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Abstract

In this paper we analyse a pressure stabilized� �nite element method for the

unsteady� incompressible Navier�Stokes equations in primitive variables� for the

time discretization we focus on a fully implicit� monolithic scheme� We provide

some error estimates for the fully discrete solution which show that the velocity
is �rst order accurate in the time step and attains optimal order accuracy in the

mesh size for the given spatial interpolation� both in the spaces L���� andH�
� ����

the pressure solution is shown to be order 	�
 accurate in the time step and also

optimal in the mesh size� These estimates are proved assuming only a weak

compatibility condition on the approximating spaces of velocity and pressure�

which is satis�ed by equal order interpolations�

key words� Finite elements� Incompressible �ow� Pressure instability� Navier�
Stokes equations�

� Introduction

The purpose of this paper is to provide some error estimates for a pressure stabi�
lized� �nite element method for the numerical solution of the unsteady� incompressible
Navier�Stokes equations in the primitive variables velocity and pressure� The method
was introduced in ��	 as an extention to the transient case of a technique initially de�
veloped for the Stokes problem 
��	� and then extended to the steady� incompressible
Navier�Stokes equations 
�	��
The stabilization of the pressure in incompressible �ow problems has received much

attention in the last decades� Numerical schemes have been developed which bypass the
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need for the approximating spaces of velocity and pressure to satisfy the compatibility
condition met when using standard Galerkin methods� Stabilized formulations were
�rst introduced under the idea of Petrov�Galerkin methods 
���	�� which then led to
Galerkin Least Squares 
GLS� techniques� These were �rst developed in the context
of advection�di�usion equations 
���	�� and then extended to the linearized� steady
incompressible Navier�Stokes equation in ��	 
see also ���	 and the references therein��
More recently� the GLS technique has evolved into the idea of subgrid�scale models


see ��	� ��	�� All these techniques have been analysed in the literature for steady
problems using arbitrary �nite element interpolations� Error analysis both in space
and time for stabilized formulations of transient problems have been given in ���	� for
advection�di�usion problems� and ���	� for the incompressible Navier�Stokes equations�
In this last reference� the analysis was based on the assumption that the time step �t
is of the same order as the mesh size h� �t � h� Moreover� it was restricted to the case
of piecewise linear elements�
On the other hand� some combinations of �nite element spaces which satisfy the

discrete compatibility condition have been analysed for the Stokes problem and proven
to be stable and yield optimal order accuracy of the solution 
see� for instance� ��	� ���	��
Assuming a 
mixed� �nite element pair which satis�es the discrete compatibility con�
dition� some analysis of methods for the unsteady problem have been given� Heywood
and Rannacher 
���	� ���	� proved second order error estimates in the time step and
optimal order accuracy in the mesh size for a mixed method using a Crank�Nicholson
time integration scheme� Boukir et al� 
��	� also proved second order estimates in
time and optimal order in space for a characteristic�based method under a stability
restriction on the time step of the form �t � hd��� where d is the dimension of space�
�nally� Guermond and Quartapelle 
���	� have recently given an analysis of the classical
fractional�step projection method of A�J�Chorin and R�Temam in its incremental form�
which yields a �rst order scheme also optimal in space 
a second order method can also
be developed�� Their analysis is based on the satisfaction of the LBB condition� which
has traditionally been considered unnecessary in projection methods based on a Poisson
equation for the pressure� This condition can be avoided assuming �t � hl��� where l
is the order of the spatial interpolation� in the stability analysis of the non�incremental
form of the method� but not in the convergence one�
We analyse here a stabilized formulation of the unsteady problem which employs a

�nite element� pressure gradient projection technique 
��	� and a fully implicit� back�
ward Euler scheme for the time integration� We show that �rst order accuracy in time
is maintained in the fully discrete method� which attains optimal order accuracy in
space for the given interpolation� The analysis is carried out assuming only a weak
compatibility condition on the approximating spaces of velocity and pressure� which
was proven to be satis�ed by simplicial equal order �nite element interpolations in ��	�
The error estimates obtained are given in terms of a certain norm of the velocity in
L�
�� and H�

� 
�� and the pressure and its gradient in L�
��� We �rst analyse the
temporal error by considering a semidiscrete approximation of the problem� and then
study the fully discrete method� with both a linearized and a nonlinear approximation
of the convective term�
It has to be remarked that the purpose of the technique employed here is to stabilize
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the pressure solution� the instabilities due to the convective term at high cell Reynolds
numbers are not addressed at with this formulation� Moreover� the interest here relies
on showing how the technique that we use to stabilize the pressure� with respect to the
spatial interpolation� can be analysed in transient problems� regardless of the particular
time integration method employed� We concentrate on a fully implicit� backward Euler
scheme� which� although being only �rst order accurate� is unconditionally stable�
however� other methods could also be considered 
see ��	�� The resulting scheme is
computationally feasable 
see ��	�� and also suitable as an iterative method to reach
steady states�
Our presentation is split into two Sections� In Section � we state the problem to

solve� recall some known properties of its solution and introduce some notation� we
then present the semidiscrete approximation considered and �nally the fully discrete�
stabilized �nite element method� In Section � we state and prove our error estimates�
�rst for the semidiscrete and then for the fully discrete problems� We �rst recall a
stability estimate which was proven in ��	 under weak assumptions on the continuous
solution� then we prove some optimal order error estimates for the velocity� from which
we obtain an improved stability estimate as a side product� We �nally analyse the
pressure solution� for which we also obtain optimal order error estimates�

� Description of the method

��� Problem statement

The evolution of viscous� incompressible �uid �ow in a bounded domain � � IRd 
d �
�� �� is governed� in the primitive variable formulation� by the unsteady� incompressible
Navier�Stokes equations�

