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ABSTRACT.- Let (A, B,C) be a triple of matrices representing a time-invariant
. (1) = Az(t) + Bu(t) o . .
linear system under similarity equivalence, corresponding to
y(t) = Cx(t)
a realization of a prescribed transfer function matrix.

In this paper we measure the distance between a irreducible realization, that is to
say a controllable and observable triple of matrices (A, B, C') and the nearest reducible
one that is to say uncontrollable or unobservable one.

Different upper bounds are obtained in terms of singular values of the controlla-
bility matrix C(A, B,C), observability matrix O(A, B,C) and controllability and
observability matrix CO(A, B, C) associated to the triple.



Introduction

We consider triples of matrices (A4, B,C) with A € M,(R), B € Mnxm(R) and
= Ax(t) + Bu(t )}
Ca(t)

R), according to

a(t
C € M,«n(R) corresponding to a time-invariant linear systems Et
Y
We consider the following action of the general linear group Gl(n;
the formula

)
)

(AlvBlvcl) = (P_IAP7P_1B7CP)

The equivalence relation obtained from this action is such that two equivalent triples
of matrices have the same transfer-function matrix.

We denote the space of these triples of matrices by M and the general linear group
Gl(n;R) by G

We consider the set M = {(A, B,C) € M; (A, B, C) controllable and observable}.
This is an open set in the space of all triples of matrices M and it is invariant with
respect to the G-action.

Foreach (A, B,C) € M® there exists an open neighourhood of (A, B, C') relatively
small, such that all triples of matrices in it are controllable and observable. Then it
makes sense to consider the distances to the nearest uncontrollable, unobservable
or uncontrollable and unobservable one, and to deduce safety neighbourhoods for
controllable and observable triples of matrices.

The main goal of this paper is to show that different bounds of theese distances can
be obtained. The method used for that as this one used in [1] for the case of pairs
of matrices, is to explore the singular values of the controllability and observability
matrices of the triple (4, B, C').

Several authors [1], [2], [4] analyze bounds on the distance from a given pair of
matrices or a given pencil with qualitative different structure pair or pencil under
different equivalent relation for pairs or strictly equivalence for pencils, as well as [5],
[6], [7], [9] analyze the structural stability of a pair or a pencil and the hierarchic
closure for pencils.

In this paper, the norm considered is the 2-norm, and given a triple (A4, B,C) € M.
We denote by A. the companion matrix for A, that is to say

0 1 0 .0
0 0 1 .0
A= : :
0 0 0 o1

—0lp —0Op—1 —Qp—2 ... —Q1

where «; are such that det(t/ — A) =" + a1t V4o,



1. Preliminaries

We consider the following action of G on M,
a: gx M —M

defined by
a(P,(A,B,C)) = (P~'AP,P™'B,CP)

The action defined by « induces the following equivalence relation between triples
of matrices: (Ay, By,C1) and (Ag, By, Cy) are called equivalent if and only if there
exists P € G such that a(P, (A1, B1,C1)) = (Az, By, C5).

The controllability matrix of a triple (A, B,C) € M is defined as

C(A,B.C)=(B AB ... A" 'B).

The observability matrix of a triple (A4, B,C) € M is defined as

C
CA
O(A,B,C) = .

C A

They are well known the following propositions (see [3] for more details).

PROPOSITION (1.1). a) The rank of the controllability matrix is invariant under the
equivalence relation considered.

b) A triple of matrices (A, B,C) € M is controllable if and only if the controllability
matrix has full rank, i.e.

rank C(A, B,C) = n.

PROPOSITION (1.2). a) The rank of the observability matrix is invariant under the
equivalence relation considered.

b) A triple of matrices (A, B,C') € M is observable if and only if the observability
matrix has full rank, i.e.

rank O(A4, B,C) = n.

The controllability and observability matrix of a triple (A, B,C) € M is defined
as

CB CAB ... CA"'B
CA™'B CA"B ... CA?" !B



PROPOSITION (1.3). The rank of the controllability and observability matrix is in-
variant under the equivalence relation considered.

PROOF: Let (A;,B;,C1) and (Az, B2,C3) equivalent triples. Then there exist in-
vertible matrix P such that (Ay, B2, Co) = (P71A1P,P7'By,C1 P). So

C,ASBy, = CPP7'AYPP™'B, = C1 A% B,.

PROPOSITION (1.4). A triple of matrices (A, B,C) is controllable and observable if

and only if
rank CO(A, B,C) = n.

PRrROOF: It follows from Sylvester’s inequality (see [8] for details),

rank O(A, B,C) + rankC(A, B,C) —n <rankCO(A,B,C) <
< min (rank O(A, B, C),rank C(A, B,C)).

