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Abstract

It is natural to extend the Grothendieck Theorem on completeness, valid for locally
convex topological vector spaces, to abelian topological groups. The adequate framework
to do it seems to be the class of locally quasi-convex groups. However, in this paper
we present examples of metrizable locally quasi-convex groups for which the analogue to
Grothendieck Theorem does not hold. By means of the continuous convergence structure
on the dual of a topological group, we also state some weaker forms of Grothendieck
Theorem valid for the class of locally quasi-convex groups. Finally, we prove that for the
smaller class of nuclear groups, BB-reflexivity is equivalent to completeness.

Introduction

The character group I'G of an abelian topological group G is the set of all continuous ho-
momorphisms from G into the torus T = {z € C : |2| = 1}, with pointwise multiplication.
Homomorphisms from G into T are usually named characters. The dual group of G is de-
fined as I'G, endowed with the compact-open topology 7.,. It will be denoted by G, while
G := (G")" stands for the bidual. We will also use the notations Hom(G, T) and Hom(G, R)
to denote homomorphisms, and CHom(G, T) (also denoted by I'G) and CHom(G,R) contin-
uous homomorphisms.
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The canonical embedding ag : G — G is defined by ag(g)(x) = x(g) for every g € G and
every x € G". If ag is a topological isomorphism, the topological group G is called reflexive.
The Pontryagin-Van Kampen theorem states that locally compact abelian groups are reflexive.
However the class of reflexive groups includes other types of groups, like complete metrizable
locally convex spaces and reflexive topological vector spaces [22] (both classes considered as
topological groups, i.e. forgetting the linear structure), arbitrary products of reflexive groups
[17], complete metrizable nuclear groups [2], etc.

Our aim in this paper is to study completeness of a topological abelian group and also of its
dual, and how these properties are related with reflexivity. Since completeness of locally convex
vector spaces is totally characterized by the Grothendieck theorem and its corollaries, it seems
natural to center the question for locally quasi-convex groups and to start with the underlying
group of a topological vector space. For such an object E, completeness is independent of the
point of view, i.e. if it is looked at as a vector space or as a group. However the character
group I'E is no longer a vector space, and is obviously different from the set of continuous linear
forms LFE, which roughly speaking is the natural dual of a vector space. Thus, if a theorem of
Grothendieck-type is to be obtained for the dual group of a locally convex vector space, some
work must be done, even for this very particular class of topological groups.

On the other hand, the continuous convergence structure can be defined in the dual of a
topological vector space and some fundamental results in duality theory heavily rely on it,
although it may not be explicitely stated. Continuous convergence was first defined in the
dual of a convergence group by Binz and Butzmann giving rise to the notion of BB-reflexive
convergence groups [3]. In [8] it is proved that a locally convex vector space is BB-reflexive if
and only if it is complete. In corollary 4.4 we see that this result is also valid for nuclear groups,
a class of topological abelian groups introduced by Banaszczyk in [2], which can be considered
as the class of groups generated by locally compact abelian groups and nuclear locally convex
vector spaces, by the operations of taking subgroups, arbitrary products, quotients by closed
subgroups and countable direct sums.

1 Preliminary background

A topology defines in a natural way a convergence structure, namely, the one given by its
convergent filters or nets. Conversely, one can start declaring which nets (or filters) on a set X
converge, and the corresponding limit points, and this is a convergence structure for the set X.
If some general conditions (convergence axioms) are satisfied so that there exists a topology in
X for which the convergent nets (or filters) are the given “a priori” [18], it can be said that the
convergence derives from a topology, or simply that it is topological.

