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Abstract

The splitting of separatrices of area preserving maps close to the identity is one of the
most paradigmatic examples of an exponentially small or singular phenomenon. The intrinsic
small parameter is the characteristic exponent h > 0 of the saddle fixed point. A standard
technique to measure the splitting of separatrices is the so-called Poincaré-Melnikov method,
which has several specific features in the case of analytic planar maps. The aim of this talk is
to compare the predictions for the splitting of separatrices provided by the Poincaré-Melnikov
method, with the analytic and numerical results in a simple example where computations in
multiple-precision arithmetic are performed.

1 Introduction

In this talk, we review some results concerning the singular splitting of separatrices for the
family of planar standard-like maps

F (x, y) = (y,−x+ U ′(y)) =
(
y,−x+

2µ0y

1 + y2
+ εV ′(y)

)
, (1)

where V (y) =
∑
n≥1 Vny

2n is an even entire function. These maps are area preserving.

If µ0 + V1ε > 1, the origin O = (0, 0) is a saddle point with Spec[DF0(O)] =
{

eh, e−h
}

,
where the characteristic exponent h > 0 is given by coshh = µ0 +V1ε. In the weakly hyperbolic
situation (h→ 0+), the splitting size turns out to be exponentially small in h, so that its measure
requires a very careful treatment, both from a numerical and an analytical point of view.

Our choice of the above maps, instead of more celebrated standard-like maps like the Hénon
map or the standard map, is due to the fact that some explicit exponentially small estimates of
the splitting size can be obtained for those maps. The estimates are computed using a discrete
version of the Poincaré-Melnikov method.

This talk is organized as follows. In section 2, the discrete version of the Poincaré-Melnikov
method for twist maps is described. Section 3 contains the analytical results about the split-
ting, both in the regular (Theorem 1) and singular (Theorem 2) cases. Finally, the numerical
experiments are presented in section 4.

2 The Poincaré-Melnikov method

Let F0 : R2 → R
2 be a twist diffeomorphism with twist generating function L0, that is, (X,Y ) =

F0(x, y) if and only if y = −∂1L0(x,X) and Y = ∂2L0(x,X). We will assume that F0 has a
separatrix Λ to a saddle point z∞0 = (x∞0 , y

∞
0 ) 6∈ Λ; that is, the invariant curves of z∞0 coincide

along the separatrix Λ.
Let F : R2 → R

2 be a twist perturbation of F0, with generating function L = L0+εL1+O(ε).
For |ε| small enough, F has a saddle point z∞ “close” to z∞0 , whose local invariant curves are



“close” to the unperturbed separatrix, although, in general, the perturbed invariant curves no
longer coincide.

To compute their distance, it is standard to invoke the Poincaré-Melnikov method which, in
the case of area preserving maps, is based on the properties of the Melnikov potential (see [2, 6]
and references therein)

L(z) =
∑
k∈Z

[L1(xk, xk+1)− L1(x∞0 , x
∞
0 )] , zk = (xk, yk) = F k0 (z), z ∈ Λ. (2)

If L has a non-degenerate critical point at z = z0, then there exists a transverse homoclinic point
zh = z0 + O(ε) of the perturbed map. Moreover, if z0 and z′0 denote consecutive non-degenerate
critical points of L, the pieces of the perturbed invariant curves between the associated homo-
clinic points zh and z′h enclose a region called lobe, whose area is invariant under F . This lobe
area A has a nice expression in terms of the Melnikov potential:

A = ε
[
L(z′0)− L(z0)

]
+ O(ε2). (3)

There exist similar theories for 2d-dimensional exact symplectic maps and Hamiltonian flows
(see [3, 1] and references therein).

3 Analytical results

We are now ready to apply the Poincaré-Melnikov method to our maps.
To begin with, the maps (1) are twist maps with generating function L(x,X) = −xX+U(X).

Moreover, the origin is a saddle point with characteristic exponent h > 0, coshh = µ, provided
that µ := µ0 + V1ε > 1.

It is convenient to split the function U(y) = µ0 log(1+y2)+εV (y) as U(y) = U0(y)+εU1(y),
with U0(y) = µ log(1 + y2) and U1(y) = V (y)− V1 log(1 + y2). Then the maps (1) take the form

F (x, y) = F0(x, y) + εF1(x, y), F0(x, y) = (y,−x+ U0(y)), F1(x, y) = (0, U1(y)),

and so L(x,X) = L0(x,X) + εL1(x,X), with L0(x,X) = −xX + U0(X) and L1(X) = U1(X).
When ε = 0, the unperturbed map

F0(x, y) = (y,−x+ U ′0(y)) =
(
y,−x+

2µy
1 + y2

)
is called McMillan map [8] and is integrable, with a polynomial first integral given by

I0(x, y) = x2 − 2µxy + y2 + x2y2.