�u

�t
� 
u � r�u� ��u �rp � f in �� 
�� T � 
��

r � u � � in �� 
�� T � 
��

on ��
�� T � 
with T � � a given �nal time�� where u
x� t� � IRd is the �uid velocity at
position x � � and time t � 
�� T �� p
x� t� � IR is the �uid kinematic pressure� � � �
is the kinematic viscosity� f
x� t� is an external force� r is the gradient operator� r�
is the divergence operator and � is the Laplacian operator 
here� and in what follows�
boldface characters denote vector quantities�� Boundary conditions have to be given
to complete the equation system 
���
��� For the sake of simplicity� only homogeneous
Dirichlet type boundary conditions are considered here�

u � � on �� 
�� T � 
��

where � � ��� An initial condition must also be speci�ed for the velocity�

u
x� �� � u�
x� in � 
��

The treatment of the above equations of motion requieres of the usual Sobolev
spaces Hm
��� m � �� consisting of functions with distributional derivatives up to
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order m belonging to L�
��� The scalar product in Hm
�� is denoted by 
u� v�m 
the
subscript m may be omitted when it equals �� and its norm by jjujjm� The closed
subspaces H�

�
��� consisting of functions in H�
�� with zero trace on �� and L�
�
���

made up with functions in L�
�� with zero mean on �� will also be needed� Also� let
H��
�� denote the dual space of H�

� 
��� the duality between these two spaces being
denoted by h � i� and let�

W � fu � H�
�
�� � r � u � �g

Assuming u� � H�
�
�� and f � L�
�� T �H��
��� and if � is bounded and Lipschitz

continuous� problem 
���
���
���
�� has at least one solution u � L�
�� T �L�
��� 	
L�
�� T �H�

�
��� 
see ���	�� Uniqueness and more regularity of the solution can be
achieved by assuming more regularity on f � u� and �� In particular� we assume
hereafter that the continuous solution 
u� p� of 
���
���
���
�� is unique and satis�es�

R�� u � L�
�� T �H�
��� 	 C�
�� T �W �� p � L�
�� T �H�
��� 	 C�
�� T �L�
�
���

R�� ut � L�
�� T �L�
���

R��
R T
� tjjutt
t�jj

�
�� dt � C

R��
R T
� jjutt
t�jj

�
W � dt � C

Here� and in what follows� the subscript t is employed for �
�t
� and we use C as a generic

constant depending of f � u�� � and �� but not on the time step �t nor on the mesh
size h� also� W � is the dual space of W � Su�cient conditions for R�� R� and R� to
hold can be found ���	� for R�� see ���	 and ���	� In particular� it is required that
f � L�
�� T �L�
���� which we assume from now on�
Let us call V � H�

�
�� and Q � L�
�
��� In what follows the following notation will

be used for the weak form of the di�erent terms in equations 
���
���

a
u� v� � �
ru�rv�� u� v � V

b
q� v� � �
q�r � v�� v � V� q � Q

c
u� v�w� � 

u � r�v�w� �
�

�

�

r � u�v�w

�
� u� v�w � V

All these forms are continuous on the speci�ed spaces� and the expression taken for
the trilinear form c arising from the convective term in 
�� is skew�symmetric in its
last two arguments 
see ���	�� under the incompressibility condition 
��� this expression
is equivalent to that obtained from the original convective term in 
��� Besides� a is
coercive as a consequence of the Poincar�e�Friedrics inequality� that is� there exists a
constant Ka � � such that�

a
u�u� � � jjrujj�� � Kajjujj
�
�� 
u � V�

and b satis�es the 
continuous� inf�sup condition� that is� there exists a constant Kb � �
such that�

inf
q�Q

�
sup
v�V

b
q� v�

jjvjj� jjqjj�

�
� Kb � �� 
��

�




in�ma and suprema are always taken with respect to non zero functions�� Condition

�� is usually refered to as the inf�sup or LBB condition� after the work of O�A� La�
dyzhenskaya� I� Babu�ska and F� Brezzi� Finally� c satis�es other continuity properties�
some of which are 
see� for instance� ��	��

c
u� v�w� �

�����
����

C jjujj� jjvjj� jjwjj�
C jjujj� jjvjj� jjwjj�
C jjujj� jjvjj� jjwjj�
C jjujj� jjvjj� jjwjjL����

��� Finite element approximation

The numerical approximation of problem 
���
�� that we analyse here was introduced in
��	 as an extention to the transient case of a �nite element method originally developed
for steady problems� It is well known that discrete approximations of incompressible
�ow problems in primitive variables are restricted by the discrete inf�sup condition�
that is� the discrete counterpart of condition 
��� this prevents the use of many simple
�nite element combinations for the discrete spaces of the velocity and the pressure� such
as equal order ones� The methods based on a pressure gradient projection circumvent
this restriction by introducing the projection of the gradient of the discrete pressure
onto the space of discrete velocities as a new variable of the problem� this allows� in
particular� the use of equal order interpolations�
In the transient case� this methodology can be applied together with di�erent time

integration schemes� we concentrate here on an implicit� monolithic scheme using the
trapezoidal rule� but extentions to other schemes such as fractional�step or multistep
methods can be derived in a similar way 
see ��	 for a description of some of them��

����� Semidiscrete problem

We consider a parameter � � 
�� �	 and discretize equations 
���
�� in time �rst by
the following implicit scheme� which we write in variational form� given a time step
size �t � �� let N � �T��t	 � �� for n � f�� � � � � Ng� let tn � n �t� given un � V and
pn � Q� approximations of u
tn� and p
tn�� respectively� �nd u

n�� � V and pn�� � Q
such that�



un�� � un

�t
� v� � c
un����un��� v� � a
un��� v� � 
rpn��� v� � 
fn��� v� 
�

b
q�un��� � � 
��

for all 
v� q� � V �Q� where for a given function g the notation gn�� stands for�

gn�� � �gn�� � 
�� ��gn

The parameter 	 which appears in the approximation of the nonlinear term in 
� can
take the values � and �� corresponding to a linearized and a nonlinear approximation
of convection� respectively� The �rst option is suitable in the �rst order� backward
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Euler case � � �� since the approximation it provides is also �rst order accurate and it
results in a lower computational cost of the fully discrete problem 
which is then linear
in each time step�� the second option� however� enhances stability for highly convective
�ows and is compulsory in the Crank�Nicholson case � � ��� to maintain second
order accuracy� In this sense� we use the expression c
un���un��� v� which difers from

c
u�u� v��n�� 
the form to which strict application of the trapezoidal rule would lead�
by a second order term and is computationally simpler� Moreover� we assume that the
semidiscrete pressures satisfy rpn�� � L�
��� conditions on the data for this condition
to hold can be found� for instance� in ���	�

����� Fully discrete method

We now proceed to introduce a spatial approximation of the semidiscrete problem 
��

��� Let  h denote a �nite element partition of the domain � of diameter h� We assume
that all the element domains K �  h are the image of a reference element �K through
polynomial mappings FK � a�ne for simplicial elements� bilinear for quadrilaterals and
trilinear for hexahedra� On �K we de�ne the polynomial spaces Rk
 �K� where� as usual�
Rk � Pk for simplicial elements and Rk � Qk for quadrilaterals and hexahedra� The
�nite element spaces we need are�

Qh �
n
qh � C�
�� 	 L�

�
�� j qhjK � �q � F
��
K � �q � Rkq
 �K�� K �  h

o
Vh �

n
vh � 
C

�
���d j vhjK � �v � F
��
K � �v � 
Rkv
 �K��

d� K �  h

o
Vh�� �

n
vh � Vh j vhj	 � �

o

Notice that both the velocity and pressure �nite element spaces Vh�� and Qh are
referred to the same partition and both are made up with continuous functions� These
�nite element spaces satisfy the following approximating properties 
see ���	� for ins�
tance�� given v � Hr
��� r � � and q � Hs
��� s � �� there exist !h��
v� � Vh���
!h��
q� � Qh and !h�

rq� � Vh such that�

kv � !h��
v�km�
� C�h

k��m�kvkk��

kq � !h��
q�km�
� C�h

k��m�kqkk��

krq � !h�

rq�km�
� C
h

k��m�krqkk��

for � � mi � ki 
i � �� �� ��� where�

k� � minfr� kv � �g

k� � minfs� kq � �g

k
 � minfs� �� kv � �g

Let now 
 � � be a given parameter� Given 
un
h� p

n
h� �

n
h� � Vh���Qh� Vh� approxi�

mations of 
un� pn�rpn�� we discretize 
��
�� in space by �nding 
un��
h � pn��h � �n��h � �

Vh�� �Qh � Vh such that�







un��
h � un

h

�t
� vh� � c
un���

h �un��
h � vh� � a
un��

h � vh� � 
rp
n��
h � vh� � 
fn��� vh�
��

�b
qh�u
n��
h � � 


�

rpn��h �rqh�� 
�

n��
h �rqh�

�
� � 
��

�
rpn��h ��h� � 
�
n��
h ��h� � � 
���

for all 
vh� qh��h� � Vh�� �Qh � Vh� where again either � � � or � � �� Equation 
���
says that �n��h is the L��projection of rpn��h onto the space Vh� thus� the cases � � �
and � � � correspond to an explicit and an implicit approximation of the pressure
gradient projection in the modi�ed continuity equation 
��� respectively 
see ��	��
In the formulation 
���
���
��� we have used a "global" parameter 
� with the same

value on all the element domains� the numerical analysis of this method then requires
of some regularity properties of the �nite element mesh such as its quasi�uniformity�
However� this restriction can be relaxed by considering a set of elemental parameters

K � K �  h and replacing the L

��scalar products appearing in 
���
��� by a sum
of products weighed in each element by 
K� This extention to local parameters was
analysed in �	 for the steady� incompressible Navier�Stokes equations� and the analysis
given there can be readily applied to the transient case� We restrict our attention here
to the global parameter case to simplify the presentation�

� Stability and error analysis

We now present a numerical analysis of the �nite element method 
���
���
���� For
the time approximation� we restrict to the fully implicit� backward Euler case � � ��
which is �rst order accurate in the time step� We split the errors of the method into
a temporal error� due to the semidiscretization 
��
��� and a spatial error� due to
the stabilized� fully discrete method 
���
���
���� In the case of study � � �� �rst
order accuracy in the time step for the semidiscrete velocity solution can be shown by
standard arguments� we include a proof of this result for completeness� We consider
both the linearized method 	 � � and the fully nonlinear scheme 	 � �� We then
concentrate on the spatial approximation in the implicit pressure gradient case � � ��

��� Error estimates for the semidiscrete solution

Let us de�ne the continuous errors 
as for the spatial variables� as�

en��c � u
tn��� � un��

rn��c � p
tn��� � pn��

gn��c � rrn��c

We then have�

Theorem �� assume R�� R� and R� hold� Then� there is a constant C independent

of �t such that�

�



jjeN��
c jj�� � � �t

NX
n��

jjen��c jj�� � C �t� 
���

If 	 � �� 
��� holds for su�ciently small �t�

proof� We call Rn the truncation error de�ned by�

�

�t

u
tn���� u
tn�� � ��u
tn��� � 
u
tn��� � r�u
tn��� � rp
tn���

� f
tn��� � Rn 
���

so that�

Rn �
�

�t

Z tn��

tn

t� tn�utt
t� dt

Multiplying 
��� by v � V and 
�� 
at t � tn��� by q � Q� and subtracting 
� 
with
� � �� and 
�� from them� respectively� we �nd�



en��c � enc

�t
� v� � �
ren��c �rv� � 
rrn��c � v� � hRn� vi �

c
un���un��� v�� c
u
tn����u
tn���� v� 
���

b
q� en��c � � � 
���

Taking v � � �t en��c in 
��� and q � rn��c in 
���� and using the identity 
a� b� �a� �
jaj� � jbj� � ja� bj�� we get�

jjen��c jj�� � jjenc jj
�
� � jjen��c � enc jj

�
� � � �t � jjren��c jj��

� � �t hRn� en��c i � � �tNLT

where NLT stands for�

NLT � c
un���un��� en��c �� c
u
tn����u
tn���� e
n��
c �

For the Taylor residual term� one has 
see� for instance� ���	��

� �t hRn� en��c i �
�t �

�
jjren��c jj�� � C �t�

Z tn��

tn
jjuttjj

�
W � dt

The treatment of the NLT is di�erent in the cases 	 � � and 	 � ��

Linearized case� when 	 � �� we have�

� �tNLT � ��t
�
c
un�un��� en��c �� c
u
tn����u
tn���� e

n��
c �

�
� ��t

�
�c
un� en��c � en��c �� c
enc �u
tn���� e

n��
c �

� c
u
tn���� u
tn��u
tn���� e
n��
c �

�
� T� � T� � T


�



where T� � � due to the skew�symmetry of the trilinear form c� and� due to its
continuity properties and the regularity property R� of u�

T� � ���t c
enc �u
tn���� e
n��
c �

� C �t jjenc jj� jju
tn���jj� jje
n��
c jj�

�
�t �

�
jjren��c jj�� � C �t jjenc jj

�
�

T
 � ���t c
u
tn���� u
tn��u
tn���� e
n��
c �

� C �t jju
tn���� u
tn�jj� jju
tn���jj� jje
n��
c jj�

�
�t �

�
jjren��c jj�� � C �t�

Z tn��

tn
jjutjj

�
� dt

Therefore�

jjen��c jj�� � jjenc jj
�
� � jjen��c � enc jj

�
� � �t � jjen��c jj�� 
���

� C �t�
Z tn��

tn
jjuttjj

�
W � dt � C �t�

Z tn��

tn
jjutjj

�
� dt � C �tjjenc jj

�
�

Adding up 
��� for n � �� � � � � N � and using the regularity properties R� and R� of
the continuous solution� we get�

jjeN��
c jj�� �

NX
n��

jjen��c � enc jj
�
� � �t �

NX
n��

jjen��c jj�� � C �t� � C �t
NX
n��

jjenc jj
�
�

Applying the discrete Gronwall inequality� this implies�

jjeN��
c jj�� �

NX
n��

jjen��c � enc jj
�
� � �t �

NX
n��

jjen��c jj�� � C �t� 
��

and 
��� follows�

Nonlinear case� when 	 � � we have�

� �tNLT � ��t
�
c
un���un��� en��c �� c
u
tn����u
tn���� e

n��
c �

�
� � �t

�
�c
un��� en��c � en��c �� c
en��c �u
tn���� e

n��
c �

�
� T� � T�

where again T� � � due to the skew�symmetry of the trilinear form c� and�

T� � ���t c
en��c �u
tn���� e
n��
c �

� C �t jjen��c jj� jju
tn���jj� jje
n��
c jj�

�
�t�

�
jjren��c jj�� � C �t jjen��c jj��

Therefore�

jjen��c jj�� � jjenc jj
�
� � jjen��c � enc jj

�
� � �t � jjen��c jj�� 
���

� C �t�
Z tn��

tn
jjuttjj

�
W � dt � C �t�

Z tn��

tn
jjutjj

�
� dt � C �tjjen��c jj��

�



and�

jjeN��
c jj�� �

NX
n��

jjen��c � enc jj
�
� � �t �

NX
n��

jjen��c jj�� � C �t� � C �t
NX
n��

jjen��c jj��

Applying the discrete Gronwall inequality� this implies� for su�ciently small �t�

jjeN��
c jj�� �

NX
n��

jjen��c � enc jj
�
� � �t �

NX
n��

jjen��c jj�� � C �t� 
���

and 
��� follows again�

Remark �� the error estimates proved in Theorem � ensure that the semidiscrete
velocities un�� are �rst order accurate in the time step� in the following sense� given
a Banach space 
X� jjzjj�� for s � � let ls
X� denote the space of �nite sequences
Z � fzn��gNn�� � X equipped with the norm�

jZjs �
� �
N

NX
n��

jjzn��jjs
���s

for s � � and jZj� � maxn�������N jjz
n��jj� Then� un�� is �rst order accurate in

l�
L�
��� and in l�
H�
�
���� This result proves� in particular� that these semidiscrete

velocities are bounded in l�
H�
�
��� by a constant independent of �t� since�

jjun��jj� � jju
tn���jj� � jjen��c jj� � jju
tn���jj� � 
C �t���� � C

due to Theorem � and the regularity assumed on the continuous solution� Moreover�
we also have jjen��c jj� � C �t���� We will use these results later on�

We also have an error estimate for the semidiscrete pressure pn���

Proposition �� let R�� R�� R� and R� hold� Then� there is a constant C indepen�

dent of �t such that�

�t
NX
n��

jjrn��c jj�� � C �t 
���

If 	 � �� 
��� holds for su�ciently small �t�

proof� by the continuous inf�sup condition 
��� we have� using 
����

jjrn��c jj� � C sup
v�V


rrn��c � v�

jjvjj�

� C sup
v�V

�

jjvjj�

n��
�t

en��c � enc � v�� �
ren��c �rv� � hRn� vi

o
� NLT

��



We bound each term as follows 
for the Taylor residual term� see ���	��

�

�t jjvjj�

en��c � enc � v� �

C

�t
jjen��c � enc jj�

�

jjvjj�

ren��c �rv� � C ����jjen��c jj�

�

jjvjj�
hRn� vi � jjRnjj�� � C

�Z tn��

tn
t jjuttjj

�
�� dt

����

The treatment of the NLT is again di�erent for 	 � � and ��

Linearized case� using the continuity properties of the trilinear form c� the regu�
larity property R� of u and the results of Theorem � and Remark �� we have�

NLT �
�

jjvjj�

�
c
un�un��� v�� c
u
tn����u
tn���� v�

�

�
�

jjvjj�

�
�c
un� en��c � v�� c
enc �u
tn���� v�� c
u
tn���� u
tn��u
tn���� v�

�
� T� � T� � T


T� �
��

jjvjj�
c
un� en��c � v� � C jjunjj� jje

n��
c jj� � C ���� jjen��c jj�

T� �
��

jjvjj�
c
enc �u
tn���� v� � C jjenc jj� jju
tn���jj� � C jjenc jj� � C �t

T
 �
��

jjvjj�
c
u
tn���� u
tn��u
tn���� v� � C jju
tn���� u
tn�jj� jju
tn���jj�

� C �t���
�Z tn��

tn
jjutjj

�
� dt

����

Therefore�

jjrn��c jj�� � C
� �
�t�

jjen��c �enc jj
�
� � � jjen��c jj�� �

Z tn��

tn
t jjuttjj

�
�� dt � �t� � �t

Z tn��

tn
jjutjj

�
� dt

�

Finally�

�t
NX
n��

jjrn��c jj�� � C
� �
�t

NX
n��

jjen��c � enc jj
�
� � � �t

NX
n��

jjen��c jj�� � �t
Z T

�
t jjuttjj

�
�� dt

� �t� � �t�
Z T

�
jjutjj

�
� dt

�

� C �t � C �t
Z T

�
t jjuttjj

�
��dt � C �t�

Z T

�
jjutjj

�
� dt

due to 
��� Estimate 
��� follows from the regularity properties R� and R� of u�

Nonlinear case� this time we have

NLT �
�

jjvjj�

�
c
un���un��� v�� c
u
tn����u
tn���� v�

�

��



�
�

jjvjj�

�
�c
un��� en��c � v�� c
en��c �u
tn���� v�

�
� T� � T�

T� �
��

jjvjj�
c
un��� en��c � v� � C ���� jjen��c jj�

T� �
��

jjvjj�
c
en��c �u
tn���� v� � C jjen��c jj� � C �t

and 
��� follows again�

��� A priori stability estimate

We begin the analysis of the discrete problem recalling a stability estimate which was
proven in ��	 under weak regularity assumptions on the continuous solution� When
studying pressure�gradient�projection methods for steady� incompressible �ow pro�
blems� the following assumptions are encountered 
see ��	�� all of which carry over
to the unsteady case�

H�� There exist 
� � � and 
� � � independent of h such that�


� h
� � 
 � 
� h

� 
���

This assumption dictates the behaviour of the numerical parameter 
�

H�� The family of �nite element partitions  h is quasi�uniform� that is� there exists a

constant  � � independent of h such that� for all h � ��

minfdiam
BK� �K �  hg � maxfdiam
BK� �K �  hg 
���

where BK is the largest ball contained in K� Condition 
��� is needed in order to have
the following inverse estimate 
see ��	��

jjvhjj� �
C

h
jjvhjj�� 
vh � Vh 
���

This assumption can be weakened by using local parameters 
K 
see �	��

H�� As in references ��	 and �	� let rQh denote the space�

rQh � fvh � L�
�� � vh � rqh� qh � Qhg

and de�ne the space Eh by�

Eh � Vh �rQh � L�
��

We consider three mutually orthogonal subspaces Eh�i of Eh de�ned by�

Eh�� � Vh��

Eh�� � V �
h�� 	 Vh

Eh�
 � V �
h 	 Eh

��



so that�
Eh � Eh��  Eh��  Eh�


For i � �� �� �� we call Ph�i the L
��projection of Eh onto Eh�i� and for i �� j� Ph�ij �

Ph�i � Ph�j and Eh�ij � Eh�i  Eh�j� In this notation� �
n��
h � Ph���
rp

n��
h �� We assume

that there is a constant �� independent of h such that�

jjrqhjj� � �� jjPh��

rqh�jj� 
���

that is to say� that the second component of the decomposition of every rqh in Eh can
be bounded in terms of the other two� This condition can also be written in the form�

inf
qh�Qh

�
sup

vh�Eh���


rqh� vh�

jjvhjj� jjrqhjj�

�
� �� � �� 
���

in a similar way to the classical inf�sup condition� condition 
���� however� is weaker
since the space where the supremum is taken� Eh��
� is larger than in the classical case�
Vh�� � Eh��� Condition 
��� was analysed in ��	� where it was shown to be satis�ed by
equal order simplicial �nite element interpolations�
The scheme analysed in ��	 di�ers slightly from 
���
���
��� in the interpretation of

the parameter 
 and the pressure gradient projection �n��h � moreover� it is restricted
to the case 	 � �� However� a straightforward extention of the proofs in ��	 leads to
the following stability result�

Theorem �� assume H�� H� and H� hold� then� there exists a constant C � �
independent of �t and h such that� for small enough �t�

jjuN��
h jj�� � � �t

NX
n��

jjun��
h jj�� � �t h

NX
n��

jjrpn��h jj� � C 
���

Remark �� this theorem proves that the discrete velocities are stable in l�
L�
���
and l�
H�

�
���� while the discrete pressure gradients 
scaled by h� are stable in l
�
L�
����

this proves� in particular� that the discrete problem is always well�posed� The result for
the pressure can be improved to l�
L�
��� in �D �ows or for the linear Stokes case 
see
��	�� We improve this estimates later on to l�
H�

�
��� for the velocity and l�
L�
���
for the pressure as a consequence of the error estimates of the next Section�

��� Error estimates for the velocity

We now proceed to obtain error estimates for the fully discrete velocity solution un��
h

as an approximation of the semidiscrete solution un�� under stronger regularity as�
sumptions on the continuous problem� We de�ne and split the errors of the method as
follows�

en�� � u
tn��� � un��
h � en��c � en��d

rn�� � p
tn��� � pn��h � rn��c � rn��d

gn�� � rp
tn��� � �n��h � gn��c � gn��d

��



where the discrete errors are de�ned as�

en��d � un�� � un��
h

rn��d � pn�� � pn��h

gn��d � rpn�� � �n��h

Subtracting 
�� 
with � � �� from 
� and 
�� 
with � � �� from 
��� and using
their respective de�nition� we can see that these discrete errors satisfy the following
equations� which hold for any 
vh� qh��h� � V h�� �Qh � V h�



en��d � end

�t
� vh� � a
en��d � vh� � 
rrn��d � vh� � c
un��

h �un��
h � vh�

� c
un���un��� vh� � � 
��


r � en��d � qh� � 

�

rrn��d �rqh�� 
g

n��
d �rqh�

�
� � 
���

�
rrn��d ��h� � 
g
n��
d ��h� � � 
���

We also introduce the following notation� Given 
vh� qh��h� � V h���Qh�V h arbitrary�
we call�

I�
u
n��� vh� � jjun�� � vhjj�

I�
u
n��� vh� � jjun�� � vhjj�

I�
p
n��� qh� � jjpn�� � qhjj�

I�
p
n��� qh� � jjrpn�� �rqhjj�

I�
rp
n����h� � jjrpn�� � �hjj�

Gn�� � jj�n��h �rpn��h jj�

and�

En
h� � inf
vh�Vh��

jjun�� � vhjj� �
�

h
inf

vh�Vh��
jjun�� � vhjj� � inf

qh�Qh

jjpn�� � qhjj�

� h inf
qh�Qh

jjrpn�� �rqhjj� � h inf
�

h
�Vh

jjrpn�� � �hjj�

E
h� � max
n�������N

En
h� 
���

We begin with a rather technical Lemma�

Lemma �� assume H� and H� hold� then� for n � �� � � � � N � for any 
vh� qh��h� �
Vh�� �Qh � Vh and for small enough h�

jjrrn��d jj� � C

�
I�
rp

n����h� � I�
p
n��� qh� �

�

�t
jjen��d � end jj� � Gn�� 
���

�
����

h

jjen��d jj� � jjend jj�� �

�

h

jjen��d jj�� � jjend jj

�
� � jjen��c jj�� � jjenc jj

�
��

�

��



proof� By the triangle inequality and the previous de�nitions� we have�

jjrrn��c jj� � jjrpn�� � Ph���
rqh�jj� � jjPh��
rqh�� Ph��
rp
n��
h �jj�

� jjPh��
rqh�� Ph��
rp
n��
h �jj� � jjPh�

rp

n��
h �jj�

� T� � T� � T
 � T�

We bound each term separately� For the �rst term� we use a similar argument to that
of ��	 for the corresponding term in the analysis of an approximation of the Stokes
problem� to get�

T� � jjrpn�� � Ph���
rqh�jj� � I�
rp
n����h� � I�
p

n��� qh�

For the second term� we have� due to the orthogonality of the projection Ph���

T �
� � jjPh��
rqh�� Ph��
rp

n��
h �jj�� � 
Ph��
rqh �rpn��h �� Ph��
rqh �rpn��h ��

� 
rqh �rpn��� Ph��
rqh �rpn��h �� � 
rrn��d � Ph��
rqh �rpn��h ��

� T��a � T��b

so that�
T��a � I�
p

n��� qh� jjPh��
rqh �rpn��h �jj�

Moreover� taking vh � Ph��
rqh �rpn��h � � V h�� in 
��� we get�

T��b � �
�en��d � end

�t
� Ph��
rqh �rpn��h �

�
� �
ren��d �rPh��
rqh �rpn��h ��

� c
un��
h �un��

h � Ph��
rqh �rpn��h �� � c
un���un��� Ph��
rqh �rpn��h ��

� �
�en��d � end

�t
� Ph��
rqh �rpn��h �

�
� �
ren��d �rPh��
rqh �rpn��h ��

� c
en��d �un��� Ph��
rqh �rpn��h �� � c
un��
h � en��d � Ph��
rqh �rpn��h ��

Then�

�
�en��d � end

�t
� Ph��
rqh �rpn��h �

�
�

�

�t
jjen��d � end jj� jjPh��
rqh �rpn��h �jj�

� �
ren��d �rPh��
rqh �rpn��h �� � C ���� jjen��d jj� jjPh��
rqh �rpn��h �jj�

� C
����

h
jjen��d jj� jjPh��
rqh �rpn��h �jj�

� c
en��d �un��� Ph��
rqh �rpn��h �� � C jjen��d jj� jju
n��jj� jjPh��
rqh �rpn��h �jj�

� C
����

h
jjen��d jj� jjPh��
rqh �rpn��h �jj�

� c
un��
h � en��d � Ph��
rqh �rpn��h �� � c
en��d � en��d � Ph��
rqh �rpn��h ��

� c
en��c � en��d � Ph��
rqh �rpn��h ��

� c
u
tn���� e
n��
d � Ph��
rqh �rpn��h ��

c
en��d � en��d � Ph��
rqh �rpn��h �� � C jjen��d jj� jje
n��
d jj� jjPh��
rqh �rpn��h �jj�

��



� C
�

h
jjen��d jj� jje

n��
d jj� jjPh��
rqh �rpn��h �jj�

� C
�

h

jjen��d jj�� � jjen��d jj��� jjPh��
rqh �rpn��h �jj�

c
en��c � en��d � Ph��
rqh �rpn��h �� � C jjen��c jj� jje
n��
d jj� jjPh��
rqh �rpn��h �jj�

� C
�

h
jjen��c jj� jje

n��
d jj� jjPh��
rqh �rpn��h �jj�

� C
�

h

jjen��c jj�� � jjen��d jj��� jjPh��
rqh �rpn��h �jj�

� c
u
tn���� e
n��
d � Ph��
rqh �rpn��h �� � C jju
tn���jj� jje

n��
d jj� jjPh��
rqh �rpn��h �jj�

� C jjen��d jj� jjPh��
rqh �rpn��h �jj�

due to Remark � and the regularity of the continuous velocity� Assuming h � C����

in the last term� we get�

T� � C
�
I�
p

n��� qh� �
�

�t
jjen��d � end jj� �

����

h

jjen��d jj� � jjend jj��

�
�

h

jjen��d jj�� � jjend jj

�
� � jjen��c jj�� � jjenc jj��

�

Moreover� due to condition 
��� and since Ph�
 � Id� Ph��� and �
n��
h � Ph���
rp

n��
h ��

we have�

T
 � jjPh��
rqh� � Ph��
rp
n��
h �jj�

� C
�
jjPh��
rqh� � Ph��
rp

n��
h �jj� � jjPh�

rqh� � Ph�

rp

n��
h �jj�

�
� C

�
T� � jjPh�

rqh�jj� � jjPh�

rp

n��
h �jj�

�
� C

�
T� � jjrqh �rpn��jj� � jjrpn�� � Ph���
rqh�jj� � Gn��

�
� C 
T� � I�
p

n��� qh� � T� � Gn���

Finally�
T� � jjPh�

rp

n��
h �jj� � Gn��

and 
��� follows�

In our convergence analysis we will also need the following assumption�

H�� There exists C � � independent of h and �t such that�

�t � C h� 
���

This condition does not impose an upper bound on the time step� so that the
method remains unconditionally stable 
see also Remark ��� Our main result of this
Section is the following�

Theorem �� assume R�	 R�	 R�	 H�	 H�	 H� and H� hold� then� there exists a

constant C � � independent of �t and h such that� for small enough h and� if 	 � ��

�



small enough �t�

jjeN��
d jj�� � � �t

NX
n��

jjen��d jj�� � C
�

E
h��� � E
h� �t�

�

���

proof� Let us call�

A �
�en��d � end

�t
� en��d

�
� �
ren��d �ren��d � � 
rrn��d � en��d �

� 
r � en��d � rn��d � � 

rrn��d �rrn��d � � 

gn��d �rrn��d �

� 

gn��d �rrn��d � � 

gn��d � gn��d �

�
�

��t

�
jjen��d jj�� � jjend jj

�
� � jjen��d � end jj

�
�

�
� �jjen��d jj��

� 
jj�n��h �rpn��h jj��

Given 
vh� qh��h� � Vh���Qh�Vh arbitrary� we take 
vh�un��
h � qh� pn��h ��h� �

n��
h �

as test functions in 
���
����
���� respectively� to get�

A �
�en��d � end

�t
�un�� � vh

�
� �
ren��d �r
un�� � vh�� � 
rrn��d �un�� � vh�

� c
un��
h �un��

h �un��
h � vh� � c
un���un���un��

h � vh�

� 
r � en��d � pn�� � qh� � 

rrn��d � gn��d ��h �rqh�

We bound each term as follows�

�en��d � end
�t

�un�� � vh
�

�
�

�t
jjen��d � end jj� I�
u

n��� vh�

�
�

��t
jjen��d � end jj

�
� �

C

�t
I�
u

n��� vh�
�

�
ren��d �r
un�� � vh�� � C � jjen��d jj� I�
u
n��� vh�

�
�

��
jjen��d jj�� � C I�
u

n��� vh�
�


r � en��d � pn�� � qh� �
�

��
jjen��d jj�� � C I�
p

n��� qh�
�



rrn��d � gn��d ��h �rqh� � 

rpn��h � �n��h ��h �rqh�

� 
Gn�� 
I�
rp
n����h� � I�
p

n��� qh��

� C h�Gn�� 
I�
rp
n����h� � I�
p

n��� qh��

�

�h

�

�
G�
n�� � C h� I�
rp

n����h�
� � C h� I�
p

n��� qh�
�

where 
� was de�ned in 
���� Moreover� due to Lemma � we have�


rrn��d �un�� � vh� � jjrrn��d jj� I�
u
n��� vh�

� C
�
I�
rp

n����h� � I�
p
n��� qh� �

�

�t
jjen��d � end jj� � Gn��

��



�
����

h

jjen��d jj� � jjend jj��

�
�

h

jjen��d jj�� � jjend jj

�
� � jjen��c jj�� � jjenc jj��

�
I�
u

n��� vh�

� C
�
h�I�
rp

n����h�
� � h�I�
p

n��� qh�
� �

�

h�
I�
u

n��� vh�
�
�

�
�

��t
jjen��d � end jj

�
� �

C

�t
I�
u

n��� vh�
� �


�h
�

�
G�
n��

�
�

��
jjen��d jj�� � C

����

h
jjend jj� I�
u

n��� vh�

� �
jjen��d jj�� � jjend jj
�
� � jjen��c jj�� � jjenc jj

�
��
C

h
I�
u

n��� vh�

We split the convective terms the following way�

c
un��
h �un��

h �un��
h � vh� � c
un���un���un��

h � vh�

� c
en��d �un���un��
h � vh� � c
un��

h � en��d �un��
h � vh�

� � c
en��d � en��c �un��
h � vh� � c
en��d �u
tn����u

n��
h � vh�

� c
en��d � en��d �un��
h � vh� � c
en��c � en��d �un��

h � vh�

� c
u
tn���� e
n��
d �un��

h � vh�

� c
en��d � en��c � en��d � � c
en��d � en��c �un�� � vh�

� c
en��d �u
tn���� e
n��
d � � c
en��d �u
tn����u

n�� � vh�

� c
en��d � en��d � en��d � � c
en��d � en��d �un�� � vh�

� c
en��c � en��d � en��d � � c
en��c � en��d �un�� � vh�

� c
u
tn���� e
n��
d � en��d � � c
u
tn���� e

n��
d �un�� � vh�

Due to the continuity properties of the trilinear form c� its skew symmetry in its last
two arguments� the results of Theorem �� the regularity assumed for the continuous
solution u and Young"s inequality� we have�

c
en��d � en��c � en��d � � C jjen��d jj� jje
n��
c jj� jje

n��
d jj�

� C �t���jjen��d jj� jje
n��
d jj�

�
�

��
jjen��d jj�� � C �t � jjen��d jj��

�c
en��d � en��c �un�� � vh� � C jjen��d jj� jje
n��
c jj� I�
u

n��� vh�

� C �t��� jjen��d jj� I�
u
n��� vh�

� �t � jjen��d jj�� � C I�
u
n��� vh�

�

� c
en��d �u
tn���� e
n��
d � � C jjen��d jj� jju
tn���jj� jje

n��
d jj�

� C jjen��d jj�� �
�

��
jjen��d jj��

c
en��d �u
tn����u
n�� � vh� � C jjen��d jj� jju
tn���jj� I�
u

n��� vh�

� C jjen��d jj�� � I�
u
n��� vh�

�

c
en��d � en��d � en��d � � �

��
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Taking the in�mum with respect to 
vh� qh��h� � Vh�� �Qh � Vh� we get�
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Adding up 
��� from n � � to N � using assumption H�� the de�nition of E
h� and the
estimates of Theorem �� we get�
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since E
h� � C h� 
E
h��� � E
h� for h small enough and jZjl��X� � C jZjl��X� for
any Z and X 
see Remark ��� For su�ciently small h� the second term in the right
hand side can be passed over to the left hand side� since E
h� tends to � as h tends to
�� By the discrete Gronwall inequality� this implies� for su�ciently small �t in the case
	 � ��
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Remark �� for equal order interpolations of degree k� the spatial error function
E
h� behaves like hk� the worst case being that of linear 
P�� and multilinear 
Q��
elements� In general� one always has E
h� � C h� due to assumption 
���� this result
proves in particular that the discrete velocities are bounded in l�
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This is the key point to obtain improved stability estimates in the next Section�
Remark �� the last term in the estimate 
��� for the discrete velocity is due to the

presence of the convective term in the equations 
it is not present in an analysis of the
linear Stokes case� and arises from the estimates of the semidiscrete problem� Again�
since E
h� � Ch� this extra term is always smaller than �t�� and the method remains
�rst order accurate in time for the velocity�

��� Improved stability estimate

As a consequence of the convergence analysis of the previous Section� the stability
results of Section ��� can be improved as follows�

��



Proposition �� assume R�	 R�	 R�	 H�	 H�	 H� and H� hold� then� there exists

a constant C � � independent of �t and h such that� for small enough h and� if 	 � ��
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Dividing this estimate by jjPh��
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��



��� Error estimates for the pressure

We begin this Section with an estimate for the discrete pressure gradient�

Proposition �� assume R�	 R�	 R�	 R�	 H�	 H�	 H� and H� hold� then� there

exists a constant C � � independent of �t and h such that� for small enough h and� if
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Taking the in�mum with respect to �h and qh and using 
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and 
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��� and the de�nition of E
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Since we have obtained error estimates for the fully discrete pressure gradient and
the semidiscrete pressure itself� we now present some estimates for the fully discrete
pressure solution� which are based on a classical duality argument�

Proposition �� assume R�	 R�	 R�	 R�	 H�	 H�	 H� and H� hold� then� there

exists a constant C � � independent of �t and h such that� for small enough h and� if
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proof� Let z � H�
�
�� and � � L�
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�� be the solution of the following Stokes problem�
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��� is obtained dividing by jjrn��d jj� throughout� squaring the result�
multiplying by �t� and adding up from n � � to N � due to 
��� and 
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��� Global error behaviour

As a consequence of the previous results� we have�

Corolary �� assume R�	 R�	 R�	 R�	 H�	 H�	 H� and H� hold� assume also

that� for n � �� � � � � N � un�� � Hr
��� r � � and pn�� � Hs
��� s � �� and that they

are uniformly bounded in these spaces� Then� there exists a constant C � � independent
of �t and h such that� for small enough h and� if 	 � �� small enough �t�

jjeN��jj�� � � �t
NX
n��

jjen��jj�� � �t�
NX
n��

jjrn��jj�� � C
�
�t� � h�k

�

���

where k � min
r � �� s� kv� kq � ���

proof� this estimate follows from Theorems � and �� Propositions � and �� assump�
tion 
���� the regularity assumed of the semidiscrete solution 
un��� pn��� and the
approximating properties of the �nite element spaces considered�

Remark 
� The condition �t � Ch� arises due to the proof technique employed�
which deals with the temporal error �rst and then the spatial error� However� according
to the results of Corolary �� accuracy considerations indicate that� when equal order
interpolation of degree k is used� �t should be of order hk� for linear 
P�� and bilinear

Q�� elements� one has k � �� so that assumption H� is ful�lled� Even for quadratic

P�� and biquadratic 
Q�� elements� one still has k � �� making H� acceptable�
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