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‘We consider a perturbation of an integrable Hamiltonian system, possessing hyper-
bolic invariant tori with coincident whiskers. Following an idea due to Eliasson, we
introduce a splitting potential whose gradient gives the splitting distance between
the perturbed stable and unstable whiskers. The homoclinic orbits to the perturbed
whiskered tori are the critical points of the splitting potential, and therefore their
existence is ensured in both the regular (or strongly hyperbolic, or a-priori unsta-
ble) and the singular (or weakly hyperbolic, or a-priori stable) case. The singular
case is a model of a nearly-integrable Hamiltonian near a single resonance. In the
regular case, the Melnikov potential is a first order approximation of the splitting
potential, and the standard Melnikov (vector) function is simply the gradient of
the Melnikov potential. Non-degenerate critical points of the Melnikov potential
give rise to transverse homoclinic orbits. Explicit computations are carried out for
some examples.

1 Introduction

For more than 2 degrees of freedom, the problem of measuring the splitting of
the whiskers of hyperbolic invariant tori is closely related with the existence
of instability in nearly-integrable Hamiltonian systems, i.e. with the Arnold
diffusion. In this lecture, the splitting is studied in a wide setting, and a
general Poincaré-Melnikov theory is developed.

Setup

We start with a perturbation of a hyperbolic integrable Hamiltonian, with
n + 1 > 3 degrees of freedom. In canonical variables z = (z,y,9,I) € D C
T x R x T® x R”®, with the symplectic form dz A dy + dyp A dI, consider a
Hamiltonian of the form

H(z,y,¢,I;p) = Ho(z,y,I) + pHi(z,y, ¢, 1), (1)
1 2
Ho(e,y,1) = 0,1+ 5 AL + £+ V(@) + WD)y,  (2)
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where p is a perturbation parameter. The Hamiltonian equations associated
to H are:

t=y+\NI) +pdyHi(z,y,0,1),
gy =-V'(zx) — u0 Hy(z,y, 0, 1),
¢ =w+ Al + Ay +pdHi(z,y,9,1),
I= — wpHy(z,y, 0, 1).

It will shown in section 2 that, under weak assumptions, the unperturbed
Hamiltonian Hy has n-dimensional whiskered tori (hyperbolic invariant tori)
with coincident (n + 1)-dimensional whiskers (invariant manifolds). For a
given whiskered torus of Hy, its (unique) whisker is filled by homoclinic orbits
(biasymptotic to the torus). Our aim is to study the splitting of the whiskers,
and the persistence of some homoclinic orbits, for p # 0.

Main achievements

To deal with this problem, the tools used are Poincaré—Melnikov theory, and
a geometric method based on Eliasson’s approach. Our contributions can be
summarized as follows:

e A general Poincaré—Melnikov theory for Hamiltonian systems is devel-
oped, defining a scalar function L (Melnikov potential) whose gradient
M (Melnikov function) gives the splitting distance at first order in p.

e There exists a scalar function £ (splitting potential) such that, in suitable
variables, its gradient M (splitting function) gives exactly the splitting
distance. Besides, the splitting potential £ is approximated at first order
in p by the Melnikov potential L.

e The results are significant for more than 2 degrees of freedom.

Motivation

The study of the splitting in the Hamiltonian (1-2) is closely related to the
problem of Arnold diffusion in a general nearly-integrable Hamiltonian system:

H(¢,J) = h(J) +ef(4,7), (3)

in angle-action variables (¢, J) € T"*! x R**1. Here, the small perturbation
parameter is €.

Near single resonances, it is known 123 that one step of (resonant) normal
form procedure can be performed and leads, under some generic hypotheses
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and after a scaling, to a Hamiltonian of the type (1-2), taking as Hp the
truncated normal form.

To make this clearer, consider a selected action J* = 0, and assume that
its associated frequency vector d7h(0) € R**! has a single resonance (this
means (k*,0;7h(0)) = 0 for a certain k* € Z""1\ {0} and (k,dsh(0)) # O for
any k € Z™! not co-linear to k*). It can be assumed that 9k (0) = (0,w*),
with w* € R™ nonresonant. Near J*, the unperturbed Hamiltonian h in (3)
can be written as:

1
h(J) = (0sh(0), J) + 5 (87h(0)J, J) + O3(J).
We write ¢ = (z,p) € T x T and J = (y,I) € R x R*, and

2 )\T
om0 = () )

where we have put 32 > 0 in order to fix ideas, A € R?, and A is an (n x n)-
matrix. With some scaling, we can assume # = 1, and our Hamiltonian
written in the form

H(z,y,o,I) = h(y,I) +ef(z,y,0,I),

1 2
Ry, D) = ", 1)+ 5 (ALD + %+ (\ D)y + Os(y, 1).

Performing one step of resonant normal form procedure, we can construct
a symplectic map ® such that H o ® = Hy + H;, with

1 2
Ho(w,y, I;e) = (@', 1) + 5 (ALI) + % + V(@) + (A D)y,
Hi(z,y,¢,[;¢) = eR(z,y, 9, I) + 03(y, I) + 0 (¢?),
and V' (z) is the periodic function obtained by averaging with respect to the
angles ¢:
1

/ f(z,0,0,0)dp, zeT.
'ﬂ‘ﬂ.

In the normalized expression for H, note that Hy (the truncated normal form)
is an integrable Hamiltonian, and then H; can be considered as a perturbation
of some size ey where o can be determined in terms of €. In this sense, the
expression obtained generalizes the Lochak’s example ¢ (which, in its turn,
generalizes the famous Arnold’s example, ° designed to describe the diffusion).

Under generic hypotheses, it can be shown that the Hamiltonian Hy has
whiskered tori with coincident whiskers associated to this hyperbolic point (see
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section 2). Therefore, although there is no hyperbolicity in h, the perturbation
f provides some weak hyperbolicity, which appears in the truncated normal
form Hy. This hyperbolicity disappears for ¢ — 0, because the Lyapunov
exponents of the whiskered tori of Hy are of the form ++/ca. To have fixed
exponents, we replace y, I by v/zy, v/¢I (a non-canonical linear change), and
divide the Hamiltonian by €. Then the new system is still Hamiltonian, and
we obtain obtain for H = Hp + H; an expression of the form (1-2), with

e o).

