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ABSTRACT.- Let a time-invariant linear system _x(t) = Ax(t) +Bu(t)y(t) = Cx(t) � corre-sponding to a realization of a prescribed transfer function matrix can be representedby triples of matrices (A;B;C) . The permitted transformations of basis changes inthe space state on the systems can be seen in the space of triples of matrices as simi-larity equivalence. In this paper we give a geometric characteriaztion of controllableand observable systems as orbits under a Lie group action. As a corollary we obtaina lower bound of the distance between a controllable and observable triple and thenearest uncontrollable one.

2



INTRODUCTIONIn the space of triples of matrices (A;B;C) 2Mn(C)�Mp�n(C)�Mn�m(C) cor-responding to a time-invariant linear systems _x(t) = Ax(t) +Bu(t)y(t) = Cx(t) � . We considerthe following action of the general linear group Gl(n;C) , according to the formula(A1; B1; C1) = (P�1AP;P�1B;CP )We denote the space of triples of matrices Mn(C) �Mn�m(C) �Mp�n(C) by Mand the general linear group Gl(n;C) by GThe sets of equivalent triples under the group action are di�erentiable manifoldscalled orbits.The controllability and observability character of a triple is invariant by the groupLie action, so given a controllable and observable triple of matrices the nearest non-controllable or non observable one remains obviously, in another orbit. Then theproblem can be reduced to compute the distance from (A;B;C) to the orbits ofuncontrollable or unobservable triples. For that we explore the rank of a matrixrepresenting the tangent space to the orbit of the triple (A;B;C) .The norm considered in this paper is the Frobenius norm.1. PreliminariesWe will denote the general linear group by G and its unit element by I . This is acomplex manifold and its tangent space at the identity is TIG = Mn(C) .Definition (1.1): We consider the following action of G on M ,� : G �M �!Mde�ned by �(P; (A;B;C)) = (P�1AP;P�1B;CP )The action de�ned by � induces the following equivalence relation between triplesof matrices: (A1; B1; C1) and (A2; B2; C2) are called equivalent if and only if thereexists P 2 G such that �(P; (A1; B1; C1)) = (A2; B2; C2) . This equivalence relationcorresponds with the permitted operations of basis change in the state space used inLinear System theoryThe di�erentiable manifold of triples of matrices in M which are equivalent to(A;B;C) is its orbit under the action of � and we will denote it by O(A;B;C) . Theorbits verify the following condition. 3



Proposition (1.1). Let (A0; B0; C0) 2 O(A;B;C) . Then O(A0; B0; C0) � O(A;B;C) .Proof: Let (A0; B0; C0) 2 O(A;B;C) , then(A0; B0; C0) = limn!1(An; Bn; Cn)with (An; Bn; Cn) 2 O(A;B;C) , Then for all (S�1A0S;S�1B0; C0S) we consider(S�1AnS;S�1Bn; CnS) 2 O(A;B;C) , and(S�1A0S;S�1B0; C0S) = limn!1(S�1AnS;S�1Bn; CnS)The orbits verify the homogenity property:Proposition (1.2). Let (A1; B1; C1) , (A2; B2; C2) 2 O(A;B;C) , then there existsa di�eomorphism h : M �! M preserving orbits and such that h(A1; B1; C1) =(A2; B2; C2) .Proof: If (A1; B1; C1) , (A2; B2; C2) 2 O(A;B;C) there exists P 2 G such that(A2; B2; C2) = (P�1A1P;P�1B1; C1P ) . Then it su�ces to considerh :M�!M(A;B;C) �! (P�1AP;P�1B;CP )This proposition permit us to consider a selected triple in the orbit called canonicalreduced form and denoted by (Ac; Bc; Cc) .Remark (1.1): If m = 1 and the triple (A;B;C) is controllable it is easy to obtaina canonical reduced form it su�ces to take P = (B AB : : : An�1B ) and Ac =P�1AP , Bc = P�1B and Cc = CP . This method can be generalized (see [3]).We are interested in to know if it is possible to de�ne an homomorphism assigningeach orbit its canonical reduced form, that is to say we are interested in the existenceor non, of continuous canonical forms. Hazewinkel in [3], prove that it is only possibleif m = 1 or p = 1 and if we de�ne the map on the space of controllable and observabletriples.Let Mco �M be the set of controllable and observable triples. Obviously Mco isa G -invariant space.Definition (1.2): A canonical form for G acting on Mco is a mappingc :Mco �!Mcosuch that the following properties hold1) c(A;B;C) = (Ac; Bc; Cc)2) 8(A0; B0; C 0) 2 O(A;B;C) , c(A0; B0; C 0) = c(A;B;C)3) If c(A0; B0; C 0) = c(A;B;C) then (A0; B0; C 0) 2 O(A;B;C) .4



