Normal transversality and uniform bounds
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1 Introduction

Let A be a commutative ring. A graded A-algebra U = ®,>oU, is a standard A-algebra if Uy = A
and U = A[U,] is generated as an A-algebra by the elements of U;. A graded U-module F' = @,>0F,
is a standard U-module if F' is generated as an U-module by the elements of Fp, that is, F,, = U, Fy
for all n > 0. In particular, F,, = U1 F,,_1 for all n > 1. Given I, J, two ideals of A, we consider
the following standard algebras: the Rees algebra of I, R(I) = @n>ol™t™ = A[It] C A[t], and the
multi-Rees algebra of I and J, R(I,J) = ®n>0(Pprq=nlIPJuPv?) = A[lu, Jv] C Afu,v]. Consider
the associated graded ring of I, G(I) = R(I) ® A/I = ®,>oI"/I™", and the multi-associated
graded ring of I and J, G(I,J) = R(I,J) @ A/(I + J) = ®n>0(®prq=nIPJ?/(I + J)IPJ?). We
can always consider the tensor product of two standard A-algebras U = ®p>oUp and V = @3>0V,
as a standard A-algebra with the natural grading U @ V' = @,>0(Ppteq=nUp ® V). If M is an
A-module, we have the standard modules: the Rees module of I with respect to M, R([; M) =
®p>ol"Mt™ = M[It] C M[t] (a standard R(I)-module), and the multi-Rees module of I and J with
respect to M, R(I,J; M) = ®p>0(®ptq=nI? JIMuPv?) = M[Iu, Jv] C M[u,v] (a standard R(Z, J)-
module). Consider the associated graded module of M with respect to I, G(I; M) = R(I; M) A/I =
®n>ol"M /I M (a standard G(I)-module), and the multi-associated graded module of M with
respect to I and J, G(I, J; M) =R(I,J; M) @ A/(I+J) = ®n>0(Pptq=nIPJIM /(I + J)IPJIM) (a
standard R (I, J)-module). If U, V are two standard A-algebras and F is a standard U-module and
G is a standard V-module, then F ® G = ®n>0(®ptg=nFp ® Gy) is a standard U ® V-module.

Denote by 7 : R(I)QR(J; M) — R(I,J; M) and o : R(I,J; M) — R(I + J; M) the natural sur-
jective graded morphisms of standard R(I) @ R(J)-modules. Let ¢ : R(I[)@R(J; M) — R(I + J; M)
be o onm. Denote by 7: G(I) ® G(J; M) —» G(I,J; M) and 7 : G(I,J; M) — G(I + J; M) the tensor
product of m and o by A/(I + J); these are two natural surjective graded morphisms of standard
G(I) ® G(J)-modules. Let @ : G(I) ® G(J; M) — G(I + J; M) be & o7w. The first purpose of this
note is to prove the following theorem:

Theorem 1 Let A be a noetherian ring, I, J two ideals of A and M a finitely generated A-module.

The following two conditions are equivalent:
(@) :G(I)®G(J; M) = G(I + J; M) is an isomorphism.
(#3) Tor,(A/I?,R(J;M)) =0 and Tor,(A/I?,G(J; M)) =0 for all integers p > 1.

In particular, G(I)®G(J) ~ G(I + J) if and only if Tor,(A/I?, A/J?) = 0 and Tor,(A/I?,A/J9) =0
for all integers p,q > 1.
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The morphism @ has been studied by Hironaka [5], Grothendieck [3] and Hermann, Ikeda and
Orbanz [4], among others, but assuming always A is normally flat along I (see 21.11 in [4]). We will
see how Theorem 1 generalizes all this former work.