It has to be pointed out that, after this procedure, in general the truncated
normal form Hy is a coupled Hamiltonian: A # 0 in (2). So the motivation
for the coupling term (A, I) y is that this term appears in a natural way when
one studies a nearly-integrable Hamiltonian, in a region close to a single res-
onance. As a particular case, note that if A = 0 in (2), then the unperturbed
Hamiltonian Hy is somewhat simpler because it is formed by a pendulum and
n rotors: we then say that Hy is uncoupled. We will show in section 4 that
the formulation of Poincaré—Melnikov theory is simpler in this special case.

Although the (homoclinic) splitting between the whiskers of hyperbolic
tori in single resonances is very important in the detection of Arnold diffu-
sion (through the construction of transition chains), we point out that there
are other important difficulties related with this problem. These difficulties
are the study of the transition properties of the tori, the detection of hetero-
clinic intersections between whiskers of different tori, and jumping the gaps
associated to double resonances.

w =

Regular and singular cases

According to the motivation above, it is convenient in (1-2) to allow w to
depend on an additional parameter €, considering fast frequencies w = w*/+/c.
The parameters € and p can be whether independent or linked by a relation of
the type pu = €P with some p > 0; these two cases will be called, respectively,
regular and singular. We have shown that, in the study of a general nearly-
integrable Hamiltonian, the actually relevant case is the singular one (with
p = 1/2), and that this feature is directly related to the weak hyperbolicity
of the truncated normal form.

Concerning the regular situation, we recall that the strategy of keeping
e > 0 fixed and letting p — 0 (having in this way a regular system) was
introduced by Arnold % in order to avoid dealing with a singular perturbation
problem. In this case, Poincaré—Melnikov theory can be applied directly to the
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detection of the splitting, but only if the parameter y is taken ezponentially
small with respect to €. This is due to that the Melnikov integrals involved
are exponentially small in ¢, as in the second example shown in section 5 (for
the first example shown, the integrals are not exponentially small, because
the perturbation is not analytic in this case).

In the singular case, one assumes that the parameters € and p satisfy a
power-like relation of the type p = €P (the smaller p the better), and one lets
€ — 0. In this case, the problem of detecting the splitting from the Melnikov
integrals is much more intricate, because of the exponentially small character
of the integrals involved. However, some recent works 78 suggest that, under
some weak conditions, the Melnikov integrals give the right predictions for the
splitting.

Nevertheless, the existence of homoclinic orbits has been established in
several works. 1910 This result is valid for regular and singular systems, and
we recall it in section 6.

2 The unperturbed Hamiltonian

Assumptions

In this section, we take up = 0 and study the unperturbed Hamiltonian Hy
defined in (2). Note that the given ingredients of Hy are the vectors w, A € R?,
the symmetric (n x n)-matrix A, and the function V(z) of z € T. We require
the following assumptions:

e The function V(z) has a unique and nondegenerate global maximum. To
fix ideas, we require

V(0) =0, V'(0) =0, V"(0) <0,
0

- (4)
(z) <0 Vr#0 (mod 27).

e The following nondegeneracy condition holds:

det (A —AXT) = det (/1\’\AT> # 0. (5)

e The vector w is assumed to satisfy a Diophantine condition: for some
7>n—1and vy >0,

((k,w)| > v [k]™" Vk € Z™\{0}. (6)
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The unperturbed torus and its homoclinic whisker

The integrable Hamiltonian Hy can easily be studied. Let us introduce

2 ~

Ple,y) =5 +V(@),  Pley,])=Pley+\D); (™)
then Hy can be rewritten as
1 ~
Hy = (w,1) + 5 (A =M\T) LI) + P(z,y,1).

We see that, on every plane I = const, the Hamiltonian Hy reduces to a 1-
degree-of-freedom Hamiltonian: a generalized pendulum (the standard pendu-
lum being given by V(z) = cos z—1). This pendulum has (z,y) = (0, — (, I))
as a hyperbolic equilibrium point, with (homoclinic) separatrices given by
y+ (A, I) = £4/—2V(z). The Lyapunov exponents of the hyperbolic point

are o, where we define a = /—V"(0).
Therefore, the Hamiltonian Hj possesses an m-parameter family of n-
dimensional whiskered tori given by the equations I = const, y = — (A, I), z =

0, with (n+1)-dimensional whiskers. The stable and unstable whiskers of each
torus coincide, and hence all orbits on this (unique) whisker are homoclinic,
i.e. biasymptotic to the torus.

We will focus our attention on a concrete hyperbolic torus, that we assume
located at the origin: I = 0, x = y = 0. Note that the vector w, assumed
Diophantine, consists of the frequencies of this torus: ¢ = w. In view of the
nondegeneracy condition (5), the neighbor tori have different frequencies.

Parameterizations for the unperturbed Hamiltonian

We denote 7y the whiskered torus of Hp having frequency vector w. This
torus can obviously be parameterized by

To:  2(p) =(0,0,9,0), €T

As mentioned above, the stable and unstable whiskers of the torus 7, coincide;
this homoclinic whisker is given by the equations I = 0, P(z,y) = 0. We
denote W, the positive part (y > 0) of the homoclinic whisker (it is often
called separatriz). To give a suitable parameterization for Wy, we consider
the 1-degree-of-freedom Hamiltonian P(z,y), and denote (zo(s),yo(s)) the
associated homoclinic trajectory, with z¢(0) = =, yo(0) > 0. Note that zo(s)
goes from 0 to 27 when s goes from —oo to 0o. It is clear that we can give
the whisker W, the parameterization

WO : 20(8,(,0) = (mO(s)ayO(s)vw + (mO(s) - W))\,O), s € Ra p e Tna
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where the term (zo(s) — m) A expresses the phase drift undergone by any tra-
jectory when traveling along Wy. This drift is associated to the coupling term.
Note that, with our definition, the dynamics on W is given by the equations
§ =1, ¢ =w. One has

tllgloo [20(s +t,p +wt) — 25 (p £ TA +wt)] =0,

and this implies that that every trajectory on W, is biasymptotic to two
different trajectories on the invariant torus 7. If A is an integer (a very
special case) then these two trajectories on 7o coincide.