Proposition (1.3) [3]. The map c is continuous if and only if m = 1 or p = 1 .Proposition (1.4). Let (An; Bn; Cn) 2 O(A;B;C) � Mco with m = 1 or p = 1 ,such that limn!1(An; Bn; Cn) = (A0; B0; C0) 2 M . Then (A0; B0; C0) 2 Mco if andonly if (A0; B0; C0) 2 O(A;B;C) .Proof: For all n , we have c(An; Bn; Cn) = (Ac; Bc; Cc) and c is continuous in Mcothen c(A0; B0; C0) = (Ac; Bc; Cc) if and only if (A0; B0; C0) 2 O(A;B;C) .Corollary (1.1). If (A0; B0; C0) 2 O(A;B;C) � O(A;B;C) , then (A0; B0; C0) =2Mco .2. The tangent space to the orbitTo compute the dimension of orbits may be very tedious if one use the de�nition oforbits, but taking into accouint the di�erentiable character of the manifold de�ningorbits it is easier to compute the dimension troughout the tangent space.Let (A;B;C) be a triple of matrices in M . It is not di�cult to check that thetangent space of its orbit T(A;B;C)O(A;B;C) is given in the following mannerT(A;B;C)O(A;B;C) = f(X;Y;Z) = ([A;P ];�PB;CP ); P 2 TIG =Mn(C)g:Using the Kronecker products and vec-operator (see [4] for their de�nition andproperties), we can represent the n2+nm+pn vectors (X;Y;Z) 2 T(A;B;C)O(A;B;C)in the form 0@ vec (X)vec (Y )vec (Z)1A =0@A 
 In � In 
At�In 
BtC 
 In 1A ( vec (P ) ) :In this notation, we may say that the tangent space is the range of the (n2+nm+pn)� n2 -matrix T = 0@A
 In � In 
At�In 
BtC 
 In 1A :Then we have the following result.Theorem (2.1). dimT(A;B;C)O(A;B;C) = rankT:Remark (2.1): rankT � n2 < dimM = n2 + nm + np , then there are not openorbits, but there are orbits of dimension n2 .5



Example (2.1): Let (A;B;C) 2 M with m = p = 1 be a triple of matrices withA = diag (a1; : : : ; an) ai 6= aj for all i 6= j , B = ( b1 : : : bn )t , C = ( c1 : : : cn )with bi 6= 0 and ci 6= 0 for all i = 1; : : : ; n . Then dimO(A;B;C) = n2 .For that, it is su�cient to compute rankT .
rank 0BBBBBBBBBBBBBBBBBBBBBBBBB@

0 a1�a2 . .. a1�an . .. an�a1 .. . an�an�1 0�b1 �b2 ::: �bn 0 ::: 0.. . �b1 ::: �bnc1 cn. .. . ... .. . ..c1 cn
1CCCCCCCCCCCCCCCCCCCCCCCCCA =

rank 0BBBBBBBBBBBBBBBBBBB@
b1 a1�a2 ... a1�an ... an�a1 ... an�an�1 bnc1 cn... ...... . ..c1 cn

1CCCCCCCCCCCCCCCCCCCA = n2:Notice that the triple (A;B;C) is controllable and observable but this is not anecessary conditionExample: A = � a b� , B = � b10 � , C = ( c1 c2 ) with a 6= b , b1 6= 0, c2 6= 0.rankT = rank0BBBBB@ 0 0 0 00 a�b 0 00 0 b�a 00 0 0 0�b1 0 0 00 0 �b1 0c1 0 c2 00 c1 0 c21CCCCCA = rank0BBBBB@ b1 0 0 00 a�b 0 00 0 b�a 00 0 0 c20 0 0 00 0 0 00 0 0 00 0 0 0 1CCCCCA = 4 = n2:6



