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o #(t) = Ax(t) + Bu(t)
ABSTRACT.- Let a time-invariant linear system corre-

t) = Cx(t

sponding to a realization of a prescribed transfer functiyo(n)matrix( c)an be represented
by triples of matrices (A, B,C). The permitted transformations of basis changes in
the space state on the systems can be seen in the space of triples of matrices as simi-
larity equivalence. In this paper we give a geometric characteriaztion of controllable
and observable systems as orbits under a Lie group action. As a corollary we obtain
a lower bound of the distance between a controllable and observable triple and the
nearest uncontrollable one.



INTRODUCTION

In the space of triples of matrices (A, B,C) € M,

~

C) X Mpxn(C) X My xm(C) cor-

| o #(t) = Ac(t) + Bul(?) |

responding to a time-invariant linear systems . We consider
y(t) = Calt)

the following action of the general linear group Gl(n;C), according to the formula

(AlvBlvcl) = (P_IAP7P_1B7CP)

We denote the space of triples of matrices M, (C) X My, xm(C) X Mpxn(C) by M
and the general linear group Gl(n;C) by G

The sets of equivalent triples under the group action are differentiable manifolds
called orbits.

The controllability and observability character of a triple is invariant by the group
Lie action, so given a controllable and observable triple of matrices the nearest non-
controllable or non observable one remains obviously, in another orbit. Then the
problem can be reduced to compute the distance from (A, B,C) to the orbits of
uncontrollable or unobservable triples. For that we explore the rank of a matrix
representing the tangent space to the orbit of the triple (A4, B,C).

The norm considered in this paper is the Frobenius norm.

1. Preliminaries

We will denote the general linear group by G and its unit element by I. This is a
complex manifold and its tangent space at the identity is TG = M, (C).

DEFINITION (1.1): We consider the following action of G on M,
a: gx M —M

defined by
a(P,(A,B,C)) = (P7'AP,P7'B,CP)

The action defined by « induces the following equivalence relation between triples
of matrices: (Ay, By,C1) and (Ag, By, Cy) are called equivalent if and only if there
exists P € G such that o(P, (A1, B1,C1)) = (As, B2,C3). This equivalence relation
corresponds with the permitted operations of basis change in the state space used in
Linear System theory

The differentiable manifold of triples of matrices in M which are equivalent to
(A, B,C) is its orbit under the action of a and we will denote it by O(A4, B,C'). The

orbits verify the following condition.



PROPOSITION (1.1). Let (Ao, Bo,Co) € O(A,B,C). Then O(Ao, By, Co) C O(A,B,C).
PROOF: Let (Ag, Bo,Co) € O(A, B,C), then

(Ao,Bo,Co) == 11_>II1 (An,Bn,Cn)

with (A, B,,Cyn) € O(A,B,C), Then for all (S7'ApS,S™1Bg,CoS) we consider
(S7'A,S,571'B,.C,S) € O(A,B,C), and

(S™1 A0S, S By, CoS) = lim (S7*A,S, S By, CS)

n— 00

The orbits verify the homogenity property:

PROPOSITION (1.2). Let (A1, B1,C1), (As,B2,C3) € O(A, B,C), then there exists
a diffeomorphism h : M — M preserving orbits and such that h(A;,By,Cy1) =
(A2732702)‘

ProoOF: If (A1, B1,C1), (Az,B2,C3) € O(A,B,C) there exists P € G such that
(Ay, By, Co) = (P71 A, P, P71 By,C, P). Then it suffices to consider

h:M— M
(A,B,C) — (P~YAP,P~'B,CP)

This proposition permit us to consider a selected triple in the orbit called canonical

reduced form and denoted by (A., B, C.).

REMARK (1.1): If m =1 and the triple (A, B,C) is controllable it is easy to obtain
a canonical reduced form it suffices to take P = (B AB ... A"_lB) and A, =
P~ 'AP, B, = P7'B and C.= CP. This method can be generalized (see [3]).

We are interested in to know if it is possible to define an homomorphism assigning
each orbit its canonical reduced form, that is to say we are interested in the existence
or non, of continuous canonical forms. Hazewinkel in [3], prove that it is only possible
if m=1or p=1 and if we define the map on the space of controllable and observable
triples.

Let M C M be the set of controllable and observable triples. Obviously M*®° is
a @-invariant space.