3 Preservation of the whiskered torus and its whiskers

The local normal form

Before studying the splitting, we have to establish the surviving under per-
turbations of our Diophantine whiskered torus, as well as its local whiskers.
Then we have to extend them to global whiskers in order to compare the sta-
ble and the unstable ones. The surviving of the torus and its local whiskers
under a small perturbation can be ensured by means of the hyperbolic KAM
theorem, a version of the KAM theorem adapted to this problem.

Roughly speaking, the hyperbolic KAM theorem provides a symplectic
transformation ® taking our Hamiltonian into a local normal form H = Ho &
(in some domain), having a simpler expression in which the perturbed torus
becomes transparent, as well as its whiskers. This kind of result follows from
a convergent KAM-like iterative scheme.

We are interested in a normal form defined in a whole neighborhood of
our concrete torus, '!! according to the “Kolmogorov’s approach” to KAM
theory. This approach allows us to control a neighborhood of the local stable
whisker, which can be ensured in this way to contain also a piece of the global
stable whisker (this feature is used in section 6). On the contrary, in the
“Arnold’s approach” (used in other papers) the normal form only holds on a
Cantor set, although a large family of surviving tori is obtained. Some more
comments and references to papers following both approaches are given in a
recent paper of the authors. 1°

In most papers (like for instance '), the hyperbolic KAM theorem is dealt
in terms of some local variables in a neighborhood of the torus, in such a way
that the whiskers become coordinate planes. A significantly new approach
was introduced by Eliasson, who rewrote the hyperbolic KAM theorem and
expressed it directly in the “original variables”. ! This is more suitable to our
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purpose of carrying out a global control of the whiskers in order to study their
splitting (see section 6).

Another key fact is the use of exact symplectic transformations to normal
form in the hyperbolic KAM theorem. To recall what an exact symplectic
transformation is, consider the 1-form n = —(ydz + Idy), whose differential is
the standard symplectic 2-form: dn = dzAdy+dpAdI. Then a transformation
& is symplectic if the 1-form ®*n — 7 is closed, and it is exact symplectic if
this 1-form is exact (= d.S, globally, for some scalar primitive S).

Eliasson ! used the exactness of the normalizing transformation as a cru-
cial tool in order to detect homoclinic intersections between the whiskers, in
both regular and singular systems (although he did not compute the split-
ting). A similar result was also obtained by Bolotin. ° In a further step, in
the present lecture the exactness allows us to put the splitting function as the
gradient of a splitting potential (see section 6).

Another paper that has influenced our version of Eliasson’s theorem is
a recent one by Niederman. !! This paper deals with a similar framework
(using the Kolmogorov’s approach but not working in the original variables),
and obtains more accurate estimates for the normal form.

Let us introduce first some notations. Concerning the domain, we define
for r > 0 the complex set

B, = {(maya(va) : |m|,|y|,|I|,|Im<p| < 7'}'

For a function f(z,y, ¢, I) analytic on some domain D (and continuous on its
closure), we denote |f|, its supremum norm.

Theorem 1 (Eliasson’s theorem) Let H = Hy + pH; as described in (1-
2) and in the assumptions (4—6), with T > n — 1. Assume H analytic on
B, (r < r9). Then for |u| small enough, there exists an exact symplectic
transformation ® = ®(-;u) : By —> B, (analytic with respect to (z,y, @, I)
and 1), 0 < v < 1, and there exist a = a(u), b = b(u) (analytic in p), such
that H = H o ® takes the form

H = (0,1 —a) +bP(z,y,1) + 0z (P(z,,1), 1 - a). (8)

Besides, one has ® =id + O(u), a = O(u), b =1+ O(w)-

The most important point about this result is that, thanks to the use of
the original variables z, y, the local normal form H can be put in terms of
the generalized pendulum P(z,y, I). By using this feature, a “global” control
of the whiskers, very useful in order to compare them and study the splitting,
can be carried out. 119

In is not hard '° to establish the validity of theorem 1 in the singular
case, with p1 = €? and w = w*/4/€, for || small enough.
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Parameterization of the perturbed torus

It is clear that the normal form H given in (8) has a whiskered torus of fre-

quency vector w. We denote this torus as 7, and its associated local whiskers
as W,!_ (stable) and W, (unstable).

The torus 7 has the following obvious parameterization:
%: 2*(<p):(07_<)‘7a>a907a)a ‘peTn'

This torus can be translated to a whiskered torus 7 of the original perturbed
Hamiltonian H:

T: () =2(2(p), peT

In section 4, it will be useful to give a first order approximation in y for
the shift suffered by the perturbed torus 7 with respect to the unperturbed
torus 7o, along the I-direction. We will denote I*(¢) the I-component of
z*(¢). To describe this approximation, we consider the (zero average) scalar
function x(p) solving the following small divisors equation:

<wa akpX) + E(Oa Oa 0) = Hl (07 Oa ) 0) (9)

where the notation f denotes the p-average of a function f. The existence of
X is ensured by the Diophantine condition (6).

The function y, introduced by Treschev, 2 provides a first order approx-
imation '° for the perturbed torus:

I'(p) = p(C—Opx(9)) + O (W),  @eT, (10)

where we define ¢ = — (A — AAT) " (8;H; — A0, Hy) (0,0,0).

Parameterizations of the perturbed whiskers

As in section 2, we can also take parameters on the perturbed local whiskers
of the normal form H:

Wie s (s,0) = (20(bs),30(bs) — (A, @), + (o (bs) — m)A, a),
for £5 > sg, p € T™, with some sg = so(r). For the original Hamiltonian H,
the local whiskers can be parameterized as follows:
Wice:  zigo(s,0) = @ (2(s,9)), £5>s0, @€T™

loc
In the parameters s, o, the dynamics of H on Wlfc isgiven by § =1, ¢ = w.