Let us now recall some definitions in order to state the second purpose of this note. If U is a
standard A-algebra and F is a graded U-module, put s(F) =min{r > 1| F, =0for alln > r + 1},
where s(F) may possibly be infinite. If Uy = &,~0U, and r > 1, the following three conditions are
equivalent: F' can be generated by elements of degree at most r; s(F/U+F) < r; and F,, = U1 F,_1
foralln >r+ 1. If o : G — F is a surjective graded morphism of graded U-modules, we denote by
E(¢p) the graded A-module E(p) = kerp /U kerp = kerpo® (®n>1kerp, /Uikerp, 1) = ®n>0E(p)n.
If F is a standard U-module, take S(U;) the symmetric algebra of Uy, a : S(U;) — U the surjective
graded morphism of standard A-algebras induced by the identity on U; and v : S(U1) ® Fo gl
U ® Fy — F the composition of @ ® 1 with the structural morphism. Since F' is a standard
U-module, v is a surjective graded morphism of graded S(U;)-modules. The module of effective
n-relations of F is defined to be E(F), = E(y), = kery,/Uikery,_1 (for n =0, E(F), = 0). Put
E(F) = ®&n>1E(F)p = ®On>1E(Y)n = E(y) = kery/S.(Uy)kery. The relation type of F is defined to
be rt(F) = s(E(F)), that is, rt(F') is the minimum positive integer r > 1 such that the effective n-
relations are zero for alln > r+1. A symmetric presentation of a standard U-module F is a surjective
graded morphism of standard V-modules ¢ : G — F, with o : G =V @ M &y ® Fop = F, where
V is a symmetric A-algebra, f : V — U is a surjective graded morphism of standard A-algebras,
h: M — Fy is an epimorphism of A-modules and U ® Fy — F is the structural morphism. One
can show (see [8]) that E(F),, = E(p), for all n > 2 and s(E(F')) = s(E(y)). Thus the module
of effective n-relations and the relation type of a standard U-module are independent of the chosen
symmetric presentation. Roughly speaking, the relation type of F is the largest degree of any minimal
homogeneous system of generators of the submodule defining F' as a quotient of a polynomial ring
with coefficients in Fy. For an ideal I of A and an A-module M, the module of effective n-relations
and the relation type of I with repect to M are defined to be E(I; M), = E(R(I[;M)), and
rt(I; M) = rt(R(I; M)), respectively. Then:

Theorem 2 Let A be a commutative ring, U and V two standard A-algebras, F a standard U -
module and G a standard V-module. Then U ® V is a standard A-algebra, FF ® G is a standard
U ® V-module and rt(F ® G) < max(rt(F), rt(G)).

As a consequence of Theorems 1 and 2, one deduces the existence of an uniform bound for the
relation type of all maximal ideals of an excellent ring.

Theorem 3 Let A be an excellent (or J —2) ring and let M be a finitely generated A-module. Then
there exists an integer s > 1 such that, for all mazimal ideals m of A, the relation type of m with
respect to M satisfies rt(m; M) < s.

In fact, Theorem 3 could also been deduced from the proof of Theorem 4 of Trivedi in [9]. Finally,
and using Theorem 2 of [8], one can recover the following result of Duncan and O’Carroll.

Corollary 4 [2] Let A be an excellent (or J —2) ring and let N C M be two finitely generated
A-modules. Then there exists an integer s > 1 such that, for all integers n > s and for all mazimal
ideals m of A, m"M NN =m"*(m*M N N).



2 Normal transversality

Lemma 2.1 Let A be a commutative ring, I an ideal of A, U a standard A-algebra, F' and G
two standard U-modules and ¢ : G — F a surjective graded morphism of standard A-alegbras. If
A=A/I, thenU = U ® A is a standard A-algebra, F = F® A and G = G ® A are two standard U -
modules and P = p®14: G — F is a surjective graded morphism of standard U-modules. Moreover,
S(E®)) < s(E(9)).

Proof. If we tensor 0 — keryp; — G; K E 50 by A we get kerp; ® A — G; ﬂ F; = 0,
exact sequences which induce epimorphisms kerp; ® A — kerp,. On the other hand, if we tensor
U; ® kerp,_1 — kerp, — E(p), — 0 by A we get the exact sequence

U,®kerp, 1® A— kerp, ® A — E(p), ® A— 0.

We thus have the following commutative diagram of exact rows

U;@kerp, 1 ® A —> kerp, @ A ————> E(go)n®z — 0

i i

UViekap, , —— kap, ——— BE@. — 0,

from where we deduce an epimorphism E(yp), ® 4 — E(p),. In particular, s(E(®)) < s(E(y)). 1

Lemma 2.2 Let A be a commutative ring, I, J two ideals of A and M an A-module. Consider
o:R(I,J;M) = R(I+J;M) andg =G(I,J; M) — G(I + J; M). Then

(a) ker(o1) ~IMNJM.
(b) ker(o1) =0 if and only if IMNJIM CI(I+J)M N (I+ J)JM.
(¢) If IPMNJIM = IPJIM for all integers p,q > 1, then s(E(0)) =1 and  is an isomorphism.

Proof. Consider 0 - IMNJM % IM & JM & (I + J)M — 0 where p(a) = (a, —a) and o4 (a,b) =
a+b. Clearly it is an exact sequence of A-modules. Thus ker(oy) = p(IMNJM) ~ IMNJM. If we
tensor this exact sequence by A/(I+J) we get (IMNJM)QA/(I+J) LA (IMeJM)QA/(I+J) %
(I+J)M/(I+J)>M — 0. Then

ker(o1) = imp = {(a,—a) €e IM/II+J)M @& IM/(IT+ J)JM |a € IMNJM}.

