proved by assuming more regularity on
the data f and ug and the domain (2. In particular, we will assume
that uw and p satisfy:

R1) u €C%0,T;V)NL>(0,T;H%(2)), Vpec L>(0,T;L%(2))
R2a) u; € L%(0,T;L%(12))
R2b) u; € L2(0,T;H0(9))
R3) [¢ tlluu(t)l[?,dt < C

(the subindex ¢ is employed hereafter for %). Here, and in what
follows, C' denotes a generic constant, possibly different at different
ocurrences, which may depend on the data f, ug, T and v, the domain
{2 and the continuous solution u, but is independent of the time step
0t and the mesh size h. Conditions R1, R2a, R2b and R3 can be
proved, for instance, assuming that (2 is of class C? (or is a convex
polygon in IR? or polyhedron in IR3?) and that (see [16)):

w € H(2)NV, f,f, € L®(0,T;L*(92)), u € L®(0,T; Hy(£2))

Under these assumptions, it was also shown in [23] that, according
to the modifications introduced in [24]:

R4) [) |uu(®)} dt < C

(V' stands here for the dual space of V). These regularity results will
be used in what follows.

Error analysis of time integration schemes for time-dependent par-
tial differential equations are usually given in terms of the following
norms: given a Banach space W with norm || ||w, a continuous func-
tion w:[0,T] — W, two real numbers p > 0 and o > 0 and a time
step size 6t > 0, and taking ¢, = nédt for n =0,...,M = [T/dt], a
family of finite sequences {u"},—1 . ar is said to be an order a ap-
proximation of w in [P(W) if there exists a constant C' independent
of §t such that, for all §t:

M
1/p
(6t llulta) —un|y) ™ < Cot
Moreover, {u"}nzl,m,M is an order « approximation of u in [*°(W)

if:
|lu(tn) —u™|lw < C6t*, VYn=1,...,.M
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For the treatment of the convective term in the momentum equa-
tion (1), the following trilinear form is usually considered:

c(u,v,w) = ((u- V)v,w), Yu € H'(2),v € H'(2),w € Hj($2)

This form is well defined and continuous on these spaces (see [27]),
and it is skew—symmetric in its last two arguments if u € H, that is,
ifV-u=0and n-u=0:

c(u,v,v) =0, Yu € H,v € H}(2) (5)

Moreover, ¢ posseses some continuity properties which hold when 2
is of class C! (see [8]) and which we will use in our proofs, such as:

,
a1 (|21 o]y

lullo [|2]l2 w])s

leallo [|o]lx [[aw]l2

luallz [[olly [[w]lo

laallg"? flaafl3 [ eIy

1/2 1/2
el f[olly Jlwllg" ]y’

c(u,v,w) < C %

Although this form is suitable for our analysis of the semidiscrete
method, we will use the skew-symmetric part of ¢ in the fully dis-
crete problem, since incompressibility is only enforced weakly in the
discrete setting; thus, we define:

é(u,v,w) =(1/2) (c(u,v,w) — c(u,w,v)),
Vu € HY(2),v € HY(2),w € H}(?)

Obviously, this form retains the continuity properties of the original
form ¢ (but for the last one), and is skew-symmetric in its last two
arguments for any u € H(£2).

In some of our proofs we will also make use of the operator A™1,
defined as the inverse of the Stokes operator A = —Pg A, Py being
the projection onto H. The latter is defined for u € D(A) = V N
H?(£2), and is an unbounded, positive, self-adjoint closed operator
onto H. Given w € H, by definition of A, v = A~'u is the solution
of the following Stokes problem:

—Av + Vr=u in 2
V-v=0 1in 2 (6)
v=0 ondf?

When {2 is regular enough, there exists a constant C; > 0 such that:

A ulls < Cillufls—2 for s=1,2 (7)
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The following inequalities were given by J. Shen in [23] for (4 u,u),
with w € H, and used there to deduce error estimates for the standard
projection method:

Collul?y < (A7 u,u) < Ciflul?y

where Cy is the constant appearing in (7). But, as pointed out by
J.L. Guermond in [14] and corrected in [24], the first inequality in
not correct and has to be modified to:

Collullyr < (A7Mu,u) (8)

In our case, the following inequality (which can be easily proved) is
also required:
A ully < Clully

We will use this result in what follows.