We need to extend these local whiskers to global whiskers, in order to
measure the splitting between them. The parameterizations of the whiskers
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Wlfc, valid for £s > sp, can easily be extended to further values of s in a
natural way, since the whiskers are formed by trajectories associated to our
Hamiltonian H. We denote W* the extended or global whiskers. These
global whiskers remain at distance Q(u) to the unperturbed whisker Wy, for
an interval of real values of the parameter s. This interval can be chosen large
enough in order to make it possible to compare the whiskers W™ and W~ far
from the torus 7.

4 Poincaré—Melnikov theory

In this section, we develop Poincaré—Melnikov theory in order to give a first
order approximation for the splitting of the separatrix Wy into the perturbed
whiskers W* associated to the perturbed torus 7. Besides, we want to de-
scribe the set W* N W™, i.e. the homoclinic orbits to 7.

Melnikov potential and Melnikov function

In order to provide a first order approximation for the splitting, we introduce
the (scalar) Melnikov potential L(yp) and its gradient, the Melnikov function
M(p) = 8,L(yp), by means of improper integrals, u-independent and periodic
in ¢ € T™. These integrals are always absolutely convergent, thanks to the
fact that the phase drift along the separatrix (due to the coupling term in (2))
and the first order deformation of the perturbed hyperbolic tori are taken into
account.

We stress that our use of absolutely convergent integrals in the formu-
lation of the general Poincaré—Melnikov theory for whiskered tori makes a
difference with respect to some previous works, 31415 where conditionally
convergent integrals are used and the integration limits have to be carefully
chosen.

Next we define these functions in several cases, in increasing order of
complexity.

e The simplest case is that of a perturbation vanishing on the whiskered
torus, Hy = Q2(z,y,I). In this case, the whiskered torus remains un-
changed (7 = Tp). We define the Melnikov potential through the follow-
ing integral:

B = - [ (- Caoltp + )

— 00

= —/ H; (20(t, o + wt)) dt + const. (11)
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Note that the additive constant is such that L = 0. For the Melnikov
function, it is clear that

M) =0,L0) =~ [ 0uHy Galtyp+wt)dt (12)

The absolute convergence of the integral (12) for the Melnikov function
was already pointed out by Robinson, 15 stressing that in other cases this
integral is only conditionally convergent. We also recall that, for n = 1,
the Melnikov potential (11) coincides with a formula given by Delshams
and Ramirez-Ros.

e Now, we consider the uncoupled case A = 0 (note that this case intersects
but does not include the previous one). In this case, we define the Mel-
nikov potential through the following integral, also absolutely convergent:

L) =- [ T ) oltap +wt) — (Hy— ) (25 (0 + wi)] dt

—00

= [ U ot o+ ) — Hi (s + )] e+ const

—00

e Finally, in the general case (which includes the two previous ones), we
define

[e9)
o) =- [ (- - (o o)) Galtp +ot)dt. (13)
—0o0

Recall that H;(z,y,I) denotes the p-average of H;, and that the func-
tion x(z,y,,I) = x(p) is the (zero average) function solving the small
divisors equation (9). Notice that L = 0, because the function inside
the integral has zero average. The absolute convergence of the Melnikov
integral (13) can be ensured using that the function Hy — Hy — {x, Ho}
vanishes on 7y, together with the fact that W, tends to 7o with expo-
nentially decreasing bounds.

We remark that the formula (13) is useful in both the coupled and the
uncoupled cases (in (2), A # 0 and A = 0 respectively). An example illus-
trating the uncoupled case was given by the authors. '° Related expres-
sions, also valid in both cases, were previously obtained by Treschev. 12
In that paper, although the Melnikov potential was not introduced, the
Melnikov function was expressed with the help of some correcting terms
giving rise to the absolute convergence. We have improved that expres-
sion, including the correcting terms in the integral and providing a more
compact formula.
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First order approzimation for the splitting distance

The following standard result '© shows that a first order approximation for the
splitting between the global whiskers WW*, measured along the I-direction, is
given in terms of the Melnikov function M = 0,L. Since both whiskers are
(n+1)-dimensional manifolds contained in the same (2n+ 1)-dimensional level
of energy, it is enough to express its distance by an n-dimensional measure.
We take the difference I~ — I as the measure for the splitting (we denote
I*(s,p) the I-component of the parameterizations z* (s, ©)).

Theorem 2 Assuming |u| small enough, one has for any |s| < so and ¢ € T™
the following approzimation:

I (s,p) = I (8,) = pO,L(p —ws) + O (4) . (14)

We stress that the Hamiltonian character of the equations implies the fact
that the first order approximation of the splitting is simply the gradient of a
scalar function L.

An important fact in this theorem is that Iy,...,I, are first integrals
of Hy. Following Treschev, 2 it is not difficult to generalize theorem 2 by
considering any given first integral F' of the unperturbed Hamiltonian Hy.
Thus, it can be given an analogous first order approximation for F'~ (s, @) —
F*(s, ), i.e. for the difference of the values of F at the points z*(s, ). In
the particular case F = P (the function defined in (7)), one gets

P=(s,0) = P¥(5,9) = —p (w, 0y L(p — ws)) + O (u®) = pudsL(s, ) + O (),

where we define L(s,p) = L(p — ws), which can be considered a function
defined on the separatrix Wy. Using this fact, an alternative measure for the
splitting could be I} — I;",..., I, — I ,, P~ — P* (if w, # 0), instead of
I —If,...,I; — I}

Transverse homoclinic orbits

As a simple corollary of theorem 2, we see that in the regular case the simple
zeros of the Melnikov function M give rise, for |u| small enough, to transverse
homoclinic intersections between the perturbed whiskers. As is well-known,
if a point belongs to the homoclinic intersection, then its whole orbit is also
contained in this intersection. Thus, it is enough to find the zeros of M (¢ —ws)
for a fixed value of s (a y-section), and from the simple zeros of M we get
transverse homoclinic orbits biasymptotic to the perturbed torus (contained
in both the stable and the unstable whiskers).

Since M is the gradient of the Melnikov potential L, it is obvious that the
simple zeros of M are the nondegenerate critical points of L. If the function L
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(defined on T™) is a Morse function (its critical points are all nondegenerate:
a generic property), we deduce from Morse theory that for || small enough
there exist at least 2" transverse homoclinic orbits.