Hence ker(g;) = 0 if and only if IM NJM C I(I + J)M N (I + J)JM. Now, let us prove (c).
Let z € kero,, C R(I,J; M), = @piq=nI? JI MuPv? C M(u,v]. Thus, z = aou™ + a1u™ ‘v + ...+
an—1uv™ t+apv”, a; € I"UJ'M, and 0 = 0, (2) = (@g+a1+...+an_1 +a,)t" € R(I+ J; M), =
(I+J)"Mt". Soap+ay+...+an—1+a,=0. Let us denote (see [10], page 134):

bp=ap€I"MNJM =I"JM
by =ag+a; € I"'MnNJ?M =1""1J2M and a; =b; — by
b2 =ag+a;+ax € I"‘zMﬂ J3M = In_2J3M and as = b2 —bl

bp_2=ag+...+a,_o € PMnNJIM =1?J""'M and an—2 =bp_os —bp_3
bp1=a+...ta, 1 € IMNJ"M =1J"M and a,,_ 1 = b, 1 —b, o
an, =—bp_1 € IJ"M.




We can rewrite z in M[u,v] in the following manner:

z2=apu” + a1u™ v+ ...+ ap_1uv™ ' +a,v"” =
= bou" + (bl — bo)un_lv + (b2 — bl)un_2v2 +...+
+(bn72 - bn73)u2’un72 + (bnfl - bn72)u’un71 + (_bnfl)’un =

= (bou™ ! + byu™ v + byu™ 2v? + .+ by puv™ 2 + by 10" ) (u — v) = p(u,v)(u — v),

~ v

p(fzv)

where p(u,v) € A[Iu, Jv],_1-(IJM) =R(I,J),_, - (IJM). Since by hypothesis IMNJM = IJM,
then ker(o1) = (IJM)(u — v), ker(g1) = 0 and z = p(u,v)(v —v) € R(I,J), ;- IIJM)(u —v) =
R(I,J),,, -keroi. Thus kere, = R(I,J),,_, -kero; for all n > 2 and s(E(c)) = 1. By Lemma 2.1,
s(E(@)) < s(E(s)) = 1. Therefore ker(c,) = G(I,J),_, - ker(g1) = 0 for all » > 2 and 7 is an

isomorphism. g

Proposition 2.3 Let A be a noetherian ring, I, J two ideals of A and M a finitely generated

A-module. The following two conditions are equivalent:
(@) :G(I,J; M) = G(I + J; M) is an isomorphism.
(¢0) IPMNJIM = IPJIM for all integers p,q > 1.

Proof. Remark that we can suppose 4 is local. By Lemma 2.2, (i7) = (i). Let us see (i) = (41),
proving by double induction in p,q > 1 that

IPMNJIM CIP(I+J)JT M (I+ J)PJ'M.

Remark that if PM NJIM C IP(I+J)J9 1M for all p,q > 1, then IPMNJIM C IPPXM +IPJIM
and IPM N JIM C IPP*M N JIM + IPJIM. Recursively, and using A is noetherian local and M is
finitely generated, IPM NJIM C (Np>1IPY"MNJIM) +IPJIM C (Np>1 I"M)+IPJIM = IPJIM,
concluding (4:). Take ¢ = 1. Let us prove by induction in p > 1 that

PMNJM CIP(I+J)MnN(I+ J)PJM.
For p = 1, we apply Lemma 2.2, (b), using the hypothesis &; is an isomorphism. Suppose
PMNJM CI?P(I+J)Mn(I+ J)PJIM
is true and let us prove
IPPMNJM Cc IPPH I+ J)M N (I + J)PTHTM .
Then IPF*'M NJM C IPM N JM C (I + J)PJM. Consider the short complex of A-modules:
PRMATIM - PP M e (I + J)PTM 25 (I+ J)P M,

where a(a) = (a,—a) and B(a,b) = a + b. Remark that §oa = 0, B is surjective and that there
exists a natural epimorphism 7 of A-modules such that oy = g,11. If we tensor this short complex
by A/(I + J) we obtain:

(IPP'M N JIM) @ AT+ J) = PP M/IPYN (I + J)M & (I + J)PJM/(I + J)Pt IM
PHMIIPPY I+ )M @ (I+ J)PIM/I + JPPIM s (1 + JPP M/ (I + J)P2M



with S o@ = 0. Since Opt1 = B o7 is an isomorphism and ¥ is an epimorphism, then 7 is an
isomorphism, 3 is an isomorphism, @ = 0 and

"M AJM Cc IPPH I+ J)M N (I + J)PTHIM .