3 Fractional-step, finite element method
3.1 Fractional-step method

The fractional step method we analyse here was introduced in [2],
where stability and convergence both in the spaces L>(0,T'; L?(2))
and L2(0,T;H}(£2)) and of both the intermediate and the end-of-
step velocities to the continuous solution and where proved. Given
u"™ € V, approximation of u at t = t,, the time advancement to ¢,
is split into the following two steps:

First step: The first step of the method, which includes viscous and
convective effects, consists of finding an intermediate velocity w™*1/2

such that:
n+1/2 _ ..n
u — u I/Aun+1/2 + (un . V)Un+1/2 — fn (9)

w250 =0 (10)

Second step: Given u™t/2 from equation (9), find u"t! and pnt!

such that:
n+l _ . n+1/2
e — A — w0 (1)
V-u"tt =0 (12)

u"pn = 0 (13)



8 Jordi Blasco, Ramon Codina

As can be observed in (11), the main difference between this scheme
and the standard projection method is the introduction of a viscous
term in the incompressibility step, which allows the imposition of the
original boundary condition (13) on the end-of-step velocity u™*!.
Similar ideas can be found in the §—method of R. Glowinsky and
others (see [12], for instance), in the first and third steps of the
method of [20] and in several other methods such as [7], [19] or [29],
all of which involve a last step with part of the viscous term. It can be
observed in (9)-(10) and (11)-(12)—(13) how in this method convec-
tion is split from incompressibility, which are the two main difficulties
of the problem, both of them still being coupled to viscosity. We have
adopted here a first order linearized form of the convective term, al-
though there are obviously other possibilities.

The motivations that led us to the study of this fractional step
method are maily twofold. First, it can be used to explain theore-
tically a class of predictor-multicorrector algorithms widely used in
practice (see [2] for a more detailed explanation). These methods are
based on an iterative scheme consisting of two steps per iteration
with the same structure as the two steps above. Second, and this is
the main concern of the present work, is the imposition of bounda-
ry conditions for the end-of-step velocity in fractional step methods.
It is common practice among some users of the classical projection
method to enforce all the boundary conditions for this field, although
this is in principle not allowed if the viscous term in equation (11)
is dropped. The present scheme, however, is not subject to this con-
troversy; moreover, the fact that «™*! satisfies the correct boundary
conditions led to improved convergence results in [2] with respect to
those known for that variable in the standard projection method, and
will allow us to obtain improved error estimates here too.

The computational efficiency of the scheme (9)-(13) was studied
in [2]. The first step of the method, which is a linear, elliptic problem,
can be seen as a linearized Burger’s problem; on the other hand, the
second step has the structure of a Stokes (mixed) problem, the dis-
cretization of which leads to a symmetric system of linear equations.
Based on ideas taken from the predictor—multicorrector algorithm
used in [3], we developed in [2] an iterative technique for the solu-
tion of these two problems, in which each iteration consists of the
solution of two linear systems with a diagonal matrix and a system
with a symmetric, positive (semi)definite matrix which is the same
for all iterations and time steps (and thus needs being computed and
factorized only once at the beginning of the calculations); this ite-
ration showed good convergence results in several test cases, which
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makes the present fractional-step method feasable from a practical
viewpoint. One drawback of this method is the need for the spatial
discretization used to satisfy the discrete inf-sup compatibility condi-
tion, something which is nowadays known to apply to most versions
of the standard projection method too (see [15]).

3.2 Finite element approrimation

We next consider a finite element approximation of the semidiscrete
equations (9)-(10) and (11)-(12)-(13). For that purpose, we take a
family of finite dimensional spaces V3, C H}(£2) and Q C L3(02)
defined from standard finite element discretizations {@y}n~o of the
domain {2 of mesh size h. The discrete problem then reads, in weak
form:

First step: Given up € Vj, find uz+1/2 € V}, such that, for all v, €
Vi:

1 n n ~ n
= (™ — o) + v (Vg Vo) + (g, uy T o)
= (£",vn) (14)

Second step: Find u}tt € V;, and p}™' € Qy such that, for all

(Vhyqn) € Vi X Qp:

1
— (T —up T2 ) 4 v (VP — ), V)

ot
— (P, Vo) =0 (15)
(V-up™,q,) =0 (16)

As was mentioned before, the second step of the method can be seen
as a generalized Stokes problem; the approximating spaces V; and
Q@ are thus required to satisfy the standard discrete compatibility
condition (see, for instance, [11]):

H1) 33 > 0 independent of h such that, for all A > 0:

inf sup (g1, V - on) > B3>0

an€Qn—KerB}, “v,ev,—{0} [|Vnll1 llanllq, /kernt

Here, and in what follows, we use the linear continuous operators
By:V,, — @), and Bl: Qp — V) defined by the relations:

By(vn)(qn) = Bf(an)(vn) = (qn, V- vn), Yoi € V4, Vgn € Qp
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Existence and uniqueness of solutions to problems (14) and (15)-
(16) are easily established, p}™" being determined up to an arbitrary
element of KerBZ. At this point, it is important to remark that it
is not convenient to split the second step into a pressure Poisson
equation and an update of the end-of-step velocity, as for the classical
projection method. The latter is known to introduce some pressure
stability (see [6] for the analysis of a method based on this stabilizing
mechanism). In our case, (15)-(16) are the direct Galerkin approxima-
tion of (9)-(11)-(12), and thus the satisfaction of the discrete inf-sup
condition is mandatory.