It is well-known that this argument does not apply in the singular case,
w = w*/y/ec and p = €P, because the Melnikov function M is typically ex-
ponentially small in ¢ (see the second example in section 5). To ensure that
uM (p — ws) dominates the O (,uZ)—term, one has to assume p exponentially
small with respect to €. For larger values of u, the existence of intersections
cannot follow directly from (14).

In fact, the study of the splitting in the singular case requires a more
careful analysis, 7% which is not carried out here. Nevertheless, the effective
existence of a number of homoclinic intersections, for both the regular and
singular cases, will be established in section 6.

5 Some examples with small divisors

To illustrate the properties of the Melnikov potential L, in this section we
consider some examples, showing that L has nondegenerate critical points.
As a measure of the transversality of these points as zeros of M = 0,L, we
also estimate the determinant of the symmetric matrix 0, M = 92L at the
critical points.
Consider the Hamiltonian H = Hy + pHy, with
1 y?
fﬂﬂx,y,[)::(w,I>+»§(AI,I>+»E;—+cosx-—1,
Hy(z,9) = (cosz —1)f(p),  flp) = Y fue'®¥).

kezm™

The integrable Hamiltonian Hy is uncoupled (A = 0 in (2)), and consists of a
pendulum and n rotors (the standard pendulum is given by V(z) = cosz—1).
Note that the perturbation H; depends only on the angles z, ¢ and that, since
H; = Q2(z), the whiskered torus remains fixed.

We do not assume that f(p) is a trigonometric polynomial, but rather
that it includes harmonics in ¢ of arbitrarily high orders. If the Fourier
coefficients of the function f(p) are exponentially decreasing:

| fiul ~ e ¥le, (15)

then this is an analytic function, and p is its width of analyticity in the angles
. On the contrary, if the coefficients are polynomially decreasing:

| il ~ (16)

[
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then the function f(p) is not analytic but only differentiable (it is CP for any
p<T—mn).

Since we are interested in a singular situation, we consider fast frequencies
w = w*/4/e. We assume that the vector w* is Diophantine, and introduce
v =v*/+/€ in (6), for some 7 > n — 1.

Melnikov coefficients

The fact that H; = Q2(z) allows us to compute the Melnikov potential ap-
plying the simple formula (11). In the integral, we have to consider the well-
known (positive) homoclinic trajectory of the standard pendulum:

2
t) = 4arctan e’ t) = @o(t) = .
o (t) arctane, Yo(t) = 2o(t) cosht
We have:
(oo} (oo}
t
L(p) = —/ (coszo(t) —1) f(p+wt)dt+const = 2/ L—?)dt+const.
oo —o0o COSh”t

Taking into account that the additive constant is such that L = 0, and writing
L(p) = > g0 L e{k:#)the Fourier coefficients Lj, can be computed explicitly
using residue theory:

oo gilkw)t 27 (k,w) fr
L =2 dt = ] . k#£0 17
k=2 /_oo cosh? ¢ sinh (Z (k,w)) 7 (17)

(note that the mean value f = f, does not influence the Melnikov potential).
For the Melnikov function, it is clear that My = ikLy.

Upper bounds

In the analytic case (15), an upper bound for the Melnikov potential L can be
given !0 from the expressions of the coefficients. The upper bound obtained
holds for € > 0 small enough, and is exponentially small in €. Its size depends
strongly on the small divisors properties of the frequencies:

const

max | L) < ey o (-Cen /BT,
where C = C (7,7%, p) is a constant. It is an important point in this estimate
to assume a perturbation with an infinite number of harmonics. As stressed
by Lochak, 4 one is then forced to take into account the small divisors as-
sociated to the frequencies, and this leads to the exponent 1/(27 + 2) inside
the exponential. Notice that this exponent in the upper bound is reminiscent
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of the Nekhoroshev-like estimates. Instead, if one assumes a finite number of
harmonics (like in the Arnold’s example °), then one obtains the exponent
1/2, but this case is highly nongeneric.

In an analogous way, we can obtain an upper bound for the differentiable
case (16), but then the bound becomes a power of &:

max | L(p)| < const - ¢"/27, (18)
e

The golden mean and the Fibonacci numbers

To establish the effective existence of splitting, one has to obtain also lower
bounds, giving a more precise description of the asymptotic behavior of the
Melnikov potential. This requires a more careful analysis of the small divisors
associated to the frequency vector w*. This analysis can easily be carried out
for the golden mean, a very simple case with 2 frequencies (i.e. with 3 degrees
of freedom):

Wt =(1,9), Q= */g; L (19)
This case was first considered by Simé !7 and, later on, ¢ lower bounds for
the Melnikov function and for the splitting, in the analytic case (15), were
obtained. Recently, 1° lower bounds have been obtained for the Melnikov
potential L and for the determinant of BgL at the critical points (ensuring
also that L has nondegenerate critical points). These lower bounds (recalled
in the second example below) are exponentially small with respect to £. This
implies that, in order to deduce the existence of splitting as a consequence of
theorem 2, the parameter u has to be taken exponentially small in €.

The differentiable case (16) is substantially different. A concrete exam-
ple '® shows that the maximum of the Melnikov function has a lower bound
of finite order in . Then taking u as a suitable power of ¢ is enough in order
to establish the existence of splitting from theorem 2.

We stress that an essential point in dealing with the singular case is to
assume that, in the perturbation, at least the harmonics f; corresponding to
the small divisors associated to w* are nonvanishing, because the dominant
harmonic is found among these ones. Under this assumption, one can obtain °
the largest lower bounds in the Melnikov approximation, in order to ensure
that this approximation dominates the O (p?)-remainder.

For the golden mean (19), the associated small divisors are directly related
to the Fibonacci numbers:

F0:F1:17 F, = n71+Fn72a n > 2.
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We recall some basic facts concerning these numbers, that will be used below.
Defining

Cp=— 2t -1
FTavatr 5
we have
F,=Cr (m+1 - (—1)n+19—(n+1>) ., n>0.