Since µ > 1, the zero level of I0 is a lemniscate, whose loops are separatrices to the origin. The
separatrix Λ in the quadrant {x, y > 0} can be parameterized by

z0(t) = (x0(t), y0(t)) = (ξ0(t− h/2), ξ0(t+ h/2)), ξ0(t) = γ sech t, γ = sinhh. (4)

which is a natural parameterization; that is, F0(z0(t)) = z0(t+ h).
When ε 6= 0, the map F can be thought as a perturbed McMillan map, although the

characteristic exponent of the origin does not change, since the perturbation εU ′1(y) begins with
cubic terms. These two parameters, the characteristic exponent h > 0 and the perturbation
strength ε, will be considered the intrinsic parameters of our family of maps.



Since U(y) is an even function, F is an odd map, and thus the perturbed invariant curves of
the origin are symmetric with respect to the origin, so that we concentrate only on the positive
quadrant {x, y > 0}.

By the form of the perturbation, R+(x, y) = (y, x) is a reversor of F , as well as the involution
R− := F ◦R+, which is given by R−(x, y) = (x,−y+U ′(x)): F−1

0 = R±◦F0◦R±. Consequently,
the perturbed invariant curves intersect at points z± ∈ C± = {z : R±z = z}, which give rise to
two primary symmetric homoclinic orbits O± on the quadrant {x, y > 0}.

Using the parameterization (4), the Melnikov potential (2) of our problem is given by

L(t) := L(z0(t)) =
∑
n∈Z

U1(y0(t+ hn)) =
∑
n∈Z

V (ξ0(t+ h/2 + hn)) ,

and is a doubly-periodic function: L(t) = L(t + h) = L(t + π i). As a consequence, the series
of L(t) can be computed explicitly through the study of the complex singularities of L(t) [2],
leading to the expression (modulo an additive constant):

L(t) = e−π
2/h cos(2πt/h)

[
−Θ0(h)/2 + O(e−2π2/h)

]
, (5)

in terms of an even entire function Θ0(h) that satisfies

Θ0(h) = 8π
∑
n≥1

(2π)2n−1

(2n− 1)!
Vn + O(h2) = 8πV̂ (2π) + O(h2), (6)

where V̂ (ξ) :=
∑
n≥1 Vnξ

2n−1/(2n− 1)! is the so-called Borel transform of V (y). We refer to [4]
for the details.

From formula (5), one sees that the Melnikov potential L(t) is O
(
exp(−π2/h)

)
, and that for

V̂ (2π) 6= 0 and h small enough, all the critical points of L(t) are non-degenerate and contained
in hZ/2. Therefore, the Poincaré-Melnikov formula (3) gives the following result.

Theorem 1 Assume that V̂ (2π) 6= 0. Then, for 0 < |ε| < ε∗(h) = o(exp(−π2/h)), the map (1)
has exactly two transverse, symmetric, primary homoclinic orbits in the quadrant {x, y > 0}.
These orbits determine a lobe with area A = εAMel + O(ε2), where the first order in ε approxi-
mation AMel is given by

AMel = L(h/2)− L(0) = e−π
2/h
[
Θ0(h) + O(e−2π2/h)

]
. (7)

In the singular case (h → 0+) and ε = O(hp), p > 0, Theorem 1 cannot be applied, since
it requires ε to be exponentially small in h. For p > 6, the following theorem [4, 5] gives
an asymptotic expression for the lobe area in terms of the Melnikov potential, and establishes
transversal splitting of separatrices.

Theorem 2 Assume that ε = o(hp), p > 6. Then, if V̂ (2π) 6= 0, there exists h∗ > 0 such
that the map (1) has exactly two transverse, symmetric, primary homoclinic orbits in the first
quadrant, for all 0 < h < h∗. Moreover, they enclose a lobe with area

A = ε e−π
2/h
[
8πV̂ (2π) + O(h2)

]
(h→ 0+).



As a consequence, for ε = o(hp), p > 6, the lobe area A is given, in first order, by the Poincaré-
Melnikov method. At this very moment, one is confronted with several questions about the
expression of the lobe area A = A(h, ε) in the singular case h→ 0+:

1. Is the lobe area A also given by the Poincaré-Melnikov for ε = o(hp), 0 < p ≤ 6?

2. Is A also given by the Poincaré-Melnikov for ε→ 0 independently of h→ 0+?

3. What is the expression for A for ε fixed and h→ 0+?

The singular cases 1 and 2 are perturbative, whereas the singular case 3 is non-perturbative.
To deal with them, we performed some numerical experiments to compute the lobe area A, as
explained in the next section.