In particular, I°PM N JM C IP(I + J)M for all p > 1, so IPM N JM C IP"'M + IPJM and
therefore IPM N JM C IP**M N JM + IPJM. Recursively, and using A is noetherian local and M
is finitely generated, IPM N JM C (Ny>1IPT"M N JM) + IPJM C (Np>1I"M) + IPJM = IPJM
concluding IPM N JM = IPJM for all p > 1. Remark that, by the symmetry of the problem,
IMNJIM =1J9M for all ¢ > 1. Now, fix ¢ > 1 and suppose

IPMNJM CIP(I+J)J M (I + J)PJIM

holds for all p > 1 (in particular, IPM N JIM = IPJ?M for all p > 1). Let us prove, by induction
in p > 1, that

IPM A JM C IP(L+ J)JOM N (I + J)PJHM .
For p=1, we have IM N J9" M = I1J9 M C I(I + J)JIM N (I + J)J? 1 M. Suppose we have
IPM A JIM C IP(1+ N)JM A (I + J)PJS M
and let us prove
M A JITM C PPN+ J)JIM N (I 4+ TP IO

Then IPPYMNJIT M Cc IPMNJIT M C (I+J)PJM and IPPIMNJITIM C IPPYMNJIM =
IPT1 90, Consider the short complex of A-modules:

PRMAJIM S P e e PP @ (1 + TP JM L (14 Tyt

where a(a) = (0,...,0,a,—a) and B(a1,...,aq+2) = a1 + ...+ aq42. Remark that Boa =0, 3 is
surjective and that there exists a natural epimorphism 7 of A-modules such that Soy = opyqq1. If
we tensor this complex by A/(I + J) we obtain o @ = 0. Since G4 4+1 = B 07 is an isomorphism

and 7 is an epimorphism, then 7 is an isomorphism, 3 is an isomorphism, @ = 0 and
PEMOJITIM c PP I+ D) TTM N (T4 TP I M gy

Proposition 2.4 Let A be a commutative ring, I an ideal of A and A : M®N — P an epimorphism
of A-modules. Consider f:R(I;M)®N — R(I; P) and f = f®14/;: G(I; M) ® N — G(I; P) the
natural surjective graded morphisms of standard modules. Then, for each integer n > 2, there exists

an ezact sequence of A-modules E(f)nt+1 = E(f)n = E(f)n — 0. In particular, if A is noetherian,

M, N, P are finitely generated and f is an isomorphism, then f is an isomorphism.

Proof. For each integer n > 1, tensor 0 —» I"M — M — M/I"M — 0 by N and get the exact
sequence "M @ N -+ M ® N - M @ N/I"(M ® N) — 0. In particular, there exist epimorphisms
I"M @ N — I"(M ® N) which induce a surjective graded morphism of standard R(I)-modules
9:R(I;M)®N — R(I; M ® N). Clearly A induces a surjective graded morphism of standard R(I)-
modules h : R(I; M ® N) — R(I; P). The composition defines the surjective graded morphism of
standard R(I)-modules f = hog : R([;M)® N — R(I[;P). If we tensor f by A/I, we get
f:G(I; M) ® N — G(I; P) a surjective graded morphism of standard G(I)-modules.



Let X be an A-module. The following is a commutative diagram of exact columns with rows
the last three nonzero terms of the complexes K(R(I; X))n+1, K(R(I; X))n and K(G(I; X)), (see
Proposition 2.6 in [8] for more details):

02,n+1 O01,n+1
K(R(I§X))n+1 A QI 1X —_— IQI*"X —_— mtix — %0
E E - -
Bz,n al,n
KR X)n -+ A I®I"2X — I®I" X — mx — 0
- - - -
K(g(I,X))n A2I/I2®In_2X/In_1X—> I/IZ®In—lx/InX — InX/In+1X - 0
az,n al,n

In other words, K(R(I; X))nt1 = K(R(I; X))n = K(G(I;X))n — 0 is an exact sequence of com-
plexes. It induces the morphisms in homology: Hy(K(R(I;X))ns1) — Hi(K(R(I;X)),) and
H(K(R(I; X))n) = H1(K(G(I;X))n). By Proposition 2.6 in [8], Hy(K(R([;X)),) = E(I; X),
and H; (K(G(I;X))n) = E(G(I; X))pn. Thus we have E(I; X )11 — E(I; X)p > E(G(I; X))p- Since
v.ou. = 0, then vou = 0. Since uyg is injective, then kerv C imu. Since Ho(IC(R(I;X))p+1) =0, then
v is surjective. So E(I; X)ni1 — E(I; X)n - E(G(I; X)), — 0 is an exact sequence of A-modules.
For X = P we get the exact sequence of A-modules: E(I; P),y1 — E(I; P), = E(G(I; P)), — 0.
Take X = M in K(R(I; X))ni1 = K(R(I; X))n = K(G(I; X))n — 0 and tensor it by N. Then we
get the exact sequence of complexes

a.=u.Q1

K(R(I; M))ps1 ® N =52 K(R(I; M), @ N P =22

—® K(G(I; M), ® N — 0.
That is, we obtain the exact sequence:
K(R(I; M) ® N)ni1 5 K(R(I; M) ® N)n 25 K(G(I; M) ® N),, — 0,
which induces the morphisms in homology
H (K(R(I; M) ® N)py1) > Hi(K(R(I; M) @ N),) LA H{(K(G(I; M) ® N),,) .