The best rational approximations of  are given by the convergents F,,/F,,_;.
In other words, the indexes k(™ = (F,, —F, 1) (and also (—F,, F, 1)) are
the ones that give the dominant behavior among the small divisors (k,w*).
More precisely, one has:

1) (=1)"Cr 1
(n) ,*\ — F —F Q= ( = >1
<k y W > n n—1 Qn anl + 0 Fn3,1 ) n-1,

and also the following inequality: ® for any k = (k;, —ks) such that ky > 0 is
not a Fibonacci number,

oc
[(k,w")| = ks — k2] > = (20)
2

Note that the frequency vector (19) satisfies the Diophantine condition (6)
with 7 = 1. This frequency vector is considered in the two examples that we
next study.

Lower bounds: An example with finite-order splitting

Now we consider a concrete example in the differentiable case (16), analogous

to the one of Delshams et al., ¥ and obtain lower bounds for the maximum of

the Melnikov potential L, and for the determinant of BjL at a critical point.
For the perturbation, we consider the following function:

flo) =" Qin cos <k("),<p> :
n>1

In this function, the only nonvanishing Fourier coefficients are the ones as-
sociated to the Fibonacci indexes k(™. Since |k(")| = F,p1 ~ Q"2 the
coefficients decrease as in (16).

Applying (17), the Melnikov potential L(yp) is given by the series

L(p) = Z Sy, cos <k("), <p> ,

n>1
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with
o 1
Ve Qn(r+1) sinh (

- .
vz)
Note that all the coefficients are positive. The main part of this expression is
given by

47 B0

0 _ 27 by 0 — 10(e) = 1)log T,
S, \/ge , b, =b, () =n(r +1)log +2Qn\/g

To determine the dominant behavior, we look for the minimum exponent 59,
for n > 1. This is reached for Ng = Ny(e), with

2(r + 1)/E’

and this gives the largest coefficient: Sy, > S?VO ~ €"/2, This coefficient
itself constitutes a lower bound for the maximum of the Melnikov potential,
because all the coefficients are positive and

max|L(¢)| = L(0) = 3 S (21)

€T?
® n>1

Qo =

We can also get an upper bound, which coincides with the one of (18). Let
us break the series (21) in two parts. For n < Ny, note that

Sy 1 ™
SO Qe €xp 2Qn+1\/g

n—1
S 1 T B el/a\ "
2gr ™ g ) "\ ) L

Using also S,, < 352 (from the fact that sinhz > /3 for £ > 1), the sum
> n<n, Sn has an upper bound of the same order as Sy,. On the other hand,
for n > Ny we have the inequality S,, < 4Q~"" (simply using that sinhz > z),
and we can bound ), . . Sn as a geometric series. In this way, we obtain for
the maximum value of the Melnikov potential, an upper bound and a lower
bound, both of the same order:

max |L ~ "2,

max | ()]

The Melnikov potential L(p) has ¢* = 0 as a critical point. Now, we

want to show that this critical point is nondegenerate, estimating also the
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eigenvalues of 92L(0) as a measure for the transversality. We have

92L(0) = — 3 S k™ (W’)T ,

n>1
and then
2
det OZL(0) = [ DY F2Su | [ D F2 180 | = | Y FuFo 1Sn
n>1 n>1 n>1
= Z FnFm—l(FnFm—l_Fn—lFm)SnSm
n,m>1
= Z (FnFm—l_Fn—lFm)zsnSm: Z FnZ_m_lSnSma
1<m<n 1<m<n

where we have used the formula F},F,, ; —F, 1F,, = (-1)™"'F, ,, ;. Note
that all terms in this series are also positive. To estimate the determinant,
note that

EZ . 1S0Sm ~ Q*S, - Q™S

and hence the indexes n and m can be separated. This allows us to find the
indexes Ni(e) and M;(e) that give the dominant term in the series of the
determinant, in the same way as before. In this way, we easily obtain an
upper bound and a lower bound for the determinant:

det O2L(0) ~&".

In fact, we should estimate the minimum eigenvalue of §2L(0). This
eigenvalue can be put in terms of 7 = trd2L(0) and § = det d2L(0). Again,
note that 7 ~ g"/2 (applying the same method). The minimum eigenvalue is
given by

rEB
2

ERESY)

>

)

and this has clearly a lower bound of order /2. Then it is a consequence
of theorem 2 that, for u = o (¢™/2), the critical point ¢* = 0 of L(¢p) gives
rise to a transverse homoclinic orbit. This result makes a difference with the
second example, next considered, and is due to the non-analyticity of the
perturbation.
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Lower bounds: A singular example

For the sake of completeness, we also include an example ° in the analytic
case (16). For the perturbation, we consider a “full” Fourier series, with the
coefficients

Iful = e Fle vk e 2\ {0}.

Note that a non-even function f(y) is allowed, so we are not assuming that
the perturbation H;(z, ) is reversible, unlike other papers. 1978

Following the method by Delshams et al. ® (though the context is some-
what different), it is shown !° that the dominant harmonics in the Fourier
series of the Melnikov potential L(y) are the ones associated to the Fibonacci
indexes k(™). Denoting S, = Ly, from (17) one directly obtains

2 e fnt1p

B Qe ‘ sinh (

n>1.

| Sl )
_m
2Qn \/E)
The main part of this expression is given by

dr o T

0 0 _ p0(g) — Oy +2 ‘
gzt 0 =@ =C0r0 et e

For a fixed € > 0, to find the dominant harmonic among the Fibonacci ones,
one has to look for the minimum exponent b9, n > 1. Let us define

o D() 4_ €o Dy — ™
fn=\qntt )] = Qi 0= 2Cpp’

The minimum exponent among the b9 is reached for an only integer Ny =
No(€), such that logey, is the closest to loge, among the loge,. Then the
coefficient %, is the dominant one among the S9, and it is not hard to check
that the “whole” coefficient Sy, is also dominant among the S,,. One can also
check from (20) that the non-Fibonacci coefficients Ly, with k # k(™ do not
dominate. In terms of €, the value of the minimum exponent depends on ¢ in
the following way:

|Sh| = (22)

c(loge)

b =
No el/a

where c(n) is a continuous function, defined as the (4 log Q)-periodic extension
of

¢(n) = Cp cosh (%) , |7 —no| < 2log,
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with

Co = Q9 2xCFpp, No = logeo.