DEFINITION (1.2): A canonical form for G acting on M is a mapping
c: M — M
such that the following properties hold
1) ¢(A,B,C)=(A.,B.,C.)
2) V(A,B',C") € O(A,B,C), ¢(A",B",C")=¢(A,B,C)
3) If ¢(A",B',C") = ¢(A,B,C) then (A",B',C'") € O(A,B,C).
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PROPOSITION (1.3) [3]. The map ¢ is continuous if and only if m=1 or p=1.

PROPOSITION (1.4). Let (A,,B,,Cy) € O(A,B,C) C M with m =1 or p=1,
such that lim (A,,B,,Cy,) = (Ao, Bo,Cy) € M. Then (Ay, By, Cy) € M if and
n—>00

only if (Ao, Bo,Cy) € O(A,B,C).

PRrROOF: For all n, we have ¢(A,, B,,Cy) = (4., B¢, C.) and c¢ is continuous in M
then ¢(Ag, Bo,Co) = (A¢, B.,C,) if and only if (Ag, Bo,Co) € O(A, B,C).

COROLLARY (1.1). If (Ao, Bo,Co) € O(A,B,C) — O(A,B,C), then (Ag, By, Co) ¢
Mo,

2. The tangent space to the orbit

To compute the dimension of orbits may be very tedious if one use the definition of
orbits, but taking into accouint the differentiable character of the manifold defining
orbits it is easier to compute the dimension troughout the tangent space.

Let (A, B,C) be a triple of matrices in M. It is not dificult to check that the
tangent space of its orbit T 4 g ¢yO(A, B,C) is given in the following manner

Tia.0)O(A, B, C) = {(X,Y, Z) = ([4, P], =PB,CP); P € T1G = M,(C)}.
Using the Kronecker products and vec-operator (see [4] for their definition and

properties), we can represent the n?+nm+pn vectors (X,Y,Z) € Ti 4 5,c)O(4, B, C)
in the form

vec (X) Aal, — I, Al
vee (V) | = —1, @ Bt (vec(P)).
vec (Z) C®l,

In this notation, we may say that the tangent space is the range of the (n? 4+ nm +
pn) X n®-matrix
Ae I, — I, At
T = —1, @ Bt
C @I,

Then we have the following result.

THEOREM (2.1).
dim T4 ,c)O(A, B,C) = rank T

REMARK (2.1): rank T < n? < dimM = n? + nm + np, then there are not open

orbits, but there are orbits of dimension n?.
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EXAMPLE (2.1): Let (A,B,C) € M with m = p = 1 be a triple of matrices with
A=diag(ay,...,an) a; #aj forall i # 35, B= (b ... bn)t, C=(c1 ... ¢n)
with b; # 0 and ¢; # 0 for all i =1,...,n. Then dim O(4, B,C) = n?.

For that, it is sufficient to compute rank T .

0
a1 —ao
a1 —dan
an—ay
rank n=n=t o =
—by —b> ... —=b, O 0
—by —bn
C1 Cn
C1 Cn
b1
a1 —ao
a1 —0n
an—ay
. 2
rank . =n".
Apn —Qn—1
by
C1 Cn
C1 Cn

Notice that the triple (A, B,C) is controllable and observable but this is not a
necessary condition

EXAMPLE: A:<a b),B:<b()1>,C:(cl ¢y ) with a #£ b, by #0, ¢z # 0.

0 0 0 0 b, 0 0 O
0O a—b 0 O 0a—=b 0 O
0 0 b—a O 0 0 b—a O
rank T = rank % O 0 0 _ank | 0 9 0 e | —g=p2
—-by 0 0 O 0 0 0 o0
0 0 —b O 00 0 0
C1 0 co 0 0 0 0 0
0 C1 0 co 0 0 0 0



For m = p = 1 a necessary and sufficient condition to dim O(A, B,C') = n? is
given in the following proposition.

PROPOSITION (2.2). Let (A,B,C) € M with m =p=1. dimO(4, B,C) = n? if
and only if the triple (A, B,C') be controllable or observable.

ProoOF: Taking into account that V(A41, B1,C1) € O(A, B,C), then O(A;,B;,Cy) =
O(A, B,C) we can restreint to the canonical reduced form.