Again, by Proposition 2.6 in [8], H;(K(R(I; M) @ N),) = E(R(I; M) ® N),, and H;(K(G(I; M)
N),) = E(G(I) ® M),. Moreover, since 8. o a. = 0, then $ o a = 0, and since Hy(K(R(I; M) ®
N)pt1) =0, then (3 is an epimorphism. Thus we have

®

E(R(I; M) ® N)pi1 - E(R(I; M) ® N), -2 E(G(I; M) ® N)p, — 0

with 8 o a = 0 and 3 surjective. Remark that since we do not know if ag = up ® 1 is injective, we
can not deduce ker3 C ima. On the other hand, consider g : S(I) ® M ® N — R(I; M) ® N and
9:S(I/I’)®@ M ® N — G(I; M) ® N the natural surjective graded morphisms of standard modules,
where S(I), S(I/I?) stands for the symmetric algebras of I and I/I?, respectively. By Lemma 2.3
in [8], for each n > 2, there exists exact sequences of A-modules E(g), = E(f o g)n = E(f)n = 0

and E(9), = E(f og)n = E(f)n — 0. In other words, we have exact sequences

E(R(I; M) ® N), = E(R(I; P)), — E(f)n — 0 and

E(G(I; M) ®@ N)n = E(G(I; P))n = E(f)n — 0.

Consider the following commutative diagram of exact columns:



@ B
E(R(I; M) N)py1 — E(R(I;M)® N), — E(GUI;M)®N)n,— 0

N

ER(L; P)nt1r —>  B(R(I;P))n  — E(G(I;P))n — 0

¥ ¥ i

E(f)n+1 E(f)n E(f)n

The commutativity induces two morphisms £ : E(f)n+1 — E(f) and p : E(f)n = E(f)n. Since
vou = 0, then po& = 0. Since v is surjective, then p is surjective too. Since 3 is surjective and the
middle row is exact, then kery C imé. Therefore,

E(f)ns1 == E(f)n 2 E(f)n — 0

is an exact sequence of A modules. Finally, if A is noetherian and M, N and P are finitely generated,
then E(f), = 0 for n > 0 big enough. g

Theorem 2.5 Let A be a noetherian ring, I, J two ideals of A and M a finitely generated A-module.
The following two conditions are equivalent:

(1) p:GI)®G(J; M) — G(I + J; M) is an isomorphism.

(13) Tor,(A/I?,R(J;M)) =0 and Tor,(A/I?,G(J; M)) =0 for all integers p > 1.

In particular, G(I)®G(J) ~ G(I + J) if and only if Tor,(A/I?, A/ J%) = 0 and Tor,(A/IP,A/J?) =0
for all integers p,q > 1.

Proof. Remark that Tor,(A/IP, JIM) = ker(mpq : IP @ JIM — IPJIM). Moreover, under the
hypothesis Tor, (4/I?,R(J; M)) =0 for all p > 1, then the following two conditions are equivalent:

e Tor,(A/I?,G(J;M)) =0 for all p > 1.
o IPMNJIM = I1PJIM for all p,q > 1.

Suppose (iz) holds, i.e., Tor;(A/I?, JIM) =0 and IPM N JIM = I?J?M for all p,q > 1. Then, 7 :
R(I)QR(J; M) — R(I,J; M) is an isomorphism and, by Lemma 2.2, : G(I, J; M) — G(I + J; M)
is an isomorphism. Thus ¥ = & o 7 is an isomorphism and (i) holds. Let us now prove (i) = (i¢).
If = 0 o7 is an isomorphism , then ¢ and 7 are two isomorphisms. By Proposition 2.3, & an
isomorphism implies IPM N JIM = IPJ1M for all p,q > 1. In particular,

IPJIM + JotiM IPJjiM PJjIM
R(LJ1M[ T M), = JatI AL T IPJIM O JIIM  IPJetIM G(J; I"M), and
IPJIM + JotiM PJjiM