The extreme values of this function are given by
3/2¢,

Co < ¢c(n) < TO

In this way, the maximum value of the Melnikov potential can be approx-

imated by its dominant Fibonacci harmonic, and one obtains the following
upper and lower bound:

1 c(loge
max |L(p)| ~ = exp (— (615;4 )> .

= (1.029085....)Ch.

p€ET2 51/4

It is also shown 1° that the Melnikov potential L(y) has nondegenerate
critical points. In order to detect these points, one has to consider an ap-
proximation given by at least the 2 dominant harmonics, because with only
1 harmonic the approximation to the matrix BgL would be degenerate. In
the discussion above, it can also be considered the integer N;(e) reaching
the “second” minimum among the b2; this integer satisfies |N; — No| = 1.
Calling N = N(e) = min (Np, V1), it turns out that exyy; < € < ey, and
the Fibonacci coefficients with indexes N and N + 1 give the 2 dominant
harmonics in the Fourier expansion of the Melnikov potential.

The two dominant harmonics give the main part of the Melnikov potential
L(p). In the trigonometric form, this main part can be written as

L(p) ~ 2|Sn|cos (<k(N)a <P> + UN) +2|SNy1]cos (<k(N+1)a <P> + UN+1) )

where oy, o1 are some phases. The number of critical points is given by
the determinant

AN = det (k(N),k(N+1)) = Fy_1Fn1 — Fg = (=),

which implies that, for € small enough, L(y) has exactly 4 critical points. At
every critical point ¢*, one has

|det O2L (¢*)| ~ 4|SnSn1] # 0.

Then L(yp) is a Morse function, because all its critical points are nondegen-
erate. Note also that 4 = 2% is the minimum number of critical points for a
Morse function on T2. To estimate the size of the determinant, we use (22)
again:

642 0 L0 c1(loge)
0 g0 _ — (b +b 0 0 _ cilog
4|SNSN+1|_me (N N+1), bN+bN+1—W,
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where ¢; (1) is another (4log Q)-periodic function, defined from
_ 03/2 n—- 77(’) !
c1(n) = Q*/*Co cosh ) [n—ng| < 2log,

with 7 = log \/€oe1. The extreme values of this function are given by

3
/20y < () < L 200.

Thus, one obtains an upper bound and a lower bound for the determinant at
the 4 critical points:

1 c1(loge)
2 * 1
detawL(cp )Nmexp <—T>

Proceeding as in the previous example, one also finds an estimate for the
minimum eigenvalue. Since, in this case, § < 7, the minimum eigenvalue can
be approximated by §/7. This leads to an estimate of the type

1 ca(loge)
m exp <_751/4 5

where c2(n) = ¢1(n) — ¢(n). This is also a positive periodic function, with

03/20,
2

< < (2-3) 6

Then it is a direct consequence of theorem 2 that there exist 4 transverse
homoclinic intersections, for 4 = o (exp{—cz(log 5)5*1/4}). The estimate
obtained gives a measure for the transversality of the splitting. However,
it has to be recalled again that this is actually a regular situation, and a
justification in the singular case u = &P, for some p > 0, does not follow
directly from theorem 2.

6 Flow-box variables and splitting potential

The aim of this section is to sketch the proof of the result 1° that, using
suitable variables, the “whole” splitting distance (and not only its first order
approximation) is the gradient of some function, in order to establish the
existence of homoclinic orbits even in the singular case.
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Flow-box variables

In order to provide a clearer formulation for the problem of measuring the
splitting, it is convenient to introduce new symplectic variables in which
the Hamiltonian equations are very simple. The flow-box variables W =
(S,E, 4, J) are constructed ° with the help of the flow associated to the
normal form H given in (8), from a suitable Poincaré section containing the
set S = Z(s1,T") C W, with some fixed s; > so. The new variables are
then given by an exact symplectic transformation (z,y, ¢, I) = ¥(S, E, v, J),
defined on a real neighborhood of § = ¥~ (S) =(0,0,T",a).

Thanks to the use of the Kolmogorov’s approach to the hyperbolic KAM
theory, the neighborhood where the flow-box variables are defined contains a
piece of both whiskers. In the construction of the variables, one can make the
local stable whisker become a coordinate plane (see (24)), and then the global
unstable whisker can be seen as a graphic over the local stable one. In this
way, the splitting distance and the homoclinic intersections between the two
whiskers appear much more transparently.

Our Hamiltonian takes, in the flow-box variables, a very simple form:

ﬁ:ﬁOW:E+(w,J—a),

and hence the associated Hamiltonian equations are

$=1, E=0, y=w, J=0. (23)

We recall that analogous flow-box variables have already been used 20-6

in some case where the symplectic change can be defined explicitly from the
expression of the normal form, which is integrable. In our case, the normal
form H is, in general, not integrable, and the construction of the flow-box
variables is more involved (it uses implicit functions).

Parameterizations in the flow-bozr variables

Let us describe more precisely how the whiskers can be parameterized in the
flow-box variables. Let us denote ngc =71 (Wlﬁc) the local stable whisker

(or more precisely a piece of it). This whisker becomes a coordinate plane,
given by E = 0, J = a, and can be parameterized as follows:

Wiei  Wik(s,9) =¥ (s +5,9)) = (5,0,p,0), s€I, peT",
(24)
where Z is some interval containing s = 0 (we have replaced s — s; by s for a

-~

clearer notation: in this way we have s = 0 on S).

Manuscript submitted to World Scientific on May 18, 1999 22




Now, we define W-=01od! (W™) as an invariant manifold of H,
which is the equivalent in the flow-box variables for (a piece of) the global
unstable whisker. Let us parameterize:

W W= (s,0) =T o® (2 (s,9), s€I, peT
In components, we write

W= (s,0) = (S (5,9), B (5,9), % (5,9), T (5,9)) -

There is splitting of the whiskers when J~ (s, ) # a or E~ (s, ) # 0. Never-
theless, it suffices to control the J-component because the whisker is contained
in the zero energy level: £~ + (w,J~ —a) = 0.