The family of finite element triangulations {©p, },~¢ of the domain
{2 is assumed to be regular, and the finite element functions in V3 and
Qp, are locally polynomials of degree at least k£ and k—1, respectively,
in such a way that the following approximating properties hold:

H2) 3v > 0 independent of h such that for every v € H"(2) and

g € H*(12) and for all h > 0:
inf ||o — vpllm < YR 0], 0 < m < ki, ki = min{k + 1,7}
VRLEV)

inf [|g — qnllm < YA "™ |lqlls, 0 < m < ko, ko = min{k, s}
ah€QHR

Finally, due to the analysis technique employed here which deals with
the temporal error first and then the spatial error, the following re-
lationship between the time step size and the mesh size will also be
assumed:

H3) 3C > 0 independent of 6t and h such that:
5t > Ch?

This assumption does not impose an upper bound on the time step
size, so that the semi-implicit scheme (9)-(11)-(12) remains uncondi-
tionally stable.

4 Error analysis

We present here an error analysis of the fractional step method (9)-
(11)-(12). We restrict to the first order scheme presented earlier with
the linearized form of the convective term in (9), in which the con-
vective velocity is approximated by its value at the previous time
step. Similar error estimates to those presented here can be obtained
for the fully nonlinear form (u"t/2 . V)u"t/2) which is however
computationally more costly.
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4.1 Error estimates for the semidiscrete velocities

Let us define the velocity error functions for this method as:

et = uftnir) —u!

n+1/2  _ n+1/2
€. =

u(tni1) —w

where the subscript c refers to the fact that the space variables still
remain ‘continuous’. We give a first estimate for e?*! and e"H/ 2
which shows that both «”*! and w"*'/2 are order 1/2 approximations

to u in [*°(L%(£2)) and in I2(H§(£2)).

Lemma 1 Assume that R1, R2a and R3 hold; then for N =0,...,
[T/6t] — 1, and for all 6t > 0:

N
led M IE + e ™21 + Y- {llet" — er ™ 2|5 + ller ™2 — eflIg17)

N
+6tv Y {llep T + ller 2T + flertt — e t27} < ot
n=0

Proof The first part of the proof is similar to that of [23]. We call R"
the truncation error defined by:

5 (ultn 1) — w(tn)) — vA@(in 1)) + (@ltni1) - V)utnsn)
+ Vp(tn+1) = f( n+1) + R" (18)
so that: L
R = = /tn" (t — tn) wg(t) dt

Subtracting (9) from (18), we get:

(et ) —va(el ) =

(" V)u™ M — (u(tni1) - V)ultni1) + R" = Vp(tni1) (19)

We split the nonlinear terms on the right hand side of (19) into three
terms, as in [23]:
(" V)u ™ — (w(tni1) - V)u(tnsr) = (20)
_ (6? . v) n+1/2 ((U(tn) o u(tn+1)) . v)un+1/2

— (ultns1) - V)er /2
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and then take the inner product of (19) with 2 d¢ e?™/2 and use the
identity (a — b,2a) = |a|? — |b|?> + |a — b2 to obtain:

lep 215 — llepll + 26tv [lep /2T + [lept!/? —eR|§  (21)
=20t <R",eMY2 > — 26t (Vp(tnit),e/?)
— 26tc(ey, u"+1/2, eg+1/2)
+ 26t c(u(ty) — w(tnpr), u™ /2, ent1/2) (22)
— 20t c(u(tny1), e?+1/2, e’c”l/?)

We bound each term in the RHS of (21) independently:
— Taylor residual term:
20t <R", el /%> <245t |R™|_1 |ler 2|y
= 2 e 2+ S [ ¢ty
< SN2 + ot [ e ful?
— Pressure gradient term:

—26t (Vp(tni1),e?t/?) = =26t (Vp(tnyr), e /2 —e?)