G(I; JIM/JTH M), = =G(I,J; M),

TPV 1 JaN + J9M (I + J)IPJaM
Fix ¢ > 1. Since Tpq : g(I)p ® Q(J;M)q — g(I, J;M)p,q is an isomorphism for all p > 1 and
G(I,J; M), , = G(I; JIM/JTH' M), then .4 : G(I) ® JIM/JIT' M — G(I;JIM/JTH' M) is an
isomorphism for all ¢ > 1. By Proposition 2.4, we have R(I) ® JIM/J9T*M — R(I; JIM/JI 1 M)
is an isomorphism for all ¢ > 1. Since I? ® JIM/J* M — R(I; JqM/Jq“M)p is an isomorphism



for all p,q > 1 and R(I; JqM/Jq‘HM)p = g(J;IpM)q, then I? ® G(J; M) — G(J;IPM) is an
isomorphism for all p > 1. By Proposition 2.4 again, I ® R(J; M) — R(J; [P M) is an isomorphism
forallp > 1. Son: R(I) @ R(J; M) — R(I,J; M) is an isomorphism and Tor, (4/I?,R(J,M)) =0
for all p > 1. Since Tor, (A/I?,R(J; M)) =0forallp >1and IPMNJ'M = I?J?M for all p,q > 1,
then Tor, (A/I?,G(J; M)) =0 for all p > 1.

3 Some examples

Example 3.1 Let A be a noetherian local ring, I, J two ideals of A and M a finitely generated
A-module. If I = (z) is principal and z A-regular, then ¥ : G(I) ® G(J; M) — G(I + J; M)
is an isomorphism if and only if z is a nonzero divisor in R(J; M) and in G(J; M). Indeed, let
K(y; N) denote the Koszul complex of a sequence of elements y = yi,..., Yy, of A with respect to
an A-module N and let H;(y; N) denote its i-th Koszul homology group. Then Tor,(A/I,N) =
H,(K(z; A) ® N) = Hy1(z; N) = 0 if and only if z is a non-zerodivisor in N.

Example 3.2 Let A be a noetherian local ring and let I = (z) and J = (y) be two principal ideals
of A, If (0:z) C (y) and (0:y) C (z), then p: G(I) ® G(J) — G(I + J) is an isomorphism if and
only if z,y is an A-regular sequence.

Example 3.3 Let R be a noetherian local ring and let z,¢# be an R-regular sequence. Let A =
R/(zt), x = z+ (2t), y =t + (2t), I = (z) and J = (y). Then 7 : G(I,J) — G(I+J) is an
isomorphism, but 7 : G(I) ® G(J) — G(I, J) is not an isomorphism.

An example of a pair of ideals I, J with the property Tor,(A/I?,A/J9) = 0 for all integers
D,q > 1 arises from a product of affine varietes (see [10], pages 130 to 136, and specially Proposition
5.5.7). The next result is well known (see, for instance, 21.9 and 21.11 in [4]). We give here a proof
for the sake of completeness.

Proposition 3.4 Let A be a noetherian local ring, I and J two ideals of A and M a finitely generated
A-module. Let x = x1,...,x, be a system of generators of I andy = y1,.--,Yr, ¥s =T; = 2; + J, a
system of generators of the ideal I = I + J/J of the quotient ring A = A/J. If G(J) and G(J; M)
are free A-modules and y is an A-regqular sequence in I, then x is an A-regular sequence in I and
p:G(I)®G(J; M) = G(I + J; M) is an isomorphism.

Proof. Since JIM/J?t1M is A-free for all ¢ > 1 and y is an A-regular sequence, then y is a
JIM/J9+! M-regular sequence in I for all ¢ > 1. In particular, z is a J2M/J?+! M-regular sequence
in I for all ¢ > 1. So z is an M/J?M-regular sequence in I for all ¢ > 1 and = is an M-regular
sequence in I. Analogously, but using the hypothesis G(J) is A-free, we deduce = is an A-regular
sequence in I. Therefore Tor;(A/I, M) = 0 and Tor;(A/I,M/J?M) = 0 for all i,q > 1. Using the

long exact sequences in homology associated to the short exact sequences
0— JIM - M- M/J'M — 0and 0 — JIM/JI"T'M — M/J"™ M — M/J'M — 0,

we deduce Tor,(A/I,R(J;M)) = 0 and Tor,(A/I,G(J;M)) = 0. Since I?/IP™! is A/I-free,
then Tor, (I?/IP**, R(J; M)) = Tor; (A/I,R(J; M)) ® I?/IP*! = 0 and Tor, (I?/IP™1,G(J; M)) =
Tor, (A/I,G(J; M)) ® IP/IP*1 = 0. Applying the long exact sequences in homology to the short
exact sequences 0 — IP/IPT1 — A/IPT1 — A/IP — 0, we deduce Tor;(A/I?,R(J; M)) = 0 and
Tor, (A/I?,G(J; M)) =0forallp> 1.y



4 Relation type of tensor products

Lemma 4.1 Let U be a standard A-algebra and F a standard U-module. If M is an A-module,
then F ® M is a standard U-module and rt(F @ M) < rt(F). If A\: M — N is an epimorphism of
A-modules, then 1@ A : F® M — F ® N is a surjective graded morphism of standard U-modules.
Moreover, for each integer n > 1, ker(1p, ® A) = Uy - ker(lg, , ® A). In particular, for each n > 2,
there exists an epimorphism of A-modules E(F @ M), - E(F® N), and rt(F @ N) < rt(F ® M).