If the convergence structure does not fulfil all the requirements to be derived from a topology,
then we only have a convergence space. In the literature there is not an unanimous acceptance
of which are the axioms that must define this concept. We are interested just on the continuous
convergence structure and we have followed the text of Binz [3], where the reader can find a
good account of information. We also take his notations. Topological notions such as continuity,
cluster point, closed, open or compact sets, etc, can be stated in terms of convergence of filters
or nets, therefore they have corresponding definitions for convergence spaces. Convergence



groups are groups endowed with a convergence structure compatible with the group operation,
[15]. If G is a convergence group, we also use the symbol I'G to denote the set of all continuous
homomorphisms from G into T. The continuous convergence structure A. in I'G is defined
in the following way: A filter F in ['G converges in A, to an element ¢ € I'G if for every
r € G and every filter 7 in G that converges to z, e(F x H) converges to £(z) in T (here,
e(F x H) denotes the filter generated by the sets e(F x H) := {f(z); f € F,z € H}, where
F € F, H € H). By means of nets, the definition should be as follows: A net (fq)acp in
I'G is A.-convergent to f € I'G if for every net (zg)scg in G converging to z € G, the net
(fa(28))(a,8)cDxE (D x E has the product direction) converges to f(z) in T.

It is well known that a topology in I'G for which the evaluation e : 'G xG — T is continuous
(I'G x G has the natural product structure) must be finer than the compact open topology
Teo, DUt 7., itself very seldom makes e continuous. Therefore a convergence structure may be
designed in I'G in order to obtain the continuity of the evaluation mapping e : 'G x G — T
as well as the property of being the coarsest with this condition. This is the real motivation to
introduce the continuous convergence structure on a dual. The dual group I'G of a convergence
group (G, A), endowed with the convergence structure A, is a convergence group, denoted by
I'.G and called the convergence dual of G.

A convergence group is called BB-reflezive if the canonical homomorphism k¢ : G — I'.I'.G
is a bicontinuous isomorphism (here I'.I'.G has the obvious meaning). Observe that, due to
the continuity of e : .G x G — T, kg is always continuous. Analogously, a convergence
vector space E is BB-reflerive as a space if the canonical embedding tgp : £ — L.L.E is a
bicontinuous isomorphism. In the category of Hausdorff topological groups, BB-duality and
Pontryagin duality are independent notions [12], but they coincide, for instance, in the family
of metrizable topological groups [11].

The compact open topology and the continuous convergence structure in the dual of a locally
compact abelian topological group, have the same convergent filters. This fact characterizes
the locally compact groups in the class of reflexive topological groups [19].

If E is a real topological vector space, the dual group E”, and the dual vector space E*
(i.e. the set of all continuous linear forms endowed with the compact open topology) are related
through the exponential mapping f — exp(2mif), which in this case happens to be a topological
isomorphism (see [2], (2.3)). Here the compact open topology plays some role; it would not
be a topological isomorphism if the supporting sets were endowed by the corresponding weak
topologies.

The duality theory for topological vector spaces is usually restricted to locally convex vector
spaces where the Hahn-Banach theorem works. In an arbitrary topological group, the notion
of convexity has no sense. Nevertheless, a similar notion, the so called quasi-convexity, was
introduced by Vilenkin in [24], where he also defined the locally quasi-convex groups.

A subset A of a topological group G is called quasi-convex if for every g € G\ A, there is
some x € A°:={x € 'G : Rex(z) > 0,Vz € A}, such that Rex(g) < 0. The quasi-convex hull
of any subset H C G is defined as the intersection of all quasi-convex subsets of G containing
H. An abelian topological group G is called locally quasi-convex if it has a neighborhood basis
of the neutral element eg, given by quasi-convex sets. The dual G" of any topological abelian
group G is locally quasi-convex. In fact, the sets K°, where K runs through the compact



subsets of GG, constitute a neighborhood basis of egr for the compact open topology.

The additive group of a topological vector space is locally quasi-convex if and only if the
vector space itself is locally convex, [2]. Therefore it is natural to restrict the duality theory of
topological abelian groups to the locally quasi-convex ones. Some of the well known results on
locally convex spaces have analogic versions valid for locally quasi-convex groups. In particular
a topology on a group G is locally quasi-convex if and only if it is an G-topology (uniform con-
vergence topology) for the family & of equicontinuous subsets of the dual G" ([13] Proposition
3.9). A duality theory for groups is extensively presented in [13]. Here we will only state what
is needed for our aims.