2. The p-Distance.

The open character of M, allows us to ensure that if (4,B,C) € M is a con-
trollable and observable triple of matrices there exists a neigborhood ¢ in M such
that for all (41, B1,Cy) € U then (A, By, C1) is also a controllable and observable.
Therefore it makes sense to consider the distance to the nearest uncontrollable or
unobservable or uncontrollable and unobservable triple.

DEFINITION (2.1): We define a norm in the space M in the following manner

forall (A, B,C) € M,  ||(A B.C)|| = H(é ﬁ’)

where

(42)

DEFINITION (2.2): For a given controllable and observable triple of matrices (A4, B,C) €
M we define the distance between (A, B, () and a nearest uncontrollable triple by

1s any matrix norm.

(1(A,B,C) = A 1(04,0B,5C))||

where (§A4,0B,5C) € M such that (A + §dA, B+ dB,C + 6C) is uncontrollable.

DEFINITION (2.3): For a given controllable and observable triple of matrices (4, B,C) €
M we define the distance between (A, B,C) and a nearest unobservable triple by

(A, B, C) = A 1(04,0B,5C))||

S



where (§A4,0B,5C) € M such that (A + §A, B+ §B,C + 6C') is unobservable.

DEFINITION (2.4): For a given controllable and observable triple of matrices (4, B,C) €
M we define the distance between (A, B,C) and a nearest uncontrollable and un-
observable triple by

1A, B, C) = A 1(04,0B,5C))||

where (§A4,0B,5C) € M such that (A+0A,B 4 éB,C + 6C) is uncontrollable and

unobservable.

We remark that p > max{u®, u°} as we can see in the following example:
Let (A,B,C) with A € M;j(R), A = (a), B € Mi;(R), B=(1), C € M;(R),
C=(1), u=1, p° =1, p® = /2. Then make sense to consider ;.

The matrix norm considered in the follows is the 2-norm: ||Al|z = 01 where oy is
the largest singular value of A.

It is evident that if P is an orthogonal matrix and we consider (Ay,B,Cy) =

(P~YAP,P~'B,CP) we have
/,L*(Al,Bl,Cl) == /,L*(A,B,C)
for x = ¢, 0, orco.

3. p*-distance and relationship with C(A4, B,C), O(A,B,C) and CO(A,B,C)

matrices

Now we analyze as a bound of ||(04,dB,0C)||2 can be deduced from the controlla-
bility, observability and controllability and observability matrices of a given triple of
matrices (A, B,C). In this case we obtain bounds for u*, * = ¢, 0, or co.

Given a triple (A, B,C) € M, the controllability matrix of (A, B,C), is inde-
pendent of the matrix C'. Then we can reduce to the pair (4, B) and consider the
bound of ||(§A, dB)||2 where (§A4,dB) is in such a way that (A +JA, B+ éB) is un-

controllable, obtained by D.L. Boley and W-S Lu in [2], and we deduce the following
Theorem.

THEOREM (3.1). For a given triple (A, B,C) € M we have

(A, B,C) < min ((1 + HACCH2> 05y, (1 + Hz‘Cch2> 0';) .
oS o

n—1

where 0§, 1 = 1,...,n are the singular values of the controllability matrix C(A, B,C).

Now, taking into account that the observability matrix O(A, B, C) is independent
of the matrix B and O(A, B,C)! = C(A",C*, B"), we have

6



THEOREM (3.2). For a given triple (A, B,C) € M we have
A, Ac
(A, B,C) < min ((1 + L OH2> o (1 + L - H2> 0'3)
g7 On—1

where ol , 1 = 1,...,n are the singular values of the observability matrix O(A, B,C').

Now we are interested to obtain a bound related to the CO(A, B,C) matrix.
Firstly, we obtain a bound relating the O(A, B,C) and CO(A, B,C)

Calling {ZO 8} the s.v.d. of CO(A, B,C) and 0{° the singular values we have

CO(A,B,C) = X' {20 8} %

where X and Y are orthogonal matrices.

REMARK (3.1): If (41,B1,C1) = (XAX 1, XB,CX™!) with X' = X!, then

CO(Al,Bl,Cl) O(Al,Bl,Cl)C(Al,Bl,Cl):
(4,B,C)X'XC(A,B,C) =

(A,B,C)C(A,B,C) = CO(A, B,C)

O
O

LEMMA (3.1). For a given triple (A, B,C') € M there exists an orthogonal matrix
P such that

A 4

— p—1 —
Ay =P AP_<A3 A,

), Blzp—lB:<_>, C,=CP=(C, C,)

where A; € M, (R), By € My«m(R), C; € Myr(R) 1 <r<n-—1, with

co
g7

_ o'o_H _
[Azle < [Acll2——=, ||Bill2 <
r r

and HUZHZ < 024—1

PROOF: Let (A, B,C) be a triple in M, [E O} the s.v.d of CO(A, B,C):

0 0
CO(A,B,C) = X' {20 g]y

where X and Y are orthogonal matrices.

