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Summary In this paper we provide an error analysis of a fractional�
step� �nite element method for the numerical solution of the incom�
pressible Navier�Stokes equations� Under mild regularity assumptions
on the continuous solution� we obtain �rst order error estimates in the
time step size both for the intermediate and the end�of�step veloci�
ties of the method� we also give some error estimates for the pressure
solution� We complete the analysis with some error estimates for a
fully discrete� �nite element version of the method�
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� Introduction

The numerical solution of the unsteady� incompressible Navier�Stokes
equations has received much attention in the last decades� and many
numerical schemes are now available for that purpose� The di�cul�
ties encountered in this problem are mainly of three di�erent kinds�
the mixed type of the equations� which is due to the coupling of
the momentum equation with the incompressibility condition� and�
subsequently� the treatment of the pressure� the advective�di�usive
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character of the equations� which have a viscous and a convective
term� and �nally� the nonlinearity of the problem�

Fractional step methods are becoming widely used in this context�
By splitting the time advancement into a number of �generally two�
substeps� they allow to separate the e�ects of the di�erent operators
appearing in the equations� They have been used together with dif�
ferent space discretizations� both �nite di�erence ����� ���� ����� ������
�nite element ����� ��
�� ���� and spectral element methods �������
However� semidiscrete presentations of these methods� in which the
space variables are not discretized� seem more appropiate to study
the time discretization itself�

The origin of this category of methods is generally credited to
the work of Chorin �see ���� and Temam �see ������ They developed
the well known projection method� which is a two step method in
which the second step consists of the projection of an intermediate
velocity �eld onto the space of solenoidal vector �elds� thus enfor�
cing incompressibility� The incompatibility of the projection boun�
dary conditions with those of the original problem may introduce a
numerical boundary layer of size O�

p
� �t� in these methods �see ����

and ������ where � is the kinematic viscosity and �t is the time step
size� However� convergence of this method to a continuous solution as
�t tends to zero was proved in ����� for the semidiscrete method� and
���� for a fully discrete method with periodic boundary conditions�
The end�of�step velocities of the projection method do not converge
in the space H�

����� since they do not satisfy the correct boundary
conditions�

More recently� analytical studies of fractional step methods have
turned into obtaining error estimates in the time step size� so as to
establish their order of accuracy� Thus� J� Shen proved in ��
� that
the projection method� both with and without pressure correction�
is �rst order accurate in a certain norm� Some imprecise steps in the
proofs in ��
� pointed out by J�L� Guermond in ���� were corrected
in ����� A more recent analysis given in ���� for a fully discrete� �nite
element version of the incremental fractional step projection method
yielded error estimates of �rst order in the time step size and optimal
order in the mesh size� assuming a �nite element interpolation satis�
fying the discrete inf�sup condition� First order error estimates were
also obtained by Long�an Ying �see ���� and the references therein�
for another fractional step method� called viscosity splitting method�
in which the viscosity is not fully uncoupled from incompressibility�
In this sense� a fully discrete version of the so called ��scheme �see
������ in which viscosity and incompressibility are also coupled� was
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proved to converge to a continuous solution in ��� �see also ��� for
a convergence analysis of a related parallel scheme�� In ���� another
fractional step method that keeps part of the viscous term in the se�
cond step is derived from an inexact factorization of the fully discrete
original problem� this method is referred to as Yosida scheme in this
reference�

In this paper we provide some error estimates for a viscosity split�
ting� fractional step method which was introduced and studied in ����
It is a two�step scheme in which the nonlinearity and the incompressi�
bility of the problem are split into di�erent steps� It allows to enforce
the original boundary conditions of the problem in all substeps of
the scheme� which led to convergence of both the intermediate and
end�of�step velocities of the method to a continuous solution in the
spaces L���� andH�

���� �see ����� Here we prove that these velocities
are �rst order accurate in the time step size�

Moreover� the study of this method was originally motivated by
the consideration of a well�known predictor�multicorrector algorithm
�see �
��� as detailed in ���� this fact provides a theoretical explana�
tion of why the original boundary conditions of the problem can be
prescribed in this algorithm� and in what sense it can be understood
as a fractional step method�

The paper is organized as follows� in Section � we introduce the no�
tation we use and some generalities about the incompressible Navier�
Stokes equations� such as the regularity assumed for their solutions�
In Section 
 we recall the fractional step method of ��� and introduce
a �nite element spatial approximation� while in Section � we give an
error analysis for this method� we �rst obtain some error estimates for
both the intermediate and the end�of�step velocities and then analyse
the pressure solution� Finally� we also give some error estimates for
the fully discrete� �nite element solution which are of optimal order
in the mesh size�

� Preliminaries

The evolution of viscous� incompressible 	uid 	ow in a bounded do�
main � � IRd �d � �� 
� is governed� in the primitive variable formu�
lation� by the unsteady� incompressible Navier�Stokes equations�

�u

�t
� �u � r�u � rp � ��u � f in � � �� T � ���

r � u �  in � � �� T � ���

u � � on �� � �� T � �
�

u � u� in � � fg ���
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where u�x� t� � IRd is the 	uid velocity at position x � � and time
t � �� T � �with T �  given�� p�x� t� � IR is the 	uid kinematic pres�
sure� � �  is the kinematic viscosity �which is assumed constant��
f�x� t� is an external force term� r is the gradient operator� r� is the
divergence operator and � is the Laplacian operator �here� and in
what follows� boldface characters denote vector quantities�� We con�
sider only the homogeneous Dirichlet type boundary condition �
� for
the sake of simplicity� and assume that the boundary of the domain
�� is at least of class C��

In order to study some approximation schemes for this problem�
we �rst introduce some notation� We denote by ��� �� the scalar pro�
duct in L����� and by kuk� � �u� u���� its norm� the quotient space
L�
���� � L����	IR is needed in the case of Dirichlet type bounda�

ry conditions only� since the pressure is then determined only up to
an additive constant� moreover� given m � IN� the scalar product
and norm in Hm��� are denoted by �u� v�m and kukm� respectively�
The space H���� contains a closed subspace H�

� ��� made up with
functions which vanish at the boundary of �� the Poincar�e�Friedrich
inequality ensures that kruk� � �ru�ru���� is a norm on H�

� ����
equivalent to the norm induced by H����� The dual space of H�

� ���
is denoted by H����� with norm k � k��� the duality pairing between
these spaces being denoted by 
 � �� All these de�nitions carry over
to d�dimensional vector valued function spaces�

Due to the incompressibility condition ���� closed subspaces of
solenoidal vector �elds of these Hilbert spaces are also considered�
Thus� we de�ne�

H � fu � L���� 	 r � u � � n � uj�� � g
V � fu � H�

���� 	 r � u � g
Moreover� due to the unsteady character of the equations the follo�
wing de�nitions are also needed� given p � ����� and a Banach space
W � the space Lp�� T �W � is equipped with the norm�

kukLp���T �W � � �

Z T

�
ku�t�kpW dt���p

and is also a Banach space with respect to this norm� The space
of essentially bounded functions on �� T � into W is denoted by
L��� T �W �� When W is a Hilbert space with scalar product ��� ��W �
the space L��� T �W � is likewise with respect to�

�u� v� �

Z T

�
�u�t�� v�t��W dt
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In this notation� assuming f � L��� T �H������ and u� � H pro�
blem ���������
����� has at least one solution �u� p� which satis�es u �
L��� T �H��L��� T �V � �see ������ Uniqueness and more regularity
of the solution can also be proved by assuming more regularity on
the data f and u� and the domain �� In particular� we will assume
that u and p satisfy�

R�� u � C��� T �V � � L��� T �H������ rp � L��� T �L�����
R�a� ut � L��� T �L�����
R�b� ut � L��� T �H�

�����

R��
R T
� tkutt�t�k��� dt � C

�the subindex t is employed hereafter for �
�t�� Here� and in what

follows� C denotes a generic constant� possibly di�erent at di�erent
ocurrences� which may depend on the data f � u�� T and �� the domain
� and the continuous solution u� but is independent of the time step
�t and the mesh size h� Conditions R�� R�a� R�b and R� can be
proved� for instance� assuming that � is of class C� �or is a convex
polygon in IR� or polyhedron in IR�� and that �see ������

u� � H���� � V� f �f t � L��� T �L������ u � L��� T �H�
�����

Under these assumptions� it was also shown in ��
� that� according
to the modi�cations introduced in �����

R��
R T
� kutt�t�k�V � dt � C

�V � stands here for the dual space of V �� These regularity results will
be used in what follows�

Error analysis of time integration schemes for time�dependent par�
tial di�erential equations are usually given in terms of the following
norms� given a Banach space W with norm k �kW � a continuous func�
tion u� �� T �	W � two real numbers p �  and � �  and a time
step size �t � � and taking tn � n �t for n � � � � � �M � �T	�t�� a
family of �nite sequences fungn�������M is said to be an order � ap�
proximation of u in lp�W � if there exists a constant C independent
of �t such that� for all �t�

�
�t

MX
n��

ku�tn�� unkpW
���p


 C �t�

Moreover� fungn�������M is an order � approximation of u in l��W �
if�

ku�tn�� unkW 
 C �t�� 
 n � �� � � � �M
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For the treatment of the convective term in the momentum equa�
tion ���� the following trilinear form is usually considered�

c�u�v�w� �
�
�u � r�v�w

�
� 
u � H�����v �H�����w � H�

����

This form is well de�ned and continuous on these spaces �see ������
and it is skew�symmetric in its last two arguments if u � H� that is�
if r � u �  and n � u � �

c�u�v�v� � � 
u � H�v � H�
���� ���

Moreover� c posseses some continuity properties which hold when �
is of class C� �see ���� and which we will use in our proofs� such as�

c�u�v�w� � C

����������
���������

kuk� kvk� kwk�
kuk� kvk� kwk�
kuk� kvk� kwk�
kuk� kvk� kwk�
kuk���� kuk���� kvk� kwk�
kuk� kvk� kwk���� kwk����

Although this form is suitable for our analysis of the semidiscrete
method� we will use the skew�symmetric part of c in the fully dis�
crete problem� since incompressibility is only enforced weakly in the
discrete setting� thus� we de�ne�

�c�u�v�w� � ��	�� �c�u�v�w� � c�u�w�v���


u � H�����v � H�
�����w � H�

����

Obviously� this form retains the continuity properties of the original
form c �but for the last one�� and is skew�symmetric in its last two
arguments for any u � H�����

In some of our proofs we will also make use of the operator A���
de�ned as the inverse of the Stokes operator A � �PH�� PH being
the projection onto H� The latter is de�ned for u � D�A� � V �
H����� and is an unbounded� positive� self�adjoint closed operator
onto H� Given u � H� by de�nition of A� v � A��u is the solution
of the following Stokes problem�

��v � rr � u in �

r � v �  in � ���

v �  on ��

When � is regular enough� there exists a constant C� �  such that�

kA��uks � C�kuks�� for s � �� � ���
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The following inequalities were given by J� Shen in ��
� for �A��u�u��
with u � H� and used there to deduce error estimates for the standard
projection method�

C�kuk��� � �A��u�u� � C�kuk���

where C� is the constant appearing in ���� But� as pointed out by
J�L� Guermond in ���� and corrected in ����� the �rst inequality in
not correct and has to be modi�ed to�

C�kuk�V � � �A��u�u� ���

In our case� the following inequality �which can be easily proved� is
also required�

kA��uk� � C kukV �

We will use this result in what follows�

� Fractional�step� 	nite element method

�	� Fractional
step method

The fractional step method we analyse here was introduced in ����
where stability and convergence both in the spaces L��� T �L�����
and L��� T �H�

����� and of both the intermediate and the end�of�
step velocities to the continuous solution and where proved� Given
un � V � approximation of u at t � tn� the time advancement to tn	�

is split into the following two steps�

First step� The �rst step of the method� which includes viscous and
convective e�ects� consists of �nding an intermediate velocity un	���

such that�

un	��� � un

�t
� ��un	��� � �un � r�un	��� � fn ���

un	���j�� �  ���

Second step� Given un	��� from equation ���� �nd un	� and pn	�

such that�

un	� � un	���

�t
� ���un	� � un	���� � rpn	� �  ����

r � un	� �  ����

un	�j�� �  ��
�



	 Jordi Blasco� Ramon Codina

As can be observed in ����� the main di�erence between this scheme
and the standard projection method is the introduction of a viscous
term in the incompressibility step� which allows the imposition of the
original boundary condition ��
� on the end�of�step velocity un	��
Similar ideas can be found in the ��method of R� Glowinsky and
others �see ����� for instance�� in the �rst and third steps of the
method of ��� and in several other methods such as ���� ���� or �����
all of which involve a last step with part of the viscous term� It can be
observed in ������� and ������������
� how in this method convec�
tion is split from incompressibility� which are the two main di�culties
of the problem� both of them still being coupled to viscosity� We have
adopted here a �rst order linearized form of the convective term� al�
though there are obviously other possibilities�

The motivations that led us to the study of this fractional step
method are maily twofold� First� it can be used to explain theore�
tically a class of predictor�multicorrector algorithms widely used in
practice �see ��� for a more detailed explanation�� These methods are
based on an iterative scheme consisting of two steps per iteration
with the same structure as the two steps above� Second� and this is
the main concern of the present work� is the imposition of bounda�
ry conditions for the end�of�step velocity in fractional step methods�
It is common practice among some users of the classical projection
method to enforce all the boundary conditions for this �eld� although
this is in principle not allowed if the viscous term in equation ����
is dropped� The present scheme� however� is not subject to this con�
troversy� moreover� the fact that un	� satis�es the correct boundary
conditions led to improved convergence results in ��� with respect to
those known for that variable in the standard projection method� and
will allow us to obtain improved error estimates here too�

The computational e�ciency of the scheme ������
� was studied
in ���� The �rst step of the method� which is a linear� elliptic problem�
can be seen as a linearized Burger�s problem� on the other hand� the
second step has the structure of a Stokes �mixed� problem� the dis�
cretization of which leads to a symmetric system of linear equations�
Based on ideas taken from the predictor�multicorrector algorithm
used in �
�� we developed in ��� an iterative technique for the solu�
tion of these two problems� in which each iteration consists of the
solution of two linear systems with a diagonal matrix and a system
with a symmetric� positive �semi�de�nite matrix which is the same
for all iterations and time steps �and thus needs being computed and
factorized only once at the beginning of the calculations�� this ite�
ration showed good convergence results in several test cases� which
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makes the present fractional�step method feasable from a practical
viewpoint� One drawback of this method is the need for the spatial
discretization used to satisfy the discrete inf�sup compatibility condi�
tion� something which is nowadays known to apply to most versions
of the standard projection method too �see ������

�	� Finite element approximation

We next consider a �nite element approximation of the semidiscrete
equations ������� and ������������
�� For that purpose� we take a
family of �nite dimensional spaces Vh � H�

���� and Qh � L�
����

de�ned from standard �nite element discretizations fhgh�� of the
domain � of mesh size h� The discrete problem then reads� in weak
form�

First step� Given unh � Vh� �nd u
n	���
h � Vh such that� for all vh �

Vh�

�

�t
�u

n	���
h � unh�vh� � � �run	���

h �rvh� � �c�unh�u
n	���
h �vh�

� �fn�vh� ����

Second step� Find un	�
h � Vh and pn	�

h � Qh such that� for all
�vh� qh� � Vh �Qh�

�

�t
�un	�

h � u
n	���
h �vh� � � �r�un	�

h � u
n	���
h ��rvh�

� �pn	�
h �r � vh� �  ����

�r � un	�
h � qh� �  ����

As was mentioned before� the second step of the method can be seen
as a generalized Stokes problem� the approximating spaces Vh and
Qh are thus required to satisfy the standard discrete compatibility
condition �see� for instance� ������

H�� �� �  independent of h such that� for all h � �

inf
qh�Qh�KerBt

h

�
sup

vh�Vh�f�g

�qh�r � vh�
kvhk� kqhkQh�KerBt

h

�
� � � 

Here� and in what follows� we use the linear continuous operators
Bh�Vh 	 Q�

h and Bth�Qh 	 V �
h de�ned by the relations�

Bh�vh��qh� � Bt
h�qh��vh� � �qh�r � vh�� 
vh � Vh�
qh � Qh
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Existence and uniqueness of solutions to problems ���� and �����
���� are easily established� pn	�

h being determined up to an arbitrary
element of KerBt

h� At this point� it is important to remark that it
is not convenient to split the second step into a pressure Poisson
equation and an update of the end�of�step velocity� as for the classical
projection method� The latter is known to introduce some pressure
stability �see ��� for the analysis of a method based on this stabilizing
mechanism�� In our case� ��������� are the direct Galerkin approxima�
tion of �������������� and thus the satisfaction of the discrete inf�sup
condition is mandatory�

The family of �nite element triangulations fhgh�� of the domain
� is assumed to be regular� and the �nite element functions in Vh and
Qh are locally polynomials of degree at least k and k��� respectively�
in such a way that the following approximating properties hold�

H�� � � �  independent of h such that for every v � Hr��� and
q � Hs��� and for all h � �

inf
vh�Vh

kv � vhkm � � hk��m kvkr�  � m � k�� k� � minfk � �� rg

inf
qh�Qh

kq � qhkm � � hk��m kqks�  � m � k�� k� � minfk� sg

Finally� due to the analysis technique employed here which deals with
the temporal error �rst and then the spatial error� the following re�
lationship between the time step size and the mesh size will also be
assumed�

H�� �C �  independent of �t and h such that�

�t � C h�

This assumption does not impose an upper bound on the time step
size� so that the semi�implicit scheme ������������� remains uncondi�
tionally stable�


 Error analysis

We present here an error analysis of the fractional step method ����
���������� We restrict to the �rst order scheme presented earlier with
the linearized form of the convective term in ���� in which the con�

vective velocity is approximated by its value at the previous time
step� Similar error estimates to those presented here can be obtained
for the fully nonlinear form �un	��� � r�un	���� which is however
computationally more costly�
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�	� Error estimates for the semidiscrete velocities

Let us de�ne the velocity error functions for this method as�

en	�
c � u�tn	��� un	�

en	���
c � u�tn	��� un	���

where the subscript c refers to the fact that the space variables still

remain �continuous�� We give a �rst estimate for en	�
c and e

n	���
c

which shows that both un	� and un	��� are order �	� approximations
to u in l��L����� and in l��H�

������

Lemma � Assume that R� R�a and R� hold� then for N � � � � � �
�T	�t� � � and for all �t � �

keN	�
c k�� � keN	���

c k�� �
NX
n��

fken	�
c � en	���

c k�� � ken	���
c � enc k��g����

� �t �
NX
n��

fken	�
c k�� � ken	���

c k�� � ken	�
c � en	���

c k��g � C�t

Proof The �rst part of the proof is similar to that of ��
�� We call Rn

the truncation error de�ned by�

�

�t
�u�tn	��� u�tn�� � ���u�tn	��� � �u�tn	�� � r�u�tn	��

� rp�tn	�� � f�tn	�� � Rn ����

so that�

Rn �
�

�t

Z tn��

tn
�t� tn�utt�t� dt

Subtracting ��� from ����� we get�

�

�t
�en	���

c � enc � � ���en	���
c � �

�un � r�un	��� � �u�tn	�� � r�u�tn	�� � Rn � rp�tn	�� ����

We split the nonlinear terms on the right hand side of ���� into three
terms� as in ��
��

�un � r�un	��� � �u�tn	�� � r�u�tn	�� � ���

� �enc � r�un	��� � ��u�tn�� u�tn	��� � r�un	���

� �u�tn	�� � r�en	���
c
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and then take the inner product of ���� with � �te
n	���
c and use the

identity �a� b� �a� � jaj� � jbj� � ja� bj� to obtain�

ken	���
c k�� � kenc k�� � � �t � ken	���

c k�� � ken	���
c � enc k�� ����

� � �t 
 Rn�en	���
c � � � �t �rp�tn	��� e

n	���
c �

� � �t c�enc �u
n	���� en	���

c �

� � �t c�u�tn�� u�tn	���u
n	����en	���

c � ����

� � �t c�u�tn	���e
n	���
c �en	���

c �

We bound each term in the RHS of ���� independently�

� Taylor residual term�

� �t 
 Rn�en	���
c � � � �t kRnk�� ken	���

c k�
�
�t �



ken	���

c k�� �
C

�t
k
Z tn��

tn
�t� tn�utt dtk���

� �t �



ken	���

c k�� � C �t

Z tn��

tn
t kuttk��� dt

� Pressure gradient term�

�� �t �rp�tn	���e
n	���
c � � �� �t �rp�tn	���e

n	���
c � enc �

� �

�
ken	���

c � enc k�� � � �t� krp�tn	��k��
since r � enc � �

� Nonlinear terms�

�� �t c�enc �un	����en	���
c � � �� �t c�enc �u�tn	���e

n	���
c �

� C �t kenc k� ku�tn	��k� ken	���
c k�

� �t �



ken	���

c k�� � C �t kenc k��

� �t c�u�tn� � u�tn	���u
n	����en	���

c �

� � �t c�u�tn�� u�tn	���u�tn	��� e
n	���
c �

� C�tku�tn�� u�tn	��k�ku�tn	��k�ken	���
c k�

� �t �



ken	���

c k�� � C �t k
Z tn��

tn
ut dtk��

� �t �



ken	���

c k�� � C �t�
Z tn��

tn
kutk�� dt

�� �t c�u�tn	���e
n	���
c �en	���

c � � 



Error estimates for a split� FE method for Navier�Stokes equations ��

where we have used R� and the continuity and skew�symmetry pro�
perties of the trilinear form c� From all these inequalities we deduce�

ken	���
c k�� � kenc k�� � �t � ken	���

c k�� �
�

�
ken	���

c � enc k��

� C �t

Z tn��

tn
t kuttk��� dt � C �t�

Z tn��

tn
kutk�� dt ��
�

� � �t� krp�tn	��k�� � C �t kenc k��
The proof is now di�erent from that of ��
�� We rewrite ���� as�

en	�
c � e

n	���
c

�t
� ���en	�

c � en	���
c � � rpn	� �  ����

Taking the inner product of ���� with � �t en	�
c � given that r�en	�

c �
 and that en	�

c �  on ��� we get�

ken	�
c k�� � ken	���

c k�� � ken	�
c � en	���

c k�� ����

� �t �
�
ken	�

c k�� � ken	���
c k�� � ken	�

c � en	���
c k��

�
� 

Adding up ��
� and ���� for n � � � � � � N � we �nd�

keN	�
c k�� �

NX
n��

n
ken	�

c � en	���
c k�� �

�

�
ken	���

c � enc k��
o

� �t �
NX
n��

n
ken	�

c k�� � ken	�
c � en	���

c k��
o

� C�t
�Z T

�
tkuttk���dt� �t

Z T

�
kutk��dt� sup

t�
��T �
krp�t�k��

�

� C �t
NX
n��

kenc k��

Applying the discrete Gronwall lemma to the last inequality and using
the regularity properties of the solution �u� p�� we obtain�

keN	�
c k�� �

NX
n��

n
ken	�

c � en	���
c k�� � ken	���

c � enc k��
o

� �t �
NX
n��

n
ken	�

c k�� � ken	�
c � en	���

c k��
o

����

� C �t

Finally� the bounds for un	��� follow from ���� and the triangle ine�
quality� so that ���� is proved�
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Remark � Lemma � shows� in particular� that the method provides
uniformly stable velocities in H�

����� that is to say� that there exists
a constant C �  independent of the time step �t such that for all
n � � � � � � �T	�t� � ��

kun	�k� � C� kun	���k� � C ����

since ken	�
c k� � C� ken	���

c k� � C and u � L��� T �H�
������

Moreover� we also have�

ken	�
c k� � C �t���� ken	���

c k� � C �t��� ����

We will use these bounds later on�

Next we give a �rst order error estimate for both un	��� and un	�

in the norm of l��L������ which is what was proven for the standard
projection method in ��
� when applied to the �linear� Stokes pro�
blem� that is� when dropping the convective term in ���� according to
the amendments of �����

Theorem � Assume R� R�a R� and R
 hold� then for N �
� � � � � �T	�t� � � and for small enough �t�

keN	�
c k�V � � �t

NX
n��

�
ken	�

c k�� � ken	���
c k��

�
� C �t� ����

that is un	� converges to u�tn	�� in l��L����� � l��V �� with order
�t	

Proof By adding ��� and ����� we get�

un	� � un

�t
� ��un	� � �un �r�un	��� � rpn	� � f�tn	�� �
�

Calling rn	�
c � p�tn	���pn	� the pressure error and subtracting �
�

from ����� we have�

�

�t
�en	�

c � enc � � ���en	�
c � � rrn	�

c �
��

� �un � r�un	��� � �u�tn	�� � r�u�tn	�� � Rn

We take the inner product of �
�� with � �tA��en	�
c � as in ��
�� and

use the self�adjointness of A�� to get�

�en	�
c � A��en	�

c � � �enc � A
��enc � � �en	�

c � enc � A
���en	�

c � enc ��

� � �t � ��en	�
c � A��en	�

c �

� � �t c�un�un	���� A��en	�
c �

� � �t c�u�tn	���u�tn	��� A
��en	�

c � �
��

� � �t 
 Rn� A��en	�
c � �

�
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The treatment of the term �� �t � ��en	�
c � A��en	�� is simpler in

our case than for the standard projection method� In fact� if we take
u � en	�

c in ���� we have�

�� �t � ��en	�
c � A��en	�

c � � � �t � �en	�
c ����A��en	�

c ��

� � �t � �en	�
c �en	�

c �rr�
� � �t � ken	�

c k��
since r � en	�

c � � The RHS terms in �

� are bounded as follows�
For the Taylor residual term we have�

� �t 
 Rn� A��en	�
c � � � �t kRnkV � kA��en	�

c k�
� C �t kRnkV � ken	�

c kV �

� �t ken	�
c k�V � � C �t kRnk�V �

� �t ken	�
c k�V �

� C �t��
Z tn��

tn
�t� tn�

� dt

Z tn��

tn
kuttk�V � dt

� �t ken	�
c k�V � � C �t�

Z tn��

tn
kuttk�V � dt

For the nonlinear terms� we use the splitting ��� to express them as�

��t
�
c�un�un	���� A��en	�

c � � c�u�tn	���u�tn	��� A
��en	�

c �
�

� � �t
�
�c�u�tn	���e

n	���
c � A��en	�

c �

� c�u�tn�� u�tn	���u
n	���� A��en	�

c �

� c�enc �u
n	���� A��en	�

c �
�

which we call I� II and III� respectively� Then�

I � C �t ku�tn	��k� kA��en	�
c k� ken	���

c k�
� C �t ken	�

c k�V � �
�t �

�
ken	���

c k��

� C �t ken	�
c k�V � �

�t �

�

n
ken	�

c k�� � ken	�
c � en	���

c k��
� �t �ken	�

c k�� � �t �ken	�
c � en	���

c k�� � �t �ken	���
c k��

o

where we have used ��� and �����

II � C �t ku�tn�� u�tn	��k� kun	���k� kA��en	�
c k�

� C �t k
Z tn��

tn
ut dtk� ken	�

c k�

� C �t�
Z tn��

tn
kutk�� dt �

�t �

�
ken	�

c k��
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where we have used the bound �����

III � � �t c�enc � A
��en	�

c �u�tn	��� � � �t c�enc � A
��en	�

c � en	���
c �

� IIIa � IIIb

so that�

IIIa � C �t kenc k� kA��en	�
c k� ku�tn	��k�

� C �t kenc k� ken	�
c kV �

� C�t
�
ken	�

c k� � ken	�
c � en	���

c k� � ken	���
c � enc k�

�
ken	�

c kV �

� �t �

�
ken	�

c k�� � C �t
�
ken	�

c � en	���
c k�� � ken	���

c � enc k��
�

� C �t ken	�
c k�V �

due to R� and the triangle inequality� �nally�

IIIb � C �t kenc k� kA��en	�
c k� ken	���

c k�
� C �t kenc k� ken	�

c k� ken	���
c k�

� C �t��� ken	�
c k� ken	���

c k�
� �t �

�
ken	�

c k�� � C �t� ken	���
c k��

where we have used ����� Adding up �

� for n � � � � � � N � and using
all these inequalities� we get�

�eN	�
c � A��eN	�

c � �
NX
n��

�en	�
c � enc � A

���en	�
c � enc �� � �t�

NX
n��

ken	�
c k��

� C �t�
Z T

�
kuttk�V � dt � C �t�

Z T

�
kutk�� dt

� C �t
NX
n��

ken	�
c k�V � � C �t�

NX
n��

ken	�
c k��

� C�t
NX
n��

fken	�
c � en	���

c k�� � ken	���
c � enc k��g

� C�t�
NX
n��

ken	�
c � en	���

c k�� � C�t�
NX
n��

ken	���
c k��

Using now ���� the regularity properties R�a and R
 of the conti�
nuous solution and the estimates of Lemma �� we get�

keN	�
c k�V � �

NX
n��

ken	�
c � enc k�V � � �t �

NX
n��

ken	�
c k��
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� C �t� � C �t
NX
n��

ken	�
c k�V �

For su�ciently small �t� we can apply the discrete Gronwall lemma
to the last inequality� and we get�

keN	�
c k�V � �

NX
n��

ken	�
c � enc k�V � � �t �

NX
n��

ken	�
c k��

� C �t� �
��

and the estimate for un	� is proved� For un	���� we have�

�t �
NX
n��

ken	���
c k�� � � �t �

NX
n��

�
ken	�

c k�� � ken	�
c � en	���

c k��
�

� C �t�

due to �
�� and Lemma �� so that ���� is proved�

The error estimates of Theorem � can be improved to �rst order in
the norms of l��L����� and l��H�

����� for the end�of�step velocities
un	� assuming some slightly stronger regularity on the continuous
solution� namely� R�b rather than R�a� Estimates in these norms
were also obtained in ���� for the intermediate velocities of a fully
discrete� incremental version of the fractional step projection method�
assuming a �nite element spatial discretization satisfying the discrete
inf�sup condition and under much stronger regularity assumptions on
the continuous solution�

Theorem � Assume that R� R�b R� and R
 hold� then for N �
� � � � � �T	�t� � � and for small enough �t�

keN	�
c k�� � �t �

NX
n��

ken	�
c k�� � C �t� �
��

that is un	� converges to u�tn	�� in l��H�
����� � l��L����� with

order �t	

Proof Unlike for the standard projection method� we can take the
inner product of �
�� with ��ten	�

c � since in our case en	�
c � V � to

get�

ken	�
c k�� � kenc k�� � ken	�

c � enc k�� � � �t � ken	�
c k��

� � �t c�un�un	����en	�
c � � � �t c�u�tn	���u�tn	���e

n	�
c �

� � �t 
 Rn� en	�
c � �
��
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The RHS terms in �
�� are bounded as follows� For the Taylor residual
term we have�

� �t 
 Rn�en	�
c � � � �t kRnkV � ken	�

c k�
� �t �

�
ken	�

c k�� � C �t kRnk�V �

� �t �

�
ken	�

c k�� � C �t�
Z tn��

tn
kuttk�V � dt

For the nonlinear terms� we use again the splitting ��� to express
them as�

��t
�
c�un�un	���� en	�

c � � c�u�tn	���u�tn	��� e
n	�
c �

�

� ��t f�c�u�tn	���e
n	���
c �en	�

c � � c�u�tn�� u�tn	���u
n	����en	�

c �

� c�enc �u
n	����en	�

c �g
which we call again I� II and III� respectively� then�

I � C �t ku�tn	��k� ken	�
c k� ken	���

c k�
� �t�

�
ken	�

c k�� � C �t ken	���
c k��

II � C �t ku�tn�� u�tn	��k� kun	���k� ken	�
c k�

� C �t k
Z tn��

tn
ut dtk� ken	�

c k�

� C �t�
Z tn��

tn
kutk�� dt �

�t�

�
ken	�

c k��

III � � �t c�enc �e
n	���
c � en	�

c � � � �t c�enc �u�tn	��� e
n	�
c �

� IIIa � IIIb

so that�

IIIa � C �t kenc k� ken	�
c k� ken	���

c k���� ken	���
c k����

� C �t kenc k� ken	�
c k� ken	���

c k����

� C �t�� kenc k� ken	�
c k�

� C �t��� � kenc k�� �
�t �

�
ken	�

c k��

IIIb � C �t kenc k� ku�tn	��k� ken	�
c k�

� C �t kenc k�� �
�t �

�
ken	�

c k��
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where we have used ���� and the continuity properties of the trilinear
form c� Adding up �
�� for n � � � � � � N � taking into account ���� for
the term I� and the previous inequalities� we get�

keN	�
c k�� �

NX
n��

ken	�
c � enc k�� � �t�

NX
n��

ken	�
c k�� � C�t��

NX
n��

ken	���
c k��

� C �t�
Z T

�
kuttk�V � dt � C �t�

Z T

�
kutk�� dt

� C �t
NX
n��

ken	�
c k�� � C �t

NX
n��

ken	�
c � en	���

c k��

� C�t�
NX
n��

fken	�
c k�� � ken	�

c � en	���
c k��g� C�t����

NX
n��

kenc k��

Using the regularity properties of the solution R�b and R
 and the
estimates of Lemma �� we get�

keN	�
c k�� �

NX
n��

ken	�
c � enc k�� � �t�

NX
n��

ken	�
c k�� � C�t��

NX
n��

ken	���
c k��

� C �t� � C �t
NX
n��

ken	�
c k�� � C �t��� �

NX
n��

kenc k��

For su�ciently small �t� we can apply the discrete Gronwall lemma
to the last inequality and take the last term to the left�hand�side� to
get�

keN	�
c k�� �

NX
n��

ken	�
c � enc k�� � �t �

NX
n��

ken	�
c k�� � C �t�

and ���� is proved�

�	� Error estimates for the semidiscrete pressure

As a side product of the estimates of Theorem �� we obtain order �	�
error estimates for the pressure approximation in l��L�

������ which is
what one can expect for the present scheme� We �rst recall a technical
result� similar to that of Lemma A� in ����� In Theorem � we have
proved� in particular� that�

NX
n��

ken	�
c � enc k�� � C �t�
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This implies that�

NX
n��

ken	�
c � enc k��� � C �t� �
��

since for all v � L����� kvk�� � kvk�� This is what we actually use
to prove the following error estimate for the pressure�

Theorem � Assume that R� R�b R� and R
 hold� then for N �
� � � � � �T	�t� � � and for small enough �t�

�t
NX
n��

kp�tn	��� pn	�k�L�
�
��� � C �t �
��

that is pn	� converges to p�tn	�� in l��L�
����� with order �t���	

Proof We rewrite �
�� as�

�rrn	�
c �

�

�t
�en	�

c � enc � � ���en	�
c � � Rn �
��

� �un � r�un	��� � �u�tn	�� � r�u�tn	��

Using the continuous LBB condition�

krn	�
c kL�

�
��� � C sup

v�H�
�
���

�rrn	�
c �v�

kvk� ���

we need to bound the products of the RHS of �
�� with an arbitrary
v � H�

����� We have�

�

�t
�en	�

c � enc �v� �
�

�t
ken	�

c � enc k�� kvk�

 ����en	�

c ��v � � �ken	�
c k� kvk�


 �Rn�v � � kRnk�� kvk� � C�

Z tn��

tn
t kuttk��� dt�

���kvk�

For the nonlinear terms� we use the following splitting�

� �un � r�un	��� � �u�tn	�� � r�u�tn	�� ����

�
�
�u�tn	��� u�tn�� � r

�
u�tn	�� � �enc � r�u�tn	��

� �un � r�en	���
c
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Calling I� II and III the three terms obtained after testing ���� with
v� we have�

I � C ku�tn	��� u�tn�k� ku�tn	��k� kvk�
� C ��t

Z tn��

tn
kutk�� dt���� kvk�

II � C kenc k� ku�tn	��k� kvk� � C kenc k� kvk�

III � C kunk� ken	���
c k� kvk� � C ken	���

c k� kvk�
where we have used R� and ���� � Thus� we obtain�

krn	�
c kL�

�
��� �

C

�t
ken	�

c � enc k��

� C
n
ken	�

c k� � kenc k� � ken	���
c k�

� �

Z tn��

tn
t kuttk��� dt�

��� � ��t

Z tn��

tn
kutk�� dt����

o

which yields�

krn	�
c k�L�

�
��� �

C

�t�
ken	�

c � enc k���

� C
n
ken	�

c k�� � kenc k�� � ken	���
c k��

�

Z tn��

tn
t kuttk��� dt � �t

Z tn��

tn
kutk�� dt

o

and �
�� results from �
��� the regularity properties R� and R�a
�which is implied by R�b� of the continuous solution u� and the
estimates of Lemma ��

�	� Error estimates for the fully discrete solution

We �nally present an error analysis for the fully discrete� �nite ele�

ment solution �u
n	���
h �un	�

h � pn	�
h � as an approximation of the semidis�

crete� fractional�step solution �un	����un	�� pn	��� We de�ne the �dis�
crete� errors as�

en	�
d � un	� � un	�

h

e
n	���
d � un	��� � u

n	���
h

rn	�
d � pn	� � pn	�

h
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We also use the following notation for the error functions associated
to the �nite element spaces used�

En�h� � inf
vh�Vh

kun	��� � vhk� �
�

h
inf
vh�Vh

kun	��� � vhk�
� inf

qh�Qh

kpn	� � qhk�

� inf
wh�KerBh

kun	� �whk� �
�

h
inf

wh�KerBh
kun	� �whk�

E�h� � max
n�������N

En�h�

It is well known that under the discrete inf�sup conditionH�� optimal
order approximation both inH�

� ��� and in L
���� of solenoidal vector

�elds can be achieved by means of discretely divergence free �nite
element functions� that is� functions wh in KerBh� In fact� one has
the following result�

Lemma � Let u � V and assume that the discrete spaces Vh and Qh

satisfy the inf�sup condition H�� then�

inf
wh�KerBh

ku�whk� � C inf
vh�Vh

ku� vhk�

Moreover if � is of class C� so that the inverse of the Stokes operator
A�� veri�es the shift ��� with s � � then�

inf
wh�KerBh

ku�whk� � C h inf
vh�Vh

ku�whk�

Proof Let us consider the following Stokes problem� �nd �y� a� �
H�

����� L�
���� such that� for all �v� q� � H�

����� L�
�����

�ry�rv� � �a�r � v� � �ru�rv�
�q�r � y� � 

Given u � V � �ru�rv� is a linear� continuous functional on H�
�����

and thus this problem admits a unique solution �y� a� � �u� �� We
next consider the �nite element discrete problem of �nding �yh� ah� �
Vh �Qh such that� for all �vh� qh� � Vh �Qh�

�ryh�rvh� � �ah�r � vh� � �ru�rvh�
�qh�r � yh� � 

Standard approximation results for this problem �see� for instance�
����� allow us to conclude that�

inf
wh�KerBh

ku�whk� � ku� yhk� � C inf
vh�Vh

ku� vhk�
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and� if � is regular enough� that�

inf
wh�KerBh

ku�whk� � ku� yhk� � C h inf
vh�Vh

ku� vhk�

These results ensure that the error functions En�h� have an op�
timal order behaviour with respect to the mesh size h� Our error
estimates for the fully discrete solution are given next�

Theorem 
 Assume that R� R�b R� H� and H� hold� then for
N � � � � � � �T	�t� � � and for small enough �t and h�

keN	�
d k�� � keN	���

d k�� � �t �
NX
n��

n
ken	�

d k�� � ken	���
d k��

o

� C �E�h��� ����

Proof From ������������� and ��������������� we get� for all �vh� qh� �
Vh �Qh�

�

�t
�e

n	���
d � end �vh� � � �ren	���

d �rvh� � ��
�

�c�unh�u
n	���
h �vh� � �c�un�un	����vh�

�

�t
�en	�

d � e
n	���
d �vh� � � �r�en	�

d � e
n	���
d ��rvh� ����

� �rn	�
d �r � vh� � 

�r � en	�
d � qh� �  ����

Given �vh�wh� qh� � Vh�Ker�Bh��Qh arbitrary� from ��
�����������
we have�

ken	���
d k�� � kendk�� � ken	���

d � endk�� � � � �t kren	���
d k��

� ken	�
d k�� � ken	���

d k�� � ken	�
d � e

n	���
d k��

� � �t
n
kren	�

d k�� � kren	���
d k�� � kr�en	�

d � e
n	���
d �k��

o

� � �e
n	���
d � end �u

n	��� � vh�

� � � �t �ren	���
d �r�un	��� � vh��

� � �t �c�unh�u
n	���
h �u

n	���
h � vh�

� � �t �c�un�un	����u
n	���
h � vh�

� ��en	�
d � e

n	���
d �un	� �wh�

� ���t�r�en	�
d � e

n	���
d ��r�un	� �wh��

� � �t �rn	�
d �r � �un	� �wh��

� � �t �r � en	�
d � pn	� � qh�
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We bound each term in the RHS as follows�

� �e
n	���
d � end �u

n	��� � vh� � �

�
ken	���

d � endk�� � Ckun	��� � vhk��
� � �t �ren	���

d � r�un	��� � vh��

� ���tkren	���
d k�kr�un	��� � vh�k�

� � �t

�
�kren	�

d k�� � kr�en	�
d � e

n	���
d �k���

� C �t kr�un	��� � vh�k��
� �en	�

d � e
n	���
d �un	� �wh� � �

�
ken	�

d � e
n	���
d k�� � Ckun	� �whk��

� � �t �r�en	�
d � e

n	���
d � � r�un	� �wh��

� � �t

�
kr�en	�

d � e
n	���
d �k��

� C �t kr�un	� �wh�k��
���t�rn	�

d �r � �un	� �wh�� � �� �t �pn	� � qh�r � �un	� �wh��

� � �t �pn	�
h � qh�r � �un	� �wh��

� �t kpn	� � qhk�� � C�t kun	� �whk��
since r � un	� �  and we have taken wh in Ker�Bh�� Moreover�

� �t �r � en	�
d � pn	� � qh� � C �t kpn	� � qhk�� �

� �t

�
kren	�

d k��
The nonlinear terms are treated as follows�

� �t
�
��c�unh�un	���

h �u
n	���
h � vh� � �c�un�un	����u

n	���
h � vh�

�

� � �t
�
��c�unh�en	���

d �e
n	���
d � � �c�unh�e

n	���
d �un	��� � vh�

��c�end �un	����e
n	���
d � � �c�end �u

n	����un	��� � vh�
�

The �rst term in the RHS is zero� due to the skew�symmetry of the
trilinear form �c� For the second one� we have�

� �t �c�unh�e
n	���
d �un	��� � vh�

� �� �t �c�end � en	���
d �un	��� � vh� � � �t�c�un�e

n	���
d �un	��� � vh�

� C � �t
�
kendk� ken	���

d k� kun	��� � vhk�
� kunk� ken	���

d k� kun	��� � vhk�
�

� C � �t kun	��� � vhk�
�
kendk�� � ken	�

d k�� � ken	�
d � e

n	���
d k��

�

�
� �t

�

�
kren	�

d k�� � kr�en	�
d � e

n	���
d �k��

�
� C�t kun	��� � vhk��
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since� according to Remark �� kunk� � C� furthermore�

�� �t �c�end �un	����e
n	���
d �

� � �t
�
�c�end � e

n	���
c �e

n	���
d � � �c�end �u�tn	��� e

n	���
d �

�

� C �t kendk���� kendk���� ken	���
c k�ken	���

d k�
� C �t kendk�ku�tn	��k�ken	���

d k�
� C �t��� kendk���� kendk���� ken	���

d k� � C �t kendk�ken	���
d k�

� C �t� kendk�kendk� �
� �t

�

�
kren	�

d k�� � kr�en	�
d � e

n	���
d �k��

�

� C �t kendk�� �
� �t

�

�
kren	�

d k�� � kr�en	�
d � e

n	���
d �k��

�

� C �t kendk�� � � �t� kendk��
�

� �t

�

�
kren	�

d k�� � kr�en	�
d � e

n	���
d �k��

�

where we have used the continuity properties of the trilinear form �c�

the bound ken	���
c k� � C �t���� which follows from Theorem �� and

the regularity property R� of the continuous solution� In a similar
way� it can be shown that�

� �t �c�end �u
n	����un	��� � vh�

� �� �t ��c�end �en	���
c �un	��� � vh� � �c�end �u�tn	���u

n	��� � vh��

� C �t kendk�� � � �t� kendk�� � C �t kun	��� � vhk��
Combining all the above inequalities and taking the in�mum with
respect to �vh�wh� qh� � Vh �KerBh �Qh� we get�

ken	�
d k�� � kendk�� � ken	���

d � endk�� � ken	�
d � e

n	���
d k��

� � �t
�
ken	�

d k�� � ken	���
d k�� � ken	�

d � e
n	���
d k��

�

� C h� �En�h��
� � C �t �En�h��

� � C �t kendk�� � � �t� kendk��
� C � �t �En�h��

�
kendk�� � ken	�

d k�� � ken	�
d � e

n	���
d k��

�

Adding up this inequality for n � � � � � � N � we get�

keN	�
d k�� �

NX
n��

�
ken	���

d � endk�� � ken	�
d � e

n	���
d k��

�

� � �t
NX
n��

�
ken	�

d k�� � ken	�
d k�� � ken	�

d � e
n	���
d k��

�
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� C �� �
h�

�t
� �E�h��� � C �t

NX
n��

kendk�� � � �t�
NX
n��

kendk��

� C �E�h�� � �t
NX
n��

�
ken	�

d k�� � ken	�
d � e

n	���
d k��

�

and ���� follows for small enough �t and h �since the last two terms
can then be passed over to the LHS�� due to the discrete Gron�
wall inequality� condition H� and the triangle inequality to bound

keN	���
d k���
Combining Theorems � and �� we have an estimate for the overall

error of the method� en	� � u�tn	��� un	�
h � en	�

c � en	�
d �

Corollary � Assume that R� R�b R� H� H� and H� hold�
assume also that for all n � � � � � � �T	�t�� � un	��un	��� � Hk���
and pn	� � Hk����� and they are uniformly bounded in these spaces�
then for N � � � � � � �T	�t� � � and for small enough �t �  and h�

keN	�k�� � �t �
NX
n��

ken	�k�� � C ��t� � h�k� ����

Estimate ���� says that the present scheme is �rst order accurate
in the time step size and provides optimal order accuracy in the mesh
size in the norms of l��L����� and l��H�

������
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