< Slles™ 2 —ellg + 268 | Vp(tara)s

DN | =

since V - e = 0.
— Nonlinear terms:

—24t c(eg, un+1/2, eg+1/2) =26t C(ega 'Uf(tn-l-l)a eg+1/2)

< Ot llegllo lultari)lz ller™ ],

otv
< Tllegﬂﬂllf + Cot|lerls

26t c(u(ty) — w(tni1), w2, ert1/2)
= 26t c(u(tn) — w(tni1), w(tnit), e /?)
< C6tl|u(tn) — w(tni1) lollw(tntr)lller

otv tnt1
< et 2 + oot [ weatlf

at tnt1
< Zlert 2t + oot [ il dr

—26t C(U(tn+1)7 6?+1/2, e?+1/2) =0
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where we have used R1 and the continuity and skew—symmetry pro-
perties of the trilinear form c¢. From all these inequalities we deduce:

1
e 2115 — lezllf + otwller 21 + < ller™/? — el

tnt1 5 5 tnt1 5
<cot [ thualZidt + €0 [T Judddr (23)
tn tn

+26t7 | Vp(tara)lls + Cdtllerl
The proof is now different from that of [23]. We rewrite (11) as:
entl eg+1/2
ot

Taking the inner product of (24) with 2§t e?*!, given that V-e? ™! =
0 and that e?! = 0 on 912, we get:

led M5 — lled™ /215 + ller ™ — et (25)

+otv ([ler 2 — lert 2} + [lertt — et /2}) =0

— vA(eM — et t1/2) — vptl = 0 (24)

Adding up (23) and (25) for n =0,..., N, we find:

N
1
le 15+ Do {llertt —er 28 + Sllert” —ezllf}
n=0

N
+otw 3 {llem Iz + flentt — erti/)2}

n=0

T T
< oot ([ thual?ydt + ot [ Julfde+ sup 199(0)]3)

N
+Cot Yy llezlls
n=0
Applying the discrete Gronwall lemma to the last inequality and using
the regularity properties of the solution (u,p), we obtain:

N
led g + > {llen ™ — ert2E + [lentt/? - ez|F}

n=0
N
+otr S (et + fleptt — et 22l (26)

n=0

< Cdt

Finally, the bounds for «™+'/2 follow from (26) and the triangle ine-
quality, so that (17) is proved.
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Remark 1 Lemma 1 shows, in particular, that the method provides
uniformly stable velocities in H§({2), that is to say, that there exists
a constant C' > 0 independent of the time step d¢ such that for all
n=0,...,[T/dt] —1:

lu™ < 6 ut < 0 (27)

since |[e?T!]; < C, ||eg+1/2||1 < C and u € L*(0,T;H}(02)).
Moreover, we also have:

leztlo < C ot |lept 2y < C6tH/? (28)
We will use these bounds later on.

Next we give a first order error estimate for both w™*1/2 and w"*!
in the norm of 1?(L2(2)), which is what was proven for the standard
projection method in [23] when applied to the (linear) Stokes pro-
blem, that is, when dropping the convective term in (1), according to
the amendments of [24]:

Theorem 1 Assume R1, R2a, R3 and R4 hold; then, for N =
0,...,[T/d0t] — 1 and for small enough 6t:

N
leX 1R + ot > (lert I + lert'/23) < ca2 (29)

n=0
that is, u™*1 converges to u(t,y1) in I2(L?(2)) N1%®°(V") with order
dt.
Proof By adding (9) and (11), we get:
un—l—l —un
ot

Calling r7 ! = p(tn41) —p
from (18), we have:

— vAu™ 4+ (u" V) u" 2 4 vptt = f(t,) (30)

n+1 the pressure error and subtracting (30)

1
sectt —er) —vA@er) + vt (31)

= (" V)u"2 — (u(tni1) - V)u(tn) + R
We take the inner product of (31) with 25t A~ le?*!, as in [23], and
use the self-adjointness of A~! to get:

(erth, A telth) — (e, A tep) + (eff! —ep, A (el —el))
— 26tv (Aeltt A7 el
= 26tc(u”, u"+1/2, A terth
— 26t c(u(tnir), w(tnir), A7 et (32)
+ 20t <R", A temt! > (33)
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The treatment of the term —2dtv (Ae?t, A~ 1em"™!) is simpler in
our case than for the standard projection method. In fact, if we take
u = e in (6), we have:

—26tv (Aemtt A le) =26ty (el —A(A e )
=20tv (e} "+1 el — vr)
= 20tv ||6?+1||3

since V - e?™! = 0. The RHS terms in (33) are bounded as follows.
For the Taylor residual term we have:

26t < R™, A" 'el*! > < 26t |R" ||y |[A el |y
< C 68t R |y el |y
< étleltt 3 + Cdt|R"[}
< ot ettt}
1 tn+1 9 tn+1 2
1Ot / (t —tn) dt/ |wiellv dt
tn tn

tn+1
<5t |em P2 + 05#/ s || 20 dt

n

For the nonlinear terms, we use the splitting (20) to express them as:
26t (c(u",u"H/Z,A*le"H) — c(u(tns), wltngr), A1 "+1))
— 965t (_ (w(tns1), e n+1/2 AL n+1)
+ c(w(tn) — ultnir), w2, A7 el )
— (e, un+1/2 A1 n+1))
which we call I, IT and III, respectively. Then:
1< Cdtlultn)llz A el 1 lleg™ 2o
< Odtllert B + et ;

oty
4
+ StvletE + stvlertt — et — dtvlel 2t

= Cotller* [} + —={ller* 5 + flent! — ert!/2|3

where we have used (5) and (25);
1< €8t fu(t) — wltan)llo [0 /2] 47"l

tnt1 41
<ot [ ety ez o

n+ dtv
<cor [ fula + B ert g
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where we have used the bound (27);

IIT = 2 6t c(eg,A_le?H,u(th)) — 20t C(e?,A_le?H, e?+1/2)
=III, + III,
so that:
1L, < Ct[legllo 147 e 1 flw(tns1)ll2
< Cdtlleglo lled™lv
< Ot (e flo + llef ™" — e /2l + llef /% — o) llef v
oty
4

< llent g + ot (Jlentt — ep 2 + [lentt/? — en|F)

+ C ot ||ler 3
due to R1 and the triangle inequality; finally:
ML, < C 8t leglo [ A~ ef o lep 2

< Cétllezllo llez ™ lo llex™ /2|

< C 2 lent o [ler 2]

ot
< - lled g + 8t lert

where we have used (28). Adding up (33) for n =0,..., N, and using
all these inequalities, we get:

N N
(e ™, AT el ™) + Y (el —eg, AT (el —ed)) +otv Y [ler ™5

T T
< Cot / g2 dt + C 6t / e |2 dt

N N
+Cat Y llet™ I} + Cot* Yy e T

N
+ 08ty {llep™ — el ™VE + ller T — I3}

n=0
N N
+ OO0 Y et — et 4 O 3 lert
n=0 n=0

Using now (8), the regularity properties R2a and R4 of the conti-
nuous solution and the estimates of Lemma 1, we get:

N N
led™ T + D lled™ —efllf + dtv Y [led™ I3
n=0 n=0
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N
<Ot + Cot Y |lert 3

n=0

For sufficiently small é¢, we can apply the discrete Gronwall lemma
to the last inequality, and we get:

N N
le2™ M5 + D lled™ — eI} + dtv Y lled™ i3

n=0 n=0
< O ot? (34)
and the estimate for u"*! is proved. For «"*1/2, we have:
N N
oty > ert 23 <26t 3 (et E + flertt — entt/2))
n=0 n=0

<Ot
due to (34) and Lemma 1, so that (29) is proved.

The error estimates of Theorem 1 can be improved to first order in
the norms of [°(L2(£2)) and I2(H}(£2)) for the end-of-step velocities
u™t! assuming some slightly stronger regularity on the continuous
solution, namely, R2b rather than R2a. Estimates in these norms
were also obtained in [15] for the intermediate velocities of a fully
discrete, incremental version of the fractional step projection method,
assuming a finite element spatial discretization satisfying the discrete
inf-sup condition and under much stronger regularity assumptions on
the continuous solution:

Theorem 2 Assume that R1, R2b, R3 and R4 hold; then, for N =
0,...,[T/dt] — 1, and for small enough 6t:

N
le g + otw D lled™F < Cot? (35)
n=0
that is, u™! converges to u(tny1) in 2(HE(2)) NI®(L2(02)) with
order dt.

Proof Unlike for the standard projection method, we can take the
inner product of (31) with 26te?*!, since in our case e?™! € V, to
get:
lec s — lleclls + llec™ —ezll§ + 20tv ez |2
=24t C(un,un—l—l/?,e?-l-l) - 25tc(u(tn+1)7u(tn-l-l)aeg—i—l)
+26t <R" e > (36)
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The RHS terms in (36) are bounded as follows. For the Taylor residual
term we have:

26t <R™, e’ > < 265t |R" ||y [le |y

otv
< W er i + ot R

<

otv tnt1
ezt + <o [ fualf de

For the nonlinear terms, we use again the splitting (20) to express
them as:

20t (c(u™, w2, el ) = c(u(tnir), wltnsr), el ™))
= 26t {—c(w(tni1), e?/2, e + c(u(tn) — w(tngr), w72, et
— c(el, u" /2 enth)}
which we call again I, II and III, respectively; then:

I< Cdtllultn)llz ler™ I led™?llo

oty
< eI + bt e R

I1< €t fu(t) ~ wlta) w2 el
tnt1 n+1
= oot [ w2y

tnt1 Sty
<ot [ jwlidt + Fert
III = 26t c(e?, el /2, e 1) — 26tc(el, u(tnrr), em ™)
= IITa + IIIb

so that:

ITa < C6t lef|y ety [len /215 flept2/2 )y
< Cot et lerty [len /2y
< C ot ey llef
<8y leplt + 22 en
IIb < O 6t [lePlo [|w(tnra)ll2 ller Iy
<odtlenli + 2 ler Iz
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where we have used (28) and the continuity properties of the trilinear
form ¢. Adding up (36) for n =0, ..., N, taking into account (25) for
the term I, and the previous inequalities, we get:

N N N
led I3 + D llet ™ — 2§+ otv Y lleg ™ |F + Cot*v Y et 2|

n=0 n=0 n=0

T T
<06t [ ualfrdt + ot [ il at

N N
+ 06t Y edtts + Cot Yy llert — et

n=0 n=0
N N
+C8t* Y {llep 1T + lleptt — el V2T + ot Y lleR|}

Using the regularity properties of the solution R2b and R4 and the
estimates of Lemma 1, we get:

N N N
led MG + D llet ™ —egll§ + otv Y lleg ™ IF + Cot>v Y et 2|

n=0 n=0 n=0
N N

<Cot* + Cot Y lertE + Ccot*ru Y Jler}
n=0 n=0

For sufficiently small é¢, we can apply the discrete Gronwall lemma
to the last inequality and take the last term to the left-hand-side, to
get:

N N
le2™ I3 + D lles* —ellls + otv Y lled™ |} < Cot?

and (29) is proved.

4.2 Error estimates for the semidiscrete pressure

As a side product of the estimates of Theorem 2, we obtain order 1/2
error estimates for the pressure approximation in [2(L3(£2)), which is
what one can expect for the present scheme. We first recall a technical
result, similar to that of Lemma Al in [24]. In Theorem 2 we have
proved, in particular, that:

N
Y ettt —etlly < Cat
n=0
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This implies that:
N
> llec™t —ez|?y < Cot? (37)
n=0

since for all v € L2(£2), ||v|| 1 < ||v||o- This is what we actually use

to prove the following error estimate for the pressure:

Theorem 3 Assume that R1, R2b, R3 and R4 hold; then, for N =
0,...,[T/dt] — 1 and for small enough 6t:

N
ot E:O [p(tn+1) _pn+1||i(2)(g) < Cét (38)
n=

that is, p"t' converges to p(tn.1) in 12(LE(R2)) with order 6t'/2.
Proof We rewrite (31) as:

1
—Vreth =~ (et —ef) — vA(er'!) - R” (39)

— (@ VU 4 (ultn) - V)u(tas)

Using the continuous LBB condition:

. vt
I gy < C sup e ®) (40)

veri(2) vl

we need to bound the products of the RHS of (39) with an arbitrary
v € H}(£2). We have:

1 1 1 1
(e — ell,v) < lett! — el-y o]l

< —vA(eg™),v > = vleg 1 [lvlls

_R" < |R” <o ™ 2 qp)l/?
< ;v > <R -1 [|v]1 ( lwet||= 1 dt)™=|lv]1

n

For the nonlinear terms, we use the following splitting:
— (u - V)ur T (utn) - V)u(tn) (41)

= ((@tns1) = u(t) - V)ultns1) + (€f - V)ultns1)
+ (u™-V)er /2
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Calling I, IT and IIT the three terms obtained after testing (41) with
v, we have:

I < Cllutnin) = u(tn)lo (a2 vl

tn+1
<ot [ fudfd’? ol

I < Cllegih w(tnia)ll lollh < Clleclly f[vlly

II< O lu|ly lef ™ ol < Clled™ 2|1 olh

where we have used R1 and (27) . Thus, we obtain:

C
[ = e

+ 0 fller My + ekl + e/,
tni1 tnt1
([ a2 a2 4 ot [ )2
which yields:

c
1112 1 2
I 25y < o5 et = eIl

+C{ller ™3 + ez} + llex /2|3
tnt1 9 tnt1 9
[ el + ot [l ar)

and (38) results from (37), the regularity properties R3 and R2a
(which is implied by R2b) of the continuous solution u, and the
estimates of Lemma 1.