Proof. Clearly F ® M is a standard U-module and 1 ® A: F ® M — F ® N is a surjective graded
morphism of standard U-modules. Consider the symmetric presentation v : S(U1) ® Fo — F of
F. If we tensor 0 — kery; — S;(U1) ® Fy X F; — 0 by M we get exact sequences kery; ® M —
S;(U1)®@Fy @M it F;®M — 0. They induce natural epimorphisms kery; ® M — ker(y;®13s). On
the other hand, if we tensor U; ® kery,,_1 — kery,, = E(y), — 0 by M we get the exact sequence

Ur®kery,_ 1 ® M — kery, @ M — E(v), ® M — 0.

We thus have the following commutative diagram of exact rows

Ui ®keryn-1®M —— kermn®M ——— E()n®M — 0

i i

U; @ ker(vn—1 ® 1ay) —— ker(vn ® 1a1)

E(’)’®1M)n—> 0,

from where we deduce epimorphisms E(y), ® M — E(y ® 1p), for all n > 1. In particular,
rt(F @ M) = s(E(y ® 1u)) < s(E(y)) = rt(F). Consider now, for each n > 1, the following
commutative diagram of exact columns and rows:

1®A
(kerd,) ® M — (kerdn) @ N —— 0

b e

U1®ker(lpn71®)\) —> Ui ®Fh_1®M — U1 Fp.1®@N — ()

l Lan®1M i6n®1N

0 — ker(lp, ®)\) — F,@M —_— F, N — 0
1®A

Using a diagram chasing argument, one deduces ker(1p, ® A) = Uy - ker(1p,_, ® A) for all n > 1.
Consider the symmetric presentation y®1:S(U1) @ Fo® M - F® M of F® M. By Lemma 2.3 in
[8], there exists an exact sequence of A-modules E(y®1), = E((1®A)o(y®1)), = E(1®A), =0
foralln > 1. But E(y® 1), = E(FQM),, E(1®A)o(y®1)), = E(FQN), and E(1® ), =0
foralln > 2. Thus E(F® M), - E(F®N), is surjective for all n > 2 and rt(F® N) < rt(F @ M).
1

Theorem 4.2 Let A be a commutative ring, U and V two standard A-algebras and F a standard
U-module and G a standard V-module. Then U ® V' is a standard A-algebra, F' ® G is a standard
U ® V-module and rt(F ® G) < max(rt(F), rt(G)).

Proof. Clearly U®V is a standard A-algebra and F QG is a standard U®V-module. Takep : X — F
and ¢ : Y — G two symmetric presentations of F' and G, respectively. Then o ®9 : X Y — F®G



is a symmetric presentation of FF ® G. Since ¢ ® ¥ = (p ® 1g) o (1x ® ), then, for each integer
n > 2, there exists an exact sequence of A-modules

E(lx ®¢)n = E(p®¢)n = E(p ® 1g)n — 0.

Since ¥ : Y — G is a symmetric presentation of G, then 1x, ® ¥ : X ® Y = X ® G is a
symmetric presentation of Xo ® G and E(Xo ® G),, = E(1lx, ® ¢),, for all n > 2. Using Lemma 4.1,
ker(1x, ® ¥p—;) = Uy - ker(1x,_, ® ¥,—;) for all 4 > 1. Then
ker(1x ® ¥)n
BE(lx ®¢)n = UV) -ker(lx @ Y)n_1
2 oker(lx, ® ¥n_;) .
(@70 Ur - ker(lx, @ Yni)) + (BF Va - ker(lx, @ ¢Yni))

ker(1x, ® ¥n,) ker(1x, ® ¥n_1)
o ®...8
Vi-ker(lx, ® ¥n-1) = Usr-ker(lx, ® ¥n_1) + V1 - ker(lx, ® ¢n_s)
ker(1 ® ker(1
r(lx,_, ®¢1) er(lx, ®4o)  _ E(lx, ® ) .