If G is a topological group, the Bohr topology on G is the weakest topology that makes
continuous all characters of I'G. We will denote it by w(G,T'G), and the pointwise topology
on I'G will be denoted by w(I'G, G). Very interesting results on the Bohr topology of a locally
compact abelian group, from a topological point of view, are obtained in [14].

The paper is organized as follows: in section 2 we present examples of complete metrizable
locally quasi-convex groups which are not Pontryagin reflexive. In doing so we are concerned
with lifting of characters on a group G to homomorphisms from G into R. We use essentially
a result of Nickolas.

In section 3 we present the Grothendieck completeness theorem for the underlying group of
a locally convex space and its dual group.

In the last section we see that the most natural version of Grothendieck theorem for topo-
logical groups does not hold, even in the class of metrizable locally quasi-convex groups. The
examples which prove it, are precisely the groups considered in section 2. We then study a
weaker form of Grothendieck theorem valid for locally quasi-convex groups and prove that
for the smaller class of nuclear groups, or of locally convex vector groups, the result can be
improved.

2 A family of nonreflexive complete metrizable locally
quasi-convex groups

The groups L% [0,1], for p > 1, have the above conditions as proved by Aussenhofer in ([1], p
50). We obtained this result independently, but she did it earlier, and her proof includes also
the description of the dual of such groups. For the sake of completeness we describe here these
groups.

Let L?[0, 1] or simply L? be the vector space of all classes of real measurable functions f such
that || £ [|:= (fy |f(t)[Pdt)'/? < co. Tt is well known that the spaces L?, (p > 1), endowed with
the norm || || are Banach spaces. Now L7, is the subset of L? of all the classes of integer valued
functions, with the induced topology. Evidently it is a complete metrizable locally quasi-convex
topological abelian group, but it is not a vector subspace.

Now we summarize the steps, interesting for our aims, which lead to the proof that L is a



nonreflexive group. Crucial to all of them is the following result of Nickolas:

If an abelian topological group G is a k-space, then the path component (%)
of the identity in G” is the union of all the one-parameter subgroups of G*.

By a one-parameter subgroup of G it is commonly understood the image of R by a continuous
homomorphism from R into G.

First we are concerned with lifting of characters to real valued characters. As we already
mentioned, every continuous character defined in a topological vector space can be lifted to a
continuous linear form. The same assertion can be made for certain groups, as we expose in
the next proposition. Its proof is essentially contained in the proof of (*), given in [20].

Proposition 2.1 Let G be a topological abelian group such that G is a k-space and its dual
G" is pathwise connected. Then every continuous homomorphism ¢:G — T can be lifted to
a continuous homomorphism ¢:G — R such that pp = ¢, where p:R — T is the covering
projection.

Remark The assumption that G is a k-space is not a necessary condition. In [1] Corollary 8.12,
an example of a locally convex vector space E, which is not a k-space is presented. Clearly, the
lifting property for E derives from the natural isomorphism between E* and E”.

We can now state the following:

Theorem 2.2 If G is a metrizable, reflexive pathwise connected group, then:

a) Every continuous character ¢: G — T can be lifted to a real continuous character (i.e.
there exists p: € CHom(G",R) such that pp = ¢)

b) G is the union of its one-parameter subgroups

¢) G is divisible
Proof.

a) If G is metrizable, G is a k-space as shown in [11]. On the other hand (G")" is topologi-
cally isomorphic to G, therefore pathwise connected. By proposition 2.1, every continuous
character ¢: G" — T can be lifted to say ¢:G" — R such that pp = ¢. Furthermore
the lifting is unique (see [23] pp.69, 2nd. paragraph), since any lifting to a continuous
character ¢ must be such that $(19) = 0 € R, where 14 is the neutral element of G*.

b) follows also from (*).

c¢) In order to prove the last assertion, we express G as the union of its one-parameter
subgroups, say G = U{{(R) : £ € CHom(R,G)}. For any x € G and any n € N,

there exists £ € CHom(R,G) and r € R, such that {(r) = z. Now ¢ (Z> is such that
n
n



Remarks A topological group which is the union of its one-parameter subgroups must be
pathwise connected. Thus, the condition that G" be pathwise connected cannot be dropped in
proposition 2.1.

It was known to Dixmier (see [16] pp.393) that for a locally compact abelian group G the
condition that every character in G can be lifted to a real character is equivalent to the fact that
the dual G is the union of its one-parameter subgroups. That this also holds for metrizable
reflexive groups can be deduced from the proof of (*) together with Theorem 2.2.

Proposition 2.3 The group G = L}[0,1] (p > 1) is not Pontryagin reflezive.

Proof. The proof follows easily from the fact that G is contractible, therefore pathwise con-
nected. Since it is a metrizable group, if it were reflexive, G would satisfy all the assumptions of
Theorem 2.2, therefore it would be divisible. But this is not the case; obviously for the function
f constant to one, there is no g € LY such that 2g = f. The fact that L? is contractible can
be seen in [1]. Nevertheless we sketch the proof. Denote by xjo,;) the characteristic function of
[0,1) in [0,1]. The mapping F : LY x[0,1] — LY establishes a homotopy between
(fst) — X1t f
the identity mapping in L¥ and the constant to null mapping. It is therefore a contraction of
?. 0

3 The Grothendieck completeness theorem on the addi-
tive group of a locally convex vector space

In this section we prove that the underlying group of a topological vector space and its dual
group satisfy an analogue to Grothendieck Theorem (GT). We first give a few lemmas which
will simplify our job.

In the next propositions, F will denote a topological vector space. We keep the standard
notations E", I'E and I's F for the character group of E, endowed with the compact open
topology, with the continuous convergence structure and with an G-topology respectively. Also
by E* , by L.E and by LsFE we mean the set of continuous linear forms LFE endowed with
the compact open topology, with the continuous convergence structure and with an G-topology
respectively.

Lemma 3.1 Let (E, ) be a locally convex vector space and let & be a family of closed bounded
convex and balanced sets covering E.

i) Denote by p: Lin(E,R) — Hom(E,T) the exponential mapping, p(f) = exp(2mif), Vf €
Lin(E,R). A character ¢ belongs to Im(p) if and only if o1 is continuous for all one-
dimensional vector subspace L C E.



it) The following assertions are equivalent:
(a) Every character with continuous restriction on all S € G, is continuous.

(b) Every linear form with continuous restriction on all S € &, is continuous.

Proof.

i) Suppose ¢ = p(f) for some f € Lin(E,R). If L C E is a one-dimensional vector subspace,
fiz is continuous, therefore |, is continuous.

Conversely, let ¢ € Hom(FE, T). Denote by [a] the subspace generated by a non null vector
a € E. Since g is continuous, it can be considered as a continuous character defined
on R, and consequently there is a unique real number ¢, such that p(ra) = exp(2mit,r)
for all » € R. It is easy to check that ¢y, = A, and ¢, = t, + 3, for any A € R and any
b € E. Therefore by superposition of the one-dimensional linear forms f,(ra) = t,r we
obtain a linear form f: E — R. Clearly ¢ = exp(27if).

ii)

(a) = (b) Let f : E — R be a linear form continuous on all S € &. The corresponding
character exp(2mif) is continuous in all S € &, and by a) it is continuous. Therefore,
by [2] (2.3), f is continuous.

(b) = (a) Let x : E — T be a character with continuous restriction on each S € &. From this
it is easily seen that the restriction of x to finite dimensional subspaces is continuous
and, by i), there exists a linear form f: F — R such that exp(27if) = x.

Now for § € G, and € > 0, there is some balanced neighborhood of e such that
lexp(2mif(z)) — 1| < ¢€/2, for all z € SNU. Then |exp(2mitf(z)) — 1| < €/2, for all
|t| < 1, and all z € SNU. Consequently |f(z)| < € and the restriction of f to all

elements of G is continuous. By b) f is continuous on E, and so is x = exp(27if).
O

Lemma 3.2 Let (E, ) be a locally convex vector space and let & be a family of closed bounded
convez and balanced sets covering E. The exponential mapping p : L&sE — U's E s a topological
isomorphism.

Proof. The continuity of p is straightforward, and holds without any conditions on the sets
S € 6. An argument similar to that of (b) = (a) of the previous lemma proves the continuity
of the inverse mapping. In fact only the properties that the sets S € & are balanced and cover
E are used. O

Next we state that the continuous convergence restricted to equicontinuous subsets of I'G
coincides with the pointwise convergence. The proof is straightforward.

Lemma 3.3 Let G be a topological group and let H be an equicontinuous subset of 'G. If (&,)
1s a net contained in H and & € I'G, the following assertions are equivalent:

7



1. (&a) is Ac-convergent to &

2. (&) 18 Teo-convergent to £
3. (&a) is w(T'G, G)-convergent to €.

By the previous lemma equicontinuous subsets of I'.G are topological. The family of closed
equicontinuous subsets of I'G actually coincides with that of A.-compact subsets. If ag is
continuous, then they also coincide with the family of 7.,-compact subsets. For complete
metrizable groups, more can be said. The following statement is comparable to the uniform
boundedness principle. Since the latter is a significant result in the theory of topological vector
spaces, one can reasonably expect that this sort of “equicontinuity principle” may have some

importance for abelian topological groups. The proof of it can be seen in [13] (Theorem 1.5),
where it is established in a more general setting.

Lemma 3.4 If G is a complete metrizable topological abelian group, then every w(I'G,G)-
compact subset of I'G is equicontinuous.

The convergence dual of a topological group is locally compact, and has properties similar
to those of k-spaces.

Lemma 3.5 Let G be a topological group. The following assertions hold:

1. T.G is a locally compact convergence group.

2. If a character x:T'.G — T is such that x|k is continuous for all compact K C I'.G, then
X 1S continuous.

3. I'.I'.G 1is topological and carries the compact open topology relative to the compact subsets
of U'.G. Furthermore, it is complete.

Proof. It can be seen in [3] and [6], (3.2.2), (1.5.4) and (3.2.5). 0

Lemma 3.6 If G is a Hausdorff locally quasi-convezr group, then kg : G — kg(G) C T'.I'.G is
an embedding.

Proof. In order to prove that kg is open and injective, take into account Lemma 3.5, 3
and follow the proof of the same facts for ag, [2], (14.3). On the other hand k¢ is always
continuous. 0

Next we see that w(G,T'G), and w(I'G, G) are the natural analogues to the weak and to the
weak™ topologies defined in a topological vector space and in its dual.



Lemma 3.7 Let G be an abelian topological group.

1. The dual group of (G,w(G,I'G)) is T'G.

2. If TG separates points of G, then every continuous character on (I'G,w(T'G,G)) is an
evaluation at some point of G, i.e. the dual group of (TG,w(I'G,G)) can be algebraically
tdentified with G.

Proof. It can be seen in [13], Theorem 3.7. n

The identification of lemma 3.7(2) is even topological for some classes of groups, as we prove
now:

Theorem 3.8 If G is a complete metrizable locally quasi-convexr group, then the dual group
X = (I'G,w(TG,G))" is topologically isomorphic to G.

Proof. By lemma 3.7(2), X can be algebraically identified with G. If K C I'G is w(I'G, G)-
compact, then it is equicontinuous by lemma 3.4. This means that °K := {z € G : Rex(z) >
0,Vx € K} is a 0-neighborhood in G. On the other hand °K can be identified with K°, and so
we have that every 0-neighborhood in X is a 0-neighborhood in G.

Conversely, if V' is a quasi-convex 0-neighborhood in G, V° is w(I'G, G)-compact ([2] 1.5),
therefore V' =°(V?) is a 0-neighborhood in X. O

For a locally convex vector space E, we bring together the two view points, as a group and
as a space, in the next two theorems.

Theorem 3.9 Let (E,7) be a locally convex space and let & be a family of closed bounded
convex and balanced sets covering EE. The following statements are equivalent:

(a) LE is complete under the S-topology.

(b) Every linear form f on E which is T-continuous on each S € &, is continuous on (E,T).
(c¢) (LE,7s) is BB-reflexive, i.e. E is bicontinuously isomorphic to L.L.(LE,Ts)

(d) The group (TE,Ts) is complete.

(e) Every character on E, which is continuous on each S € &, is continuous on (E,T).

(f) (TE,1s) is BB-reflezive, i.e. it is bicontinuously isomorphic to T .I'.(TE,Ts) .

Proof. The equivalence between a) and b) is properly Grothendieck Theorem. The proof can
be seen in any classical treatise, for example [21]. In [8] it is proved that a locally convex vector
space is complete if and only if it is BB-reflexive as a vector space, thus a) < c).

9



b) < e) is precisely (ii) of lemma 3.1

c) & f) and a) < d) are obtained through the topological isomorfism p : LE — I'¢ E (Lemma
3.2).
o

Remark For any topological vector space E, L.E is BB-reflexive, without any conditions on
E [4]. Taking into account that L.E is bicontinuously isomorphic to I'.E (for any convergence
vector space E, Satz 1 of [9] ) it can be easily proved that also I'.E is BB-reflexive as a group.

Theorem 3.10 Let (E,7) be a Hausdorff locally convex space, the following assertions are
equivalent:

(a) E is complete.

(b) Every linear form on LE which is w(LE, E)-continuous on every equicontinuous subset
of LE, is w(LE, E)-continuous on all of LE.

(c) Every character on T'E which is w(T'E, E)-continuous on every equicontinuous subset of
I'E, is w(T'E, E)-continuous on all TE.

(d) E is BB-reflezive as a topological vector space.

(e) E is BB-reflexive as a topological group.

Proof.

(a) < (b) is a standard corollary of GT, see for example [21].
(a) < (d) and (d) < (e) are proved in [8] and [9] respectively.

(¢) = (e) In order to see that kg is a topological isomorphism, only surjectivity is to be seen, since
kg is already an embedding ( lemma 3.6). Let x € [T .E. If H C T'E is equicontinuous,
x|u is w(I'E, E)-continuous by lemma 3.3. We apply c) together with lemma 3.7,2) and
we obtain that there is some z € E such that x = kg(z).

(e) = (c) Let x:T'E — T be a character such that x|z is w(I'E, E)-continuous for all H C TE
equicontinuous. Taking into account that ['.E is a locally compact convergence group
and that every compact subset of I'.F is equicontinuous, by lemma 3.5, 3 we have that
X is A.-continuous character. Applying now e) there exists z € E such that kg(z) = x.
Thus x is w(T'E, E)-continuous.

O

In Theorem 3.10 BB-reflexivity cannot be sustituted by reflexivity in ordinary sense. There
is a famous example of Komura of a noncomplete locally convex vector space E which is
topologically isomorphic to (Ej);. Here Ej denotes the dual vector space endowed with the
topology of uniform convergence on the weakly bounded subsets of E.

10



4 The Grothendieck theorem for locally quasi-convex
groups

In this section we deal with some approximation to the Grothendieck Theorem, for Hausdorff
locally quasi-convex groups. Comparing Theorems 3.9 and 3.10 with the results obtained in this
section, we see that, with respect to completeness, the underlying groups of topological vector
spaces behave better than locally quasi-convex groups in general. The equivalence between
a) and b) in Theorem 4.1 confirms in a sense that the tools of continuous convergence and
BB-duality theory are appropriate in order to obtain a generalization of the Grothendieck
Theorem.

Theorem 4.1 Let G be a Hausdorff locally quasi-convez topological group. Consider the state-
ments:

(a) G is BB-reflezive.

(b) Every character on T'G which is w(I'G, G)-continuous on every equicontinuous subset of
I'G, is w(I'G, G)-continuous on all of I'G.

(c) G is complete and ag is surjective.
Then a) is equivalent to b) and they imply c).

Proof. For the proof of a) < b), mimic the proof of b) < e) in Theorem 3.10, since the
vector space structure is not used there.

We now prove that both imply ¢). Let us show that «g is surjective. Take any continous
character 1) on G. Since on equicontinuous subsets of G" the compact open topology coin-
cides with pointwise one, it follows that 1 satisfies the assumption of (b), thus it is pointwise
continuous on G” and so, by Lemma 3.7 2, it belongs to ag(G).

In order to prove that G is complete, we use the following general theorem ([5], chapter X,
Section 6 corollary 2 to theorem 2):

"Let X be a topological space, & a collection of subsets of X and Y a complete uniform
space. Then, the space of all maps from X into Y whose restrictions to the sets of & are
continuous, equipped with the topology of uniform convergence on the sets of G, is complete”.

Take X as I'(o,GG, Y = T and & as the family of all equicontinuous subsets of I'G. By
the quoted theorem, the space H(X,T) of all maps whose restriction to the sets of & are
continuous , endowed with the G-topology, is complete. Observing that & covers I'G, we
obtain that the subset formed by all characters in H (X, T) is closed, therefore also complete.
By b) together with lemma 3.5 we have that the latter coincides with the set of all characters
w(T'G, G)-continuous, and by Lemma 3.7 it can be algebraically identified with G. On the other
hand, taking into account that G is locally quasi-convex, its original topology coincides with

11



the G-topology, where G is the family af all equicontinuous subsets of I'G (see [13], Prop.3.9).
Thus the identification is also topological and G is complete. 0

Observe that for locally convex vector spaces completeness is equivalent to BB-reflexivity
(a) < d) of Theorem 3.10). However, an analogue in the framework of locally quasi-convex
groups does not hold as we now state:

Corollary 4.2 Let G be a Hausdorff locally quasi-convez group. The implications a)= c) and
a)= e) of Theorem 3.10 do not hold even if G is complete metrizable and separable.

Proof. Take G := L}[0,1] (see §2). Being G a closed subgroup of LP[0,1], it is complete.
Since G is metrizable and locally quasi-convex, a¢ is continuous, injective and open in its
image. By proposition 2.3 G is not reflexive, therefore ag is not surjective. Now we apply
Theorem 4.1. O

Corollary 4.3 Let G be a Hausdorff locally quasi-convex group. The implication d)=¢) of
theorem 3.9 does not hold even if G is a o-compact hemi-compact locally quasi-convexr group
with the property that the quasi-convex hull of any compact subset is again compact.

Proof. Take G as in the previous Corollary and put E = (I'G,w(I'G, G)). The G-family will
be now the set of all w(I'G, G)-compact subsets of I'G. The group I's E is precisely E” and by
theorem 3.8 can be identified with G, therefore it is complete. As proved in Corollary 4.2 ag
is not surjective. Now we apply Theorem 4.1. n

The properties mentioned in Theorem 4.1 c), separately, do not imply a) or b) as shown by
the groups G = L2[0,1] and the Komura space. We do not know if c)implies a) and b). For
the very special class of nuclear groups [2], the following can be stated:

Corollary 4.4 Let G be a nuclear topological group (or a locally convexr vector group). The
following assertions are equivalent:

(a) G is BB-reflexive.

(b) Every character on T'G which is pointwise continuous on every equicontinuous subset of
I'G, is pointwise continuous on all of I'G.

(c) G is complete.

Proof. We prove that completeness is equivalent to BB-reflexivity, and the equivalence between
a) and b) is as in Theorem 4.1.

Let G be a complete nuclear topological group. By [1], Th. 21.3, G can be embedded as

a dually closed and dually embedded subgroup of a product of complete, metrizable nuclear
groups. The BB-reflexivity of G is proved taking into account the following facts:

12



. Every complete metrizable nuclear group is reflexive in Pontryagin sense [2],(17.3)

. Metrizable Pontryagin reflexive groups are BB-reflexive [11]. Thus every factor group in

the above mentioned product is BB-reflexive.
Products of BB-reflexive groups are BB-reflexive [10],

Dually closed and embedded subgroups of BB-reflexive groups are also BB-reflexive [7].

Conversely, any BB-reflexive group must be complete.
The proof for locally convex vector groups is similar [2], (15.7). m
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