For m = p = 1 a necessary and su�cient condition to dimO(A;B;C) = n2 isgiven in the following proposition.Proposition (2.2). Let (A;B;C) 2 M with m = p = 1 . dimO(A;B;C) = n2 ifand only if the triple (A;B;C) be controllable or observable.Proof: Taking into account that 8(A1; B1; C1) 2 O(A;B;C) , then O(A1; B1; C1) =O(A;B;C) we can restreint to the canonical reduced form.Then, let (A;B;C) 2 Mco with m = p = 1, such thatA = 0B@0 0 : : : 0 �11 0 0 �2: : : : : : : : : : : : : : : : :0 0 : : : 1 �n1CA, B =0BB@ 10...01CCA , C = ( c1 : : : cn )rankT = rank 0BBBBBBB@�At 0 0 ::: 0 �1InIn �At 0 ::: 0 �2In: : : : : : : : : : : : : : : : : : : : : : : : : : : :0 0 0 ::: In �nIn�At�Bt 0 0 ::: 0 00 �Bt 0 ::: 0 0: : : : : : : : : : : : : : : : : : : : : : : : : : : :0 0 0 ::: 0 �Btc1In c2In c3In ::: cn�1In cnIn 1CCCCCCCA :Making block elementary transformations we obtainrankT = rank 0BBBB@ In In .. . In C(A;B;C)O(A;B;C)t1CCCCA = n2where C(A;B;C) = (B AB : : : An�1B ) (the controllabilitymatrix) and O(A;B;C)t =�Ct AtCt : : : Atn�1Ct � (the transpose observability matrix).Then, if rankT < n2 , the triple (A;B;C) is neither controllable or observable.We observe that we can obtain the dimension of T(A;B;C)O(A;B;C) from thesingular value decomposition (s.v.d.) of the matrix T.Proposition (2.3).dimT(A;B;C)O(A;B;C) = number of non-zero singular values ofT:3. The normal space to the orbitWe may de�ne the normal space T(A;B;C)O(A;B;C)? as the orthogonal to thetangent space T(A;B;C)O(A;B;C) . The orthogonality is de�ned with respect to thefollowing usual inner product.Definition (3.1):< (A1; B1; C1); (A2; B2; C2) >= traceA1A�2 + traceB1B�2 + traceC1C�2 :Obviously, we have the following. 7



Corollary (3.1).dimT(A;B;C)O(A;B;C)? = n2 + nm+ np� rankT = dimKerT+ nm+ np:We can compute T(A;B;C)O(A;B;C)? solving a linear matricial system:T(A;B;C)O(A;B;C)? = f(X;Y;Z) j [X�; A]�BY � + Z�C = 0gExample (3.1): Let A = � 0 11 1� , B = � 10� , C = ( 0 1 ) , thenT(A;B;C)O(A;B;C)? = ��� x11 x21x21+z2 x21+x11 ; � z2z1+z2 � ; ( z1 z2 )�� 8x11; x21; z1; z2 2 C	dimT(A;B;C)O(A;B;C)? = 4 and dimO(A;B;C) = dimM�dimT(A;B;C)O(A;B;C)? =8� 4 = 4.4. Application.The open character of Mco , allows us to ensure that if (A;B;C) 2 M is a con-trollable and observable triple of matrices there exists a neigborhood U in M suchthat for all (A1; B1; C1) 2 U then (A1; B1; C1) is also a controllable and observable.Therefore it makes sense to consider the distance to the nearest uncontrollable orunobservable triple.Definition (4.1): We de�ne a norm in the space M in the following mannerfor all (A;B;C) 2 M; k(A;B;C)k = �A BC 0 � ;where �A BC 0 � is any matrix norm.Definition (4.2): For a given controllable and observable triple of matrices (A;B;C) 2M we de�ne the distance between (A;B;C) and a nearest uncontrollable or unob-servable one by d = min(�A;�B;�C) k(�A; �B; �C)k;where (�A; �B; �C) 2 M such that (A + �A;B + �B;C + �C) is uncontrollable orunobservable.The s.v.d. characterization of the dimension of O(A;B;C) leads to the followingTheorem.Theorem (4.1). For a given controllable and observable triple of matrices (A;B;C) 2Mco with m = p = 1 a lower bound on the distance to the closest triple (A+�A;B+�B;C + �C) with dimO(A + �A;B + �B;C + �C) = n2 � ` and ` � 1 is given byk(�A; �B; �C)k � 1p2n( aXi=n�`+1�2i (T))1=2 � �min(T)p2n :8



Proof: Let (A+ �A;B + �B;C + �C) be a perturbed triple of matrices withdimTO(A + �A;B + �B;C + �C) = n2 � `:Then rank (T+ �T) < n2;where �T = 0@ �A
 In � In 
 �At�In 
 �Bt�C 
 In 1A ;k(�A; �B; �C)kF � k�TkF � p2nk(�A; �B; �C)kF :The Eckart-Young and Mirsky Theorem for �nding the closest matrix of a givenrank (see [2]), gives that the size of the smallest perturbation in Frobenius norm thatreduces the rank in T from n2 to n2 � ` with ` � 1, is0@ n2Xi=n2�`+1�2i (T)1A1=2 :Then, k(�A; �B; �C)kF � 1p2n 0@ n2Xi=n2�`+1�2i (T)1A1=2 � �min(T)p2n :References[1] Ch-T Chen. \Linear System Theory and Desing". Holt-Saunders InternationalEditions, Japan, 1984.[2] G. Golub, C. Van Loan. \Matrix Computations". Johns Hopkins UniversityPress, Baltimore, MD 1989.[3] M. Hazewinkel. Fine Moduli Spaces for Linear Systems, \Geometrical Methodsfor the theory of Linear Systems" pp 125-194, (1980).[4] P. Lancaster, M. Tismenestsky. \The Theory of Matrices". Academic Press,New York, 1985. 9