The approximation given in theorem 2, expressed there in the original
variables, remains true after changing to the flow-box variables. So the Mel-
nikov function M = 0,L also provides a first order approximation in p for
the splitting distance J~ (s, p) — a, at least in the regular case. But, as a new
feature, in the flow-box variables this splitting distance becomes a quasiperi-
odic function, only depending on ¢ — ws. Indeed, from the simple form (23)
of the Hamiltonian equations, one sees that

I (s,0) =J (0, —ws).

This property is very important in the singular case, because it can give rise
to exponentially small estimates for the splitting. The key point %2 is to use
that a function of ¢ — ws, with w = w*/4/€, having a polynomial bound on a
complex domain, becomes exponentially small in € for real values of s, .

Splitting potential and existence of homoclinic orbits

Using the special formulation of theorem 1 (in the original variables) it is
possible ! to introduce in some neighborhood an exact symplectic map ©
that takes the local stable whisker onto the global unstable one. In fact, one
can go a bit farther, 1° and express the map © in the flow-box variables.

The exactness of the symplectic map ® and the fact that ® = id +
O(w), imply that for |u| small enough there exists a generating function
0 (S,E’,z,b, j), defined in some neighborhood of S and global in the angles
¥ € T, such that the map © : (S, E, %, J) = (S, E, ¢, J) is given by

S=8-0z0, E=E-0s0, ¢=9-0;0, J=J-040. (25

In order to compare the whiskers V/\Zﬁc and )7\7’, it will be useful to express
the splitting distance J(s,p) — a as a gradient. This cannot be deduced
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directly from (25), but this obstruction is easily overcome, 2° introducing new
parameters that substitute the initial ones s, ¢ on the whiskers:

S=8"(s,9), V=19 (59).

In terms of the new parameters S, 1, the unstable whisker w- appears nicely
as a graphic over the stable whisker Wl‘gc, through the parameterization:

W WoSw)=(SE(Sv.eT(SY), SeI, peT (26)

(the interval Z can have undergone a reduction).
It is then natural to introduce the splitting potential as the following scalar
function, periodic in ¥:

L(S,¥) =06(5,0,9,a), S€I, peT (27)

This function also depends on y, and is determined up to an additive constant.
The (vector) splitting function can then be defined as the gradient of £ with
respect to the angles:

M(S,9) = 8yL(S,9).

The next theorem is easily deduced from the equations (25).
Theorem 3 The functions L and M only depend on ) — wS:

L(S,¢¥) = L0,y —wS), M(S,¢) = M(0,9 — wS).
Besides, these functions are related with (24) and (26) in the following way:
E=(8,4) =0sL(S,9), T (S,%) —a=M(S,).

According to this theorem, the function M gives the splitting distance
(expressed in the parameters S, ¢). It is important to stress that the fact
that the splitting distance can be put as the gradient of some potential is a
reflection of the Lagrangian properties of the whiskers.

As a corollary of theorem 3, one can recover a result due to Eliasson: !
there exist at least n + 1 homoclinic orbits (not necessarily transverse), bi-
asymptotic to the whiskered torus 7. This result, valid for both the regular
case and the singular case, comes from the fact that a function on T™ has at
least n + 1 critical points (not necessarily nondegenerate), according to the
Lyusternik—Schnirelman theory. 2! Then for a fixed S, the splitting potential
L(S,-) has at least n + 1 critical points, which give rise to respective homo-
clinic intersections between the whiskers W=, and hence to homoclinic orbits,
contained in both whiskers.
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First order approzimation for the splitting potential

Finally, using Poincaré—Melnikov theory, we can obtain first order approxi-
mations for the splitting potential £, introduced in (27), and for the splitting
function M. At first order in u, these approximations are given, respectively,
by the Melnikov potential L and the Melnikov function M defined in section 4,
but they are good enough only for the regular case.

Theorem 4 For S € Z and ¥ € T™, one has
L(S,9) = pL(¥ —wS) + 0 (1),  M(S,¢) = pM (¢ —wS) + 0 (1*) -

We finish with some remarks about the additional difficulties of the sin-
gular case. Note that theorem 4 provides an O (u?) error term that is not
small enough in the singular case p = P with p > 0, due to the fact that
the functions L and M are exponentially small with respect to €. (This is
illustrated in the second example of section 5). Nevertheless, one can expect
that, under some weak hypotheses on the perturbation, the predictions of the
splitting given by the Melnikov potential L are also valid in the singular case,
for some p > 0.

To get better bounds of the O (uz)—term for real values of the variables
S, 1, one should bound this term on a complez strip of these variables. This
requires some improvements of the results presented here. First, one needs a
more precise version of theorem 1, carrying out a careful control on the loss
0 of complex domain in the angular variables. Such an improvement of the
normal form theorem has already been performed by the authors, ! and in
fact analogous results had previously been obtained ?'® for somewhat different
contexts.

On the other hand, one needs an extension theorem and the flow-box vari-
ables extended to a suitable complex domain, which would lead to a significant
refinement of theorem 4, of the type

L(S,¢) = uL (¥ — Sw™/VE) + 0 (ue™"),

for S, ¢ on a complex strip [Im S| < 7/2 — e'/4, [Im )| < p — /%, Then one
could obtain, for real values of S, 1, exponentially small upper bounds for
the error term, which would be dominated by the first order approximation
provided by Poincaré-Melnikov theory, under some general hypotheses on the
perturbation. If this is true, then the Poincaré—Melnikov theory gives the
right predictions for the splitting even in the singular case.

The problem of giving asymptotics for the exponentially small splitting of
separatrices is now being researched by the authors. In fact, the strategy de-
scribed above has been followed 228 in simpler situations in which the normal
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form is integrable and the flow-box variables can be defined explicitly. Rud-
nev and Wiggins 8 announced an important generalization, but their proof
contains essential errors. Therefore, the problem of giving asymptotics for the
splitting in the Hamiltonian (1-2), in the singular case, remains still open.
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