4.8 Error estimates for the fully discrete solution

We finally present an error analysis for the fully discrete, finite ele-
ment solution (uZH/ 2 uZ"'l, pZ'H) as an approximation of the semidis-
crete, fractional-step solution (w™t1/2 u™*1 pn*1). We define the ‘dis-

crete’ errors as:

n+l _ , nt+l n+1
ed = Uu Uh
1/2 1/2
e;H_ /2 _ w2 _ “Z+ /

n+1l __ _n+l n+1
Tq =P — Py
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We also use the following notation for the error functions associated
to the finite element spaces used:

1
E.(h) = inf [u™/2 —wpll; + - inf w2 — w0
VREVR

+ inf o™ = il

qrnEQn
1
inf n+l _ - inf n+l
T oo, [ T wnl o, B e = wnlo
E(h) = n:n[}axNEn(h)

It is well known that under the discrete inf-sup condition H1, optimal
order approximation both in Hj (£2) and in L?(2) of solenoidal vector
fields can be achieved by means of discretely divergence free finite
element functions, that is, functions wj in KerBj. In fact, one has
the following result:

Lemma 2 Let u € V and assume that the discrete spaces Vi, and Qy,
satisfy the inf-sup condition H1; then:

inf - < C inf —
w0, e, I8l < € intlu—vall

Moreover, if 2 is of class C?, so that the inverse of the Stokes operator
A~ verifies the shift (7) with s = 2, then:

inf — < Ch inf —
w, of |u —wallo < it |u — wpl1

Proof Let us consider the following Stokes problem: find (y,a) €
H}(£2) x L3(£2) such that, for all (v,q) € H}(£2) x L3(£2):
(vyavv) - (CL, V- ’U) = (Vua V’U)

(q7 V- y) =0
Given u € V, (Vu, Vv) is a linear, continuous functional on H{(£2),
and thus this problem admits a unique solution (y,a) = (u,0). We
next consider the finite element discrete problem of finding (y;,, an) €
Vi X Qp, such that, for all (vy,qs) € Vi X Qp:

(Vyhv V’Uh) - (aha V. vh) = (Vu, V’Uh)
(qn, V- yp) =0

Standard approximation results for this problem (see, for instance,
[11]) allow us to conclude that:

inf - < el < O inf lhe_
’whérll(erBh “u whHl — “u yh“1 = ’U;%Vh “u vh“l
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and, if {2 is regular enough, that:

inf - < lu— < Ch inf |lu—
wy g, 16— wnle <l —ynllo < Ch infflu — o]y

These results ensure that the error functions E,(h) have an op-
timal order behaviour with respect to the mesh size h. Our error
estimates for the fully discrete solution are given next:

Theorem 4 Assume that R1, R2b, R3, H1 and H3 hold; then for
N =0,...,[T/ét] — 1, and for small enough 6t and h:

N N+1/2 +1/2
le M5 + lleg /r|o+6tv2{||e"“u1 + ez 2}

< C(B(h))* (42)

Proof From (9)-(11)-(12) and (14)-(15)-(16), we get, for all (vy,gp) €
Vi X Qh:

(slt(egﬂ/2 eq,vp) + (Vegﬂ/2 Vuy) = (43)
&uf,up % 0h) — E(u, w2 vy)

(e el o)+ (Ve "“”) Vo) (44)
— (P}, Vv =

(V- e:;“,qh): (45)

Given (vp, wn, qn) € Vi xKer(Bp,) X Qp, arbitrary, from (43)-(44)-(45)
we have:

leg 213 — lleld + llef ™% —erld + 2wt Ve 2|3
+llex ™ — ey R + Jlentt — ey 23
+vot{|Ver It - IVey IS + [V(ert —er )5}
=2 (ezﬂ/2 — ey, w2 vp)

+ 2vdt (Venﬂ/2 V(ut2 —yy))
— 24t c(up, ZH/?,UZH/? — vp)

+ 26té(u”, u"+1/2 Z+1/2 — vp)

+ 2( n+l Z+1/2,un+1 i wh)

+ 206t(V (el — eTT?), V(u"t — wp))
— 26t (r "+1,V (uh = wp))

+26t(V el p" Tt — gp)
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We bound each term in the RHS as follows:

2(ent? — e, un 2 —wy) < || 2 en2 4 Cf|un T2 — vy12

Qv 5t (V n+1/2 V(un+1/2 o 'Uh))
< 2w6t|| Vel 2oV (w12 = vy)]lo
I/(st n
(Ve + IV (el —ef )R