Then, let (A, B,C) € M with m = p =1, such that

0 0 ce 0 a1 1
1 0 0 o 0
A= , B= , C=(¢a Cn )
0 0 1 o 0
—At 0 0 0 a1ly
I, —A' o0 0 asly,
0 0 0 .. I, apl,—A"
rankT =rank | =B* 0o 0o .. o0 0
0 —B' 0 0 0
0 0 0 .. 0 —-B?
c1dy coly c3lp ... cn_1dn cndn

Making block elementary transformations we obtain

In
In
rank T = rank =n?
In

C(A,B,C)

O(A,B,C)
where C(A,B,C)=(B AB ... A" !'B) (the controllability matrix) and O(A, B, C)" =
(ct Atct ... Atn_10t> (the transpose observability matrix).

Then, if rank T < n?, the triple (A, B,C) is neither controllable or observable.

We observe that we can obtain the dimension of T4 5 c)O(A, B,C) from the
singular value decomposition (s.v.d.) of the matrix T.

PROPOSITION (2.3).
dim T4, B,c)O(A, B, C') = number of non-zero singular values of T'.

3. The normal space to the orbit

We may define the normal space T(A7B7C)O(A,B,C’)J‘ as the orthogonal to the
tangent space Ti4 p,c)yO(A, B,C). The orthogonality is defined with respect to the
following usual inner product.

DEFINITION (3.1):

< (A1,B1,C1),(As, By, Cy) >= trace A; A5 + trace B1 B + trace C1C5.
Obviously, we have the following.



COROLLARY (3.1).
dim T(A7B7C)O(A, B, C’)J‘ =n? + nm +np —rank T = dim Ker T + nm + np.
We can compute T4 p,c)O(A, B, C)* solving a linear matricial system:

Tia.3.0)O(A,B,C)* = {(X,Y,Z) | [X*,A] - BY* + Z*C = 0}

11 0

EXAMPLE (3.1): Let A = <01>, B= <1>, C =(01), then

T(A,B,C)O(A7B7 C)J_ = {((1;211::_122 fojlxll 9 <21:222> 7(21 c2 ))) vx117x21721722 S C}
dimT(A7B7c)O(A,B, C)J' =4 and dim O(A,B, C) = dimM—dimT(A7B7c)(’)(A,B, C)J' =
8—4=4.

4. Application.

The open character of M, allows us to ensure that if (4,B,C) € M is a con-
trollable and observable triple of matrices there exists a neigborhood ¢ in M such
that for all (41, B1,Cy) € U then (A, By, C1) is also a controllable and observable.
Therefore it makes sense to consider the distance to the nearest uncontrollable or
unobservable triple.

DEFINITION (4.1): We define a norm in the space M in the following manner

forall (A, B,C) € M,  ||(A B.C)|| = H(é ﬁ’)

A B
0
DEFINITION (4.2): For a given controllable and observable triple of matrices (4, B,C) €

M we define the distance between (A, B,C) and a nearest uncontrollable or unob-
servable one by

where 1s any matrix norm.

d= min ||(6A,6B,6C)|,
(5A,6B.,5C)
where (6A,0B,6C) € M such that (A + §A, B + §B,C + §C) is uncontrollable or

unobservable.

The s.v.d. characterization of the dimension of O(A, B,C') leads to the following
Theorem.

THEOREM (4.1). For a given controllable and observable triple of matrices (A, B,C) €
M with m = p = 1 a lower bound on the distance to the closest triple (A+0A, B+
dB,C 4+ 6C) with dimO(A +0A,B + 6B, C +6C) = n? —( and { > 1 is given by

a

1 2 1/2 Omin (T)
I(84.08.00)1 2 Z=( 37 ah(m) = 2
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PROOF: Let (A4 §A, B+ 0B,C + 6C) be a perturbed triple of matrices with

dim TO(A+ 64,B +0B,C +35C) = n* — L.

Then
rank (T +0T) < n?,
where
SA@I, —I, @ A"
ST = —1, @ 6B ,
0C ® I,

1(64.6B,5C) |1 < 5T]|» < V2nl|(34,5B,5C)| r.

The Eckart-Young and Mirsky Theorem for finding the closest matrix of a given
rank (see [2]), gives that the size of the smallest perturbation in Frobenius norm that
reduces the rank in T from n? to n? — ¢ with ¢ > 1, is

) 1/2
> oHT)
i =n2—0+1
Then,
) 1/2

1 = Omin (T)

§A,0B,5C)||r > — o?(T > i/
I( N > o i:n;m (T) Z — 5=
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