4 Numerical results

We now study numerically the cases not covered by the analytical results in the singular limit.
The computation of the lobe area A near the singular limit is a delicate question, since

several numerical problems are intrinsic to it. To mention only a few: (i) the dynamics near the
saddle point is extremely slow, due to the weakly hyperbolic character of the fixed point; (ii) the
lobe area is computed as a difference of exponentially close actions, giving rise to a massive
cancellation of significant digits; and (iii) the general algorithms for computing homoclinic points
have condition numbers inversely proportional to the splitting size, being exponentially ill-
conditioned for our singular maps.

To overcome these difficulties, we are forced to: (i’) expand the local invariant curves up to
very high (but optimal) order; (ii’) use an expensive multiple-precision arithmetic; and (iii’) take
the greatest advantage of symmetries and/or reversors. For instance, the computations in the
most extreme cases (in which h = 0.001 and the lobe area A was less than 10−4200) have required
more than 5200 digits in the arithmetic expanding the invariant curves up to order 1300. We
refer to [5] for the details and the implementation of the programs.

All these items encourage us to restrict the numerical experiments to the simplest perturba-
tions; that is, for the linear perturbation εV ′(y) = εy, and the cubic one εV ′(y) = εy3.

When V (y) is a polynomial the Melnikov potential L(t) is an elliptic function, and Θ0(h)
can be explicitly computed in a finite number of steps [2]:

Θ0(h) =

{
8π2γ2h−2 for V ′(y) = y
8
3π

2γ4h−2[1 + π2h−2] for V ′(y) = y3 . (8)

Taking into account the expression (7) of Theorem 1, in the singular case we look, for every
fixed ε, for a formula for the lobe area of the form

A = ε e−π
2/h
[
Θε(h) + O(e−2π2/h)

]
, (fixed ε, h→ 0+), (9)

for a function Θε(h) given by an asymptotic series of the form

Θε(h) ∼
∑
n≥0

Θε
nh

2n, (fixed ε, h→ 0+). (10)



The sign ∼ means that the series above needs not to be convergent, but only asymptotic: for
every N ≥ 0, ∣∣∣∣∣Θε(h)−

N∑
n=0

Θε
nh

2n

∣∣∣∣∣ = O(h2N+2).

After computing and analyzing a relevant number of coefficients Θε
n (up to n = 100, say),

the numerical results obtained for ε fixed and h → 0+ (the non-perturbative case) can be
summarized as follows.

Numerical result 1 For the linear and cubic perturbations, the following asymptotic expansion
for the lobe area A holds

A ∼ ε e−π
2/h

∑
n≥0

Θε
nh

2n (ε fixed, h→ 0+),

where the coefficients Θε
n verify

Θε
n = (2n)!(2π2)−2n(2n)4

[
Ξε∞ + O(n−1)

]
, (11)

as n→ +∞, for some constant Ξε∞ 6= 0. ( Ξε∞ < 0 for ε > 0.)

In particular, the series Θε(h) =
∑
n≥0 Θε

nh
2n is divergent but it is Gevrey-1, i.e., its Borel

transform Θ̂ε(h) =
∑
n Θε

nξ
2n−1/(2n− 1)! is convergent, for |ξ| < 2π2.

The next step is to consider the perturbative case, and therefore to check whether all the
previous objects Θε(h), Θε

n, Ξε∞, tend to well-defined limits, as ε → 0. This was confirmed by
the numerical experiments.

Numerical result 2 For the linear and cubic perturbations, the objects Θε(h), Θε
n, Ξε∞, intro-

duced in the Numerical Result 1, tend to well-defined limits, as ε→ 0. More precisely,

1. Θε(h) = Θ0(h) + O(ε), uniformly in h ∈ (0, 1].

2. Θε
n = Θ0

n + O(ε), non-uniformly in n ≥ 0.

3. Ξε∞ = εΞ0
∞ + O(ε2), where Ξ0

∞ =

{
−12π−4 if V ′(y) = y
−16/3 if V ′(y) = y3 .

5 Closing

From the numerical results computed for the map (1), one sees that the Melnikov potential
provides the right answer even in the singular case ε→ 0 independently of h→ 0+. Therefore,
one should improve analytically the hypothesis ε = o(hp), p > 6 in Theorem 2.

As a matter of fact, the Numerical result 1 suggests that resurgence tools [7] may be successful
to fill this gap between analytical and numerical results. Asymptotic expressions similar to (11)
seem to be true [9] for some celebrated entire maps, like the Hénon map or the standard map.
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and symplectic maps. In C. Simó, editor, Proceedings of the NATO Advanced Study Institute held in
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