X {20 8] Y = O(4, B,C)C(A, B,C) = O(A, B,C)PP~'C(A, B,C)

7



where P is such that O(A4,B,C) =@ {X(])
the s.v.d of O(A,B,C).

We consider (A1, B1,Cy) = (P~'AP, P~'B,CP), then

] P~1, P, @ being orthogonals and {X(]) ]

O(A1,B,Ch)=Q [g(])c’]

o[ (5)-al]o
n=([3]) [ (5)-

o1t L [xe o I,
=[3] ex [ o) (%)

oy
oy

- oy S0 0
[0]: s =10 %2
. 0 0

Un

0 0

0 0

LN I e (R
o] ~\L o z=to
We denote by Y, the upper left m x m submatrix of Y, then

Y<%>:<ﬂﬁ%>
= - [5 62)-7)

) Y,
where Y? denote the upper n x m submatrix of ( " )

and

In the other hand, partitioning the matrix Q' X' = | Sz | with S1 € M, (R),

52 S M(n—r)xnp(R)v 53 S M(np—n)xnp(R)

+ -1
xe tyt _ [ 275
(v) o= (53
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SO

SolS Y /2oy
- (512) (°2%)
Now partitioning the matrix S; = (S7 S7) with ST € M,«,(R), S = (SY S35)
with S} € M(,,_1yx,(R), the matrix By can be witten as

Dol SrReeyp B,
B, = o—1 oPyico =\ 7\
PHIRRY SNt €4 B,

1Bz = 1277 PSR |l < IS 2 STl Z 2 2 YE 2
Taking into account that

D P S D PR

Y

S1
15712 < || { S =1
s )|,
1Yol < Y2 =1

and
of’

Byl <
| B1ll2 < p

THEOREM (3.3). For a given triple (A, B,C) € M we have

1
H(A4,B,C) < ([Acllzotyy +057)— + 000, 1<r<n—1

T

PROOF: We consider (A + §A1, By 4+ 6B1,Cy + 6Cy) with

0 -4 B _
Ml:(@ 02)’ 5Bl:< 01)’ Gi=(0 ~C2)

The triple (A; + §A1, By + 6B1,Cy + 6Cq) is an uncontrollable and unobservable
triple of matrices for all 1 <r <n —1.
Then
H((SAl, (SBl, 501)”2 Z /,Lco(Al 5 Bl, Cl) == /,LCO(A, B, C)
Finally, in this case we have
[(6A41,0B1,0Ch)||2 < |[6A1|l2 4+ [|6B1 ]2 + [[6C1 |2 =
Ugtl i Uf:

r r

= [[A2l2 + | B1ll2 + | C2ll2 < ||Acll2

o
o + 0y

Now we deduce a bound relating the C'(A, B,C) and CO(A, B, C) matrices using
the duality relation that there exist into C(A, B,C) and O(A, B,C).
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THEOREM (3.4). Let (A,B,C) € M, then

1
A B, C) < ([Acllzoryy +01°) — 4 orpy, TSr<n—1

T

PROOF: For that it suffices to observe that if (A4, B,C), A € M,(R), B € M,,xm(R),
C € Myxn(R) is a controllable and observable triple then the triple (A*, C*, B') is
also a controllable and observable triple. And in the other hand, we observe that
given a matrix M € M,s(R), M and M' have the same non-zero singular values

Theorems (3.3) and (3.4) permit us to deduce the following bound for
COROLLARY (3.4). Let (A,B,C) € M. Then
u(A,B,C) <
M 1 o C co 1 C
in ((HA 20741 + 01 ) s + 01 (HAcHZUH-l + o ) s + Ur+1> )

for 1 <r<n-—1.

EXAMPLE (3.1): Let (A, B,C) the triple defined as follows

0.1 01 0 0
A= 0 001 001),B=| 0 |,C=(01 0 0)
0 0 001 0.1

0 0  0.0001
C(A,B,C) = 0 0.001  0.00002
0.001  0.00001

0.001 0.0011 0.0001

107°
10 > 0.12-107°
> 0.12-107% 0.123-10°°¢

0

O(A, B,C) (001 001 0
0
CO(A,B,.C)=| o0
0~

1

1 =0.01107294359
1? =0.01010136582
p® =0.01118193072
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