+ 05t IV (™2 — vp)|5

2( n+1 n+1/2 n +1 n+1 e3+1/2||g+0||u"+1

€i — €4 , U —wp) < _He - wh”%

206t (V(ef —ef %), V(T —w))

I/(st n n+1/2
< V(g — e I

+C 8t |V(u™ —wp)|3

—26t(ri L,V - (™ —wy)) = =26t (P —qn, V- (uT —wp))
+ 26t (PR — qn, V- (u™ — wy))
< ot ||10"Jr1 — anll§ + C6t [u™*! — whlf}

n+1

since V- """ = 0 and we have taken wj, in Ker(By). Moreover:

26t (V- ef 5 — ) < Cot I —anlly + Lo [ver
The nonlinear terms are treated as follows:
26t ( (uh,u2+1/2,u2+1/2 —vp) + E(u",u"+1/2,uz+l/2 - vh))
=26t ( (uh,egﬂﬂ,esﬂﬂ) + é(uf, f:ZHﬂ,u"“/2 —vp)

~ 1/2 n+1/2 ~ 1/2 1/2
—i(ef, u" 2, ey ) - d(el, w2, untl? — vy))

The first term in the RHS is zero, due to the skew-symmetry of the
trilinear form ¢. For the second one, we have:

26t ¢(uy, Z+1/2 "+1/2—vh)

= —24té(eq, Z+1/2 "+1/2—vh)+25t5(u",eg+1/2,u"+1/2_vh)
Cvat (el lleg ™ lum 172 — vy

s [leg ™l [|um /2 — vyl )

Cvot w2 — vy (ledl} + ez} + llest! — e /%|1})

uét(

IN

IN -+

+

[VeR I + 1V (el — e ?)E) + Cot w2 — v}
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since, according to Remark 1, [|[u"||; < C; furthermore:

—26t &(el, untt/?, ezﬂ/?)

= 20t (a(ef,er ™2, ef%) — (el ultnir) ey %))

< Cotlleslly ey lert 2 e

+ Cdtledlolultar)lzlel™ I

< C ot lerlls ey *lley ™l + Cotlledllollel s

< Cot2)eloller ] + ”5t(||v ntL2 v (et 33“/2)“3)
Cotllegli + ZE(IVert B + V(s — e AIR)

< CotllelR + vot® e

v (1vest + Iv(egtt - ert )

where we have used the continuity properties of the trilinear form ¢,

the bound ||en+1/2|| < (€ 6t'/2, which follows from Theorem 2, and
the regularity property R1 of the continuous solution. In a similar
way, it can be shown that:

26t é(el, u™ /2 w2 o))
= 25t (Elel, eV, w2 ) 4 E(el, wlt ), um T — vy))
< Cotllegll§ + vot el + Cot w2 — v
Combining all the above inequalities and taking the infimum with
respect to (vp, wp,qn) € Vi x KerBy, x Qp, we get:

n+1/2 n+l n+1/2

les ™15 — llezly + llei™* —e3l5 + llej I3
+u6t(||e"+l||1 + leg IR+ llentt — ed )
< CR2 (Bp(h)* + C 0t (Ep(h)? + Cot|ledf + v ot* |lef |}
+ Cv ot (Ba(h) (lefl? + lles 13 + lef™ —egt'/?|?)

Adding up this inequality for n =0,..., N, we get:

+1 2 +1/2
||eN+1||0+Z(|| = enl + llentt —ed )

+ vt Z(|e"+1u1 + legtE + et —eg ™)
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h2 al n N n
<C(+5) (ER)? + Cot Y |lefls + v ot 3 [lef?

n=0 n=0

N
+C(BM) vet Y (legt I} + lep™ - ei™?)1})
n=0

and (42) follows for small enough d¢ and h (since the last two terms
can then be passed over to the LHS), due to the discrete Gron-
wall inequality, condition H3 and the triangle inequality to bound
N+1/22
leg " Il5-
Combining Theorems 2 and 4, we have an estimate for the overall
error of the method, e"*! = w(t,1) —up™' = ert! et

Corollary 1 Assume that R1, R2b, R3, H1, H2 and H3 hold;
assume also that for alln = 0,...,[T/6t] — 1, w1, u™+1/2 ¢ HF(Q)
and p"t1 € H*1(02), and they are uniformly bounded in these spaces;
then for N =0,...,[T/dt] — 1, and for small enough 6t > 0 and h:

N
1 MG + dtw D lle" HE < C (68 + h*F) (46)

n=0

Estimate (46) says that the present scheme is first order accurate
in the time step size and provides optimal order accuracy in the mesh
size in the norms of [*°(L2(£2)) and I2(H§(£2)).
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