Up-ker(lx, ,®1¢1) +Vi-ker(lx, , ®%o) Ur-ker(lx, , ® o)

Therefore E(1x ® ¥), = E(lx, @ ¥)n = E(Xo ® G),, for all n > 2. Analogously, E(y ® 1g), =
E(p®1g,)n = E(F ® Go)p, for all n > 2. Hence there exists an exact sequence of A-modules

EXo®G), > E(F®G), = E(F®Gp), =0
for all n > 2 and, by Lemma 4.1, rt(F ® G) < max(rt(F ® Go), rt(Xo ® G)) < max(rt(F),rt(G)). g

Remark 4.3 Let A be a commutative ring and let U and V be two standard A-algebras. If
Tor{(U,V) = 0, then E(U ® V) = E(U) ® E(V). This follows from the characterization E(U) =
H,(A,U, A) (see Remark 2.3 in [7]) and Proposition 19.3 in [1].

5 Uniform bounds

Lemma 5.1 Let (A, m) be a noetherian local ring and M be a finitely generated A-module. Let p a
prime ideal of A such that A/p is regular local and G(p) and G(p; M) are free A/p-modules. Then
rt(m; M) < rt(p; M).

Proof. Since A/p is regular local, there exists a sequence of elements z = z1,...,z, in A such that
Y =¥1,...,Yr, defined by y; = z;+p, is a system of generators of m/p and an A-regular sequence. Let
I be the ideal of A generated by z. In particular, I +p/p = m/p and I +p = m. By Proposition 3.4,
z is an A-regular sequence and Tor;(A/I?,R(p; M)) = 0 and Tor,(A/I?,G(p; M)) = 0 for all
p > 1. By Theorem 2.5, p : G(I) ® G(p; M) — G(m; M) is an isomorphism. By Theorem 4.2,
rt(G(m; M)) < max(rt(G(I)),rt(G(p; M))). By Remark 2.7 in [8], rt(G(J; M)) = rt(J; M) for any
ideal J of A. Since I is generated by a regular sequence, then rt(I) = 1 (see, for instance, [10] page
30). Thus rt(m; M) < rt(p; M). a

Next result is a slight generalization of a well known Theorem of Duncan and O’Carroll [2].
In fact the proof of our theorem is directly inspired by their’s. We sketch it here for the sake of
completeness.

Theorem 5.2 Let A be an excellent (or J —2) ring and let M be a finitely generated A-module.
Then there exists an integer s > 1 such that, for all mazimal ideals m of A, the relation type of m
with respect to M satisfies rt(m; M) < s.

10



Proof. For every p € Spec(A), let us construct a non-empty open subset U(p) of V(p) = {q €
Spec(4) | g D p} ~ Spec(A/p). Remark that A/p is a noetherian domain, G(p) is a finitely generated
A/p-algebra and G(p; M) is a finitely generated G(p)-module. By Generic Flatness (Theorem 22.A in
[6]), there exist f, g € A—p such that G(p), is an (4/p) s-free module and G(p; M), is an (A4/p),-free
module. Since A is J — 2, the set Reg(A/p) = {q € V(p) | (A/p)q is regular local} is a non-empty
open subset of V(p). Define U(p) as the intersection D(f) N D(g) N Reg(A/p) = {q € V(p) | q F
f,a % g,(A/p)q is regular local}, which is a non-empty open subset of V' (p). Remark that for all
q € U(p), (A/p)q is regular local and G(p), and G(p; M), are free G(p),-modules. By Lemma 5.1,
rt(qAq; My) < rt(pAq; My) < rt(p; M) for all q € U(p). In particular, rt(m; M) < rt(p; M) for all
maximal ideals m € U(p). For each minimal prime p; of A4, let V(p;) —U(p;) = V(pi1)U.. .UV (pir;)
be the decomposition into irreducible closed subsets of the proper closed subset V (p;) — U (p;), pi,; €
Spec(A), pi,j 2 pi- Then Spec(A) = U;V (pi) = UiU (pi) U (V(p:) — U(p:)) = Ui iU (ps) UV (pij) =
Ui jU(ps) WU (ps,5) U (V(s,5) — U(ps,;)). Since A is noetherian, one deduces that Spec(A) can be
covered by finitely many locally closed sets of type U(p), i.e., there exists a finite number of prime
ideals q1, ..., qm, such that Spec(A4) = U™,U(q;). Hence, rt(m; M) < max{rt(q;; M) | ¢ =1,...,m}

for any maximal ideal m of A. g

Using Theorem 2 in [8] we deduce the result of Duncan and O’Carroll in [2].

Corollary 5.3 [2] Let A be an excellent (or J — 2) ring and let N C M be two finitely generated
A-modules. Then there exists an integer s > 1 such that, for all integers n > s and for all mazimal
ideals m of A, m\"M NN =m"*(m